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ABSTRACT

This paper presents a pose estimation system
for UAVs designed for agile flights, utilizing
the UZH-FPV Drone Racing dataset, which fea-
tures high-speed, aggressive 6DoF trajectories
for state estimation and drone racing. Our ap-
proach operates at 30 Hz, combining visual and
inertial information through a sensor fusion tech-
nique incorporating temporal data into the input
images. We use the lightweight convolutional
neural network DeepPilot4Pose, which receives
monocular images concatenated with inertial in-
formation. We process these data to calculate the
UAV’s position in real-time. Despite using a rel-
atively small number of images for training com-
pared to the trajectory length, our results show
significant improvements in pose estimation ac-
curacy and robustness in dynamic environments.

1 INTRODUCTION

In recent years, autonomous drones have grown exponen-
tially in various fields, such as exploration, surveillance, sup-
ply delivery and cinematography. The ability of these Un-
manned Aerial Vehicles (UAVs) to perform agile and precise
manoeuvres in complex environments is crucial to their suc-
cess in these applications. However, getting a UAV to nav-
igate autonomously and efficiently in dynamic, high-speed
scenarios presents a significant challenge due to the need for
highly accurate and fast pose (position and orientation) esti-
mation.

The central problem we are addressing is that UAVs,
when flying at high speed and performing complex manoeu-
vres, demand pose estimation systems with high accuracy and
low latency. However, traditional methods, such as GPS [1, 2]
or additional hardware-based systems [3, 4, 5, 6, 7], are often
not feasible due to their cost, weight, and power consump-
tion, especially for small drones. Moreover, these methods
could be more reliable in indoor or dense urban environments
where GPS signals can be blocked or reflected [8, 2]. In such
scenarios, there is an urgent need for a new, lightweight, ef-
ficient solution that can be easily integrated into UAVs and
operate in real-time. Several methods on pose estimation for
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UAVs have been proposed in recent literature. For example,
DeepPilot4Pose [9, 10], a compact convolutional neural net-
work for visual pose estimation that runs onboard, flies in
an indoor environment where no GPS or external sensors are
available.

Our proposal presents a contribution to the field of pose
estimation for UAVs. Our primary innovation lies in incor-
porating temporal and inertial data into the DeepPilot4Pose
neural network, significantly improving pose estimation ac-
curacy and robustness in dynamic environments. The Deep-
Pilot4Pose network used in our approach has been optimized
to fuse visual and inertial information at high speeds, pro-
viding real-time pose estimates at 30 Hz. This capability is
crucial to enable the UAV to ’see” and “feel” its environment
through its cameras and sensors, using this information to cal-
culate its position in real time.

Significantly, our system determines the absolute position
of the UAV based on the vision system. The system can iden-
tify specific environmental features by leveraging visual in-
formation, ensuring precise localisation within a global refer-
ence frame.

We also evaluate our proposal using the UZH-FPV Drone
Racing dataset [11], which provides images of aggressive
flights and visual-inertial odometry data. Despite using a rel-
atively small number of images for training compared to the
trajectory length, our results show significant improvements
in pose estimation accuracy and robustness in dynamic envi-
ronments.

This paper is organised as follows: Section 2 provides a
literature review on pose estimation; Section 3 describes the
dataset used; Section 4 provides a description of the method-
ology for data collection, preprocessing and fusion; Section
5 describes the analysis of the results; and conclusions and
future work are given in Section 6.

2 RELATED WORK

Visual-inertial odometry (VIO) and inertial measurement
unit (IMU) based odometry have seen significant advances
in recent years, driven by the need for accurate and robust
pose estimation in various applications, such as robotics, au-
tonomous vehicles, and augmented reality.

Visual odometry (VO) involves estimating the motion of
a camera by analyzing captured image sequences. Early con-
tributions in this field laid the foundation for modern VIO
systems. [12] introduced a feature-based method for VO that
uses feature matching and geometric triangulation to estimate
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camera motion. Their work established a framework for sub-
sequent research in visual odometry.

Inertial odometry (I0) uses IMU data to estimate pose.
Traditional methods, such as the Strap Inertial Navigation
System (SINS), rely on double integration of acceleration
data. However, these methods suffer from significant drift
due to noise and sensor biases, making them unsuitable for
long-term navigation tasks. The challenges posed by drift
and noise in IMU data have motivated the development of
more sophisticated algorithms that can provide accurate pose
estimates over extended periods.

Geometric methods for VIO combine visual and iner-
tial data using mathematical models and estimation filters.
Among them is VINS-MONO by Qin [13], which employs
a sliding window optimisation approach to fuse camera and
IMU data. This method operates at approximately 10 Hz and
is known for its robustness and accuracy, although it requires
significant computational resources. OKVIS [14] integrates
an extended Kalman filter (EKF) with sliding window optimi-
sation, achieving high accuracy at a processing frequency of
around 30 Hz at the expense of increased computational com-
plexity. These methods have been instrumental in advancing
the state of the art in VIO.

The advent of deep learning has led to the development
of end-to-end odometry solutions that can learn complex rep-
resentations directly from raw sensor data. VINet [15] is a
pioneering work that frames VIO as a sequence-to-sequence
learning problem using long short-term memory (LSTM) net-
works. This approach takes advantage of temporal depen-
dencies in the data to improve the pose estimation accuracy,
operating at a frequency of approximately 10 Hz. Simi-
larly, IONet [16] employs LSTM networks to predict dis-
placements from IMU data, focusing on 2D trajectory estima-
tion with an operational frequency of about 10 Hz. AbolD-
eeplO [17] combines convolutional neural networks (CNNs)
with LSTM networks to estimate 3D translational and rota-
tional shifts from IMU data. This approach demonstrates sig-
nificant improvements over traditional methods, with a pro-
cessing frequency of approximately 15 Hz, showing the po-
tential of deep learning in inertial odometry. These deep
learning-based methods represent a shift toward leveraging
large data sets and complex models to achieve superior per-
formance under challenging conditions.

Hybrid methods combine geometric principles with deep
learning techniques to leverage the strengths of both ap-
proaches. DeepAVO [18] introduces a four-branch network
with spatial-channel attention to improve visual pose estima-
tion accuracy, operating at approximately 20 Hz. This method
integrates geometric constraints with deep learning models to
improve robustness and accuracy. TLIO [19] represents an-
other significant advance, combining a neural network-based
displacement estimator with an EKF to achieve accurate in-
ertial odometry. TLIO operates at around 50 Hz, highlighting
the efficiency of tight integration between learned models and
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traditional filtering techniques.

Visual-inertial and inertial odometry landscape has
evolved considerably, from early geometric methods to mod-
ern deep learning and hybrid approaches. Pioneering work
laid the foundation for robust pose estimation, while recent
developments have leveraged advanced learning techniques
to push the limits of accuracy and robustness. Integrating
deep learning with traditional geometric methods offers a
promising direction for future research, aiming to achieve re-
liable and accurate odometry in a wide range of challenging
environments.

By providing a comprehensive review of these advances,
this section highlights key contributions and ongoing efforts
in odometry, emphasizing the importance of combining geo-
metric insights with data-driven models to improve the per-
formance and applicability of odometry systems.

3 DATASET FOR EXPERIMENTAL STUDIES

This section delves into the dataset that forms the basis
of our method’s evaluation, shedding light on the algorithm’s
robustness. For agile UAV flight pose estimation, we lever-
aged the UZH-FPV Drone Racing dataset [11]. This dataset
is distinguished by its high velocity and is purpose-built to
capture daring and highly agile manoeuvres, making it a cru-
cial resource for dynamic and demanding flight scenarios.

Inspired by the Autonomous Drone Racing chal-
lenge [20], the UZH-FPV Drone Racing Dataset, a widely
used resource in visual-inertial odometry (VIO) applications,
was developed by ETH Zurich and is publicly accessible.
This dataset comprises grayscale images captured from a
stereo camera mounted on a Micro Aircraft (MAV). It also
includes simultaneous data from the accelerometer and gyro-
scope of the onboard IMU sensor, providing a comprehensive
set of data for various analyses. Additionally, the dataset pro-
vides information on the calibration and noise values of the
camera and IMU sensor, further enhancing its usability.

Using a high-speed data set such as the UZH-FPV Drone
Racing is critical for developing and evaluating pose estima-
tion algorithms capable of supporting agile UAV flight. The
UZH-FPV Drone Racing Dataset recordings were conducted
in indoor and outdoor environments, spanning different envi-
ronments and camera orientations. The environments contain
various objects to provide texture. The dataset is divided into
easy, medium, and hard difficulty categories based on illumi-
nation, MAV speed, and image blur.

In our study, we used the following datasets: Indoor for-
ward facing: 3-01, 6-02, 9-01, 10-01 and Indoor 45-degree
downward facing: 2-01, 4-01, 9-01, 12-01, 13-02, 14-03. The
first digit represents the trajectory, while 01, 02 and 03 indi-
cate easy, medium, and hard difficulty categories.

To generate the UZH-FPV Drone Racing dataset, the re-
searchers employed a first-person view (FPV) racing quad-
copter equipped with sensors and piloted aggressively by an
expert pilot. The MAV hardware included sensors for vi-
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sual and inertial measurements. IMU measurements were
recorded at 500 Hz, while visual data were captured at 30 Hz.
The IMU and cameras were synchronized so that half of the
exposure coincided with the IMU measurements. A Leica
Nova MS60 laser tracker, mounted on top of the MAV, was
used to obtain reference data at a frequency of 500 Hz.

4 METHODOLOGY

In this study, visual and inertial information is evaluated
in three different steps to perform pose estimation. These
are the visual step, which uses the raw images in the data
sets; the Inertial Image step, which combines the IMU data;
and finally, the fusion step, which combines both information.
Figure 1 shows the architecture of the proposed work.

4.1 Visual Data

Our study begins with the UZH-FPV Drone Racing
dataset, a robust and reliable source of raw stereo images. We
vertically concatenate the left mono and right mono images
to form a single image. Then, we introduce our unique tech-
nique that incorporates the temporal dimension into the anal-
ysis through a three-dimensional concatenation of frames.
This technique involves concatenating the current frames (n
seconds) with frames captured at moments n — 5 and n — 10
seconds. The result is an RGB image where each channel rep-
resents a different time point, providing a rich representation
of spatial and temporal information.

This concatenation allows us to capture relative motion
between the camera and objects in the environment more ac-
curately. The resulting images are used in the visual feature
extraction steps, allowing the model to learn the dynamics of
motion in the environment more effectively, as seen in Fig-
ure 1. In this way, the raw data from the camera is supple-
mented with motion information.

4.2 Inertial Data

The IMU sensors contain self-motion information, such
as linear acceleration a and angular velocities w. In some
cases, the IMU also provides orientation information, e.g.
roll-pitch-yaw angles (¢,6,¢). These sensors, which are very
sensitive to movement, operate at high frequency. In this
study, the IMU frequencies for UZH-FPV Drone Racing are
500 Hz. In the data set, the IMU frequency is approximately
16 times the camera frequency. Therefore, there are 16 IMU
data between any two frames.

In the inertial step, the goal is to use the raw IMU val-
ues between frames for pose estimation. In previous studies,
time-dependent IMU raw data is generally directly fed to the
LSTM layers, resulting in temporal IMU features. This study
extracts features from inertial data differently from other
studies to take advantage of the lightweight convolutional net-
work architecture. Instead of using RNN-based LSTM as in
traditional methods. We seek to use IMU data differently by
relying on the robust estimation ability of CNN models.
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The accelerometer, gyroscope, and orientation values are
first normalized to convert numerical IMU data into images
due to their different lower and upper limits. Normaliza-
tion adjusts these values to a standard range between O and
1. These normalized values are then multiplied by 255 to
obtain a single-channel grayscale image with values ranging
from 0 to 255. The resulting image comprises 144 pixels ar-
ranged in a 9 x 16 grid. Each pixel in this image represents
the intensity of the corresponding accelerometer, gyroscope,
or orientation value. In this way, the IMU data is transformed
into a two-dimensional grayscale image, facilitating visual-
ization and analysis and enabling better integration with the
CNN models used in our study.

The same process as visual information is carried out to
take advantage of temporality, i.e., incorporating the infor-
mation corresponding to n — 5 frames and n — 10 into the
remaining RGB channels.

4.3 Visual-Inertial Data

Finally, for data fusion we propose a process that involves
the concatenation of visual information with inertial infor-
mation. This three-dimensional concatenation of frames pro-
vides a representation that is rich in spatial and temporal in-
formation. The fusion of the frame and IMU information used
in the fusion step and the temporal analysis representation are
shown in Figure 2. Our preliminary results show a significant
improvement in pose estimation when using both visual and
inertial information, compared to using either one alone. The
real power lies in the combination of both data sources, which
allows us to capture the relative motion between the camera
and objects in the environment more effectively, leading to
accurate and robust pose estimation. The final image result-
ing from this fusion has a size of 224x224x3. These advanced
data processing techniques ensure that our system can operate
in real-time and quickly adapt to changes in the environment,
significantly improving the accuracy and robustness of pose
estimation in autonomous UAV navigation applications.

4.4 Pose Estimation

For 3D pose estimation, the DeepPilot4Pose [10] neural
network is used. This network is capable of processing the
fused images generated in the previous steps.

The DeepPilot4Pose network architecture comprises sev-
eral convolutional layers that extract high-level features from
the input images. These features are combined into fully con-
nected layers to estimate the 3D position in the coordinates
x,y and z. Additionally, a Savitzky-Golay filter [21] is ap-
plied to the output to smooth the pose estimates, thereby re-
ducing noise and improving the estimation stability.

The DeepPilot4Pose network is a real-time powerhouse,
processing the images at a frequency of 30 Hz, perfectly

66



.org/

/[[Www.1mavs

http

IMAV2024-7

Visual
224 x 200
RGB

Inertial
224 x 24
RGB

Inertial Data
IMU, = [a,, ay, as, we, wy, w., 0,0,
IMU . = [0z, ay, as, w0, wy, we, 6,0,

IMUyp1s = [z, ay, 0., we,wy, we, ¢.6,0]

Right Image

Time

Figure 2: Temporal relationship between the IMU and the
frames.

matching the camera image capture frequency. This capabil-
ity ensures the system can provide accurate and timely pose
estimates, making it an ideal tool for autonomous UAV navi-
gation.

5 EXPERIMENTS AND RESULTS

This section analyzes the results of the proposed method
applied to the UZH-FPV Drone Racing dataset. The training-
test ratio for the data sets is estimated to be 80%-20%, taking
at least one complete lap for training and another for testing.
A desktop computer with NVIDIA GeForce RTX 3060 GPU
was used during training and testing. The proposed algorithm
calculates the average pose estimation time for the test data to
be around 5 ms.

The root mean square error (RMSE) values are used at
each of the three steps obtained from the test data Inside for-
ward 03, 06, 09, 10 and Inside 45 degrees down 02, 04, 09,12,
13, 14. in this study, are given in Table 1.

In Table 1, the columns represent different aspects of the
dataset and the results of the experiments. The columns in-
clude the maximum speed (V,,,4.) of the UAV during the tra-
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) Sequence Indoor 45 degree downward facing 14

Figure 3: Illustration of a sequence of images representing
the characteristics of a trajectory. The figure shows the com-
plexity of the images, which can vary in texture from low to
high, influencing the accuracy of pose estimation.

jectory, the length of the trajectory in meters, the number of
images used for training, the number of images used for test-
ing, and the RMSE values for each method: Visual only, In-
ertial only, and the fusion of both.

It is evident that prediction performance generally de-
creases as the scene and flight conditions in the UZH-FPV
Drone Racing dataset become more challenging. Factors such
as image layout and UAV speed, which can negatively affect
the texture information of the environment, are expected to
hinder prediction performance under such conditions. The
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Sequences (Indoor) | Vipax (m/s) | Length (m) | Training | Testing | Visual | Inertial | Fusion
Forward 3 9.50 22 1219 238 1.160 2.183 0.864
Forward 6 12.5 26 670 217 1.672 2.234 1.623
Forward 9 11.4 26 565 285 2.128 5.061 0.967
Forward 10 9.49 27 580 300 2.767 3.265 2.136
45 degree 2 6.97 27 1090 365 3.507 5.492 3.387
45 degree 4 6.55 24 840 200 1.750 5.514 1.534
45 degree 9 11.2 24 430 200 1.964 1.535 1.571
45 degree 12 4.33 28 590 597 3.164 5.384 3.294
45 degree 13 7.92 25 730 304 1.214 3.299 2.081
45 degree 14 9.54 22 815 170 1.414 0.462 0.867

Table 1: RMSE (m) values of the estimated UAV in the UZH-FPV Drone Racing dataset.

crux of the matter lies in using visual-inertial features to-
gether, ensuring minimal error due to fusion and providing
more robust pose estimation in the face of these challenging
conditions. The fusion results in Table 1 demonstrate that
much more stable results are obtained than in the other two
steps.

To better understand the performance of the UAV’s pre-
dicted trajectory, the X, y, and z trajectories of the training
data values and the position values for the test are visualised
in Figure 4.

In this Figure 4, it is observed that when the test trajectory
is similar to the one used in training and the greater the num-
ber of laps that represent the training, the performance in po-
sition estimation improves significantly. This occurs because
the model has learned the specific trajectory and movement
pattern characteristics during training, allowing it to make
more accurate predictions in similar situations. However, due
to the length and complexity of the trajectories, any slight
difference can result in a decrease in performance since the
model can only partially generalise to trajectories that devi-
ate significantly from those observed during training.

Comparing the RMSE values for each experiment, it is
observed that the best pose estimation is achieved using fused
visual and inertial information. Visual information alone pro-
vides the second-best results, while inertial information alone
is the least accurate. There are only a few cases where visual
or inertial information obtains better results than information
with the fusion of both sensors. This highlights the advantage
of combining visual and inertial data for accurate posture es-
timation.

Additionally, it is essential to note that trajectories 45 de-
grees 9, 12, 13 and 14 show RMSE values where the highest
values are not obtained by the fusion information, particularly
in trajectories 45 degrees 9 and 14. These trajectories involve
images with less texture and more repetition since the camera
is tilted at 45 degrees and mainly captures the grey floor. This
lack of distinguishing features makes it more challenging for
the model to estimate the position accurately. As illustrated in
the sequence images of Figure 3, these conditions can signif-
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icantly affect the estimate’s accuracy. In the case of sequence
14, the inertial information is reduced to the fusion thresh-
old, highlighting that the maximum speed is 9.54 m/s, which
leads us to think that due to the blurred information that cap-
tures the visual information, it hinders estimating the pose
accurately.

Figures 5, 6, and 7 illustrate the obtained results, showing
graphs that compare the trajectories of the actual position and
the estimated position in the x, y, and z axes. Additionally,
the results are compared for estimations using only inertial
and visual information and the fusion of both. These com-
parisons allow us to evaluate the accuracy of each approach
and highlight the significant improvement achieved by fusing
visual and inertial data.

Finally, it is crucial to highlight that the DeepPilot4Pose
neural network operates at 30 Hz. This high operating fre-
quency is essential for real-time autonomous navigation ap-
plications, as it allows for rapid and accurate pose updates.
Additionally, this frequency could be increased if images are
captured at a higher rate, further improving the system’s ac-
curacy and responsiveness in dynamic environments.

6 CONCLUSION

In this work, we have addressed the problem of pose esti-
mation in agile UAV flights, a critical task for applications in
robotics and automation, especially in dynamic and challeng-
ing environments. Accurate position estimation is essential
for autonomous navigation and executing complex manoeu-
vres in real time.

Our method, is based on the fusion of visual visual and
inertial data through out the use of a compact Convolutional
Neural Network. We carried out experimental tests using the
well-known UZH-FPV Drone Racing dataset. The network
employs a three-dimensional frame concatenation technique.
By incorporating the temporal dimension into the analysis,
this technique creates an RGB image where each channel rep-
resents a different time point. This unique representation, rich
in spatial and temporal information, allows us to capture mo-
tion dynamics more effectively, thereby improving the accu-
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Figure 4: Comparison of two trajectories: a training trajec-
tory and a test trajectory for pose estimation.

racy of pose estimation.

Our research has yielded tangible benefits, notably en-
hancing the robustness and accuracy of the pose estimation
algorithm in the challenging scenarios captured in the UZH-
FPV dataset. In terms of average error, our approach obtained
an enhanced performance through out the fusion of the visual
and intertial data in terms of accuracy. Another advantage is
the lower memory consumption, while maintaining a process-
ing time of 30 Hz, suitable for UAV applications with limited
resources.

In future studies, we plan to evaluate our approach against
other prominent methods mentioned in the literature review
using the same UZH-FPV Drone Racing dataset. This will
provide a broader perspective on our method’s performance
relative to other approaches, enhancing the robustness and re-
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Figure 5: Groundtruth-estimated data from the Indoor for-
ward facing 3 sequence.

liability of our findings.

Additionally, we consider several promising directions to
expand and improve our research: to investigate techniques to
improve the algorithm’s robustness in adverse environmental
conditions, such as variable lighting, changing weather con-
ditions, and environments with dynamic obstacles.
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