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ABSTRACT

This paper assesses the usability and accuracy
of a commercially off-the-shelf (COTS) platform
for precise terrestrial animal localization. To
achieve localization, this paper uses a single-shot
coordinate transform method. The platform se-
lected in this work is the DJI Mavic 3E quad-
copter, since it is a popular and widely adopted
platform, in particular among the wildlife con-
servation community. To enable the use of the
DIJI Mavic 3E, a software interface was devel-
oped to access telemetry and camera feed in re-
altime. The method was tested during two field
campaigns in Kenya and Wales. These field
campaigns permitted the discovery of localiza-
tion error sources and their possible mitigation,
in particular through adequate mission planning.
The preliminary maximum localization error was
computed to be 19.2m laterally and 14.4m longi-
tudinally for an animal positioned 385m from the
UAV flying at 120m above ground.

1 INTRODUCTION
1.1 Overview

Recent developments in Computer Vision (CV) and Un-
occupied Aircraft System (UAS) have offered the potential
for providing a step-change in animal conservation through
automated monitoring of wildlife from the air — yet despite
many successful deployments, the true potential of the con-
cept has yet to be realised [1].

This paper will provide a stepping stone on the front of
animal detection and localization. More specifically, this pa-
per has three technical aims: (i) interface with a commer-
cial platform (DJI Mavic 3E) from a local computer to pro-
vide real-time detection and localisation of large mammals,
(ii) evaluate the localisation accuracy of the observed animals
and identify the error sources, (iii) provide recommendation
for the deployment of this system in the field.

WildBridge is the name of the system that brings these
three goals together to create an integrated system for real-
time localization of animals using Commercial Off The Shelf
(COTS) drones. The WildBridge user interface can be seen
in Figure 1.

*Email address: kilian.meier @bristol.ac.uk
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1.2 Background

It is estimated that one-fifth of the world’s vertebrate
species are currently threatened with extinction [2], con-
sequently, the need for more effective means of surveying
wildlife populations has never been so important. Wildlife
is traditionally monitored primarily either by foot, car, ship,
crewed aircraft, or more recently using camera traps. How-
ever, these methods are often expensive, time-consuming, and
logistically difficult in remote areas, making the monitoring
and assessment of biodiversity one of the biggest challenges
in modern conservation. Effective wildlife monitoring and
adaptive management critically depend on regular surveys of
wildlife abundance [3]. Aerial monitoring has the potential to
provide frequent and systematic surveys.

There are three primary means by which aerial imagery
can be gathered for conservation purposes: crewed aircraft,
satellites and UAS/drones.

For large African landscapes, manual aerial surveys with
light aircraft are still considered the best method of counting
large mammals [4], [S]. However, high costs and logistical
constraints mean that light aircraft surveys either do not take
place at all, or if they do, the time between successive sur-
veys is so long that catastrophic declines in populations can
occur [6].

Commercially available high-resolution imagery from
satellite sensors including Quickbird, GeoEye-1 and World
View-3 and 4 have been successful in estimating abundances
of large mammals in savannahs [7], [8]. However, obstruc-
tion of view caused by vegetation in complex wooded savan-
nah environments limits their application and the lack of very
high-resolution imagery prevents individual animal identifi-
cation [8].

Unlike satellite imagery, aerial surveys using UAS/drones
can provide an oblique view in complex habitats providing
superior images for wildlife detection and the identification
of individual animals [9]. UAS can be deployed quickly,
fly autonomously, and collect high-resolution aerial imagery,
making them a key candidate for detecting and counting
wildlife [10]. In the last 20 years, UAS technologies have
advanced substantially and the subsequent decreases in cost
have made them more readily accessible in the field of con-
servation. Consequently, several key areas have been high-
lighted within conservation where UAS might provide great
benefit, e.g. the real-time mapping of land cover, monitor-
ing of illegal deforestation, detection of poaching activities,
and wildlife surveying [11], [12], [13]. More specifically,
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Telemetry Data

DRONE POSITION: 0.0469567° N, 36.9505541° E — POI POSITION: 0.0469660° N, 36.9523035° E
HEADING: 88° --- ALTI FROM HOME: 32 [m]

HORIZONTAL DIST TO POI: 195 [m]

Figure 1: WildBridge web-based graphical user interface. The left tile shows the localization results on a map: the red line is
the drone trajectory (the drone is at the top left of the curve) and the blue pin represents the estimated location of the animal.
The right tile shows the live camera feed and highlights the localized animal. The bottom tile displays selected telemetry. This
snapshot was taken during a flight in Ol Pejeta Conservancy, Kenya.

ecologists have successfully used UAS to survey a variety
of taxa, including several bird species (Canada geese, snow
geese, and white ibis) [14]; great ape nests [15]; salmon [16];
and manatees [16]. A variety of sensors have also been
utilized with good effect including thermal [17] and audio
recorders [18]. Recent developments in deep learning image
recognition can now automatically count animals from aerial
images in open and homogenous landscapes [19], [20].

1.3 Problem Formulation

The task at hand is to automatically and in real-time deter-
mine the geographic location of the POI, given the knowledge
of the drone’s geographic location, the camera orientation, the
camera parameters and the location of a POI in the image. To
access the data needed for the localisation, a system must be
built to have real-time access to a drone’s telemetry and cam-
era feed. In order to make this system easy to use, robust
and accessible, three main design choices have been made.
First, WildBridge has been developed for the DJI Mavic 3E
quadcopter (see Section 2.2), which is a widely used plat-
form in conservation due to its price, ease of use and robust-
ness [21], [22]. Second, the software stack has been mainly
written in Python, which is a popular language due to its ease
of use and allows WildBrige to be easily upgraded and cus-
tomized according to the user’s need.

The rest of the paper will be organised as follows. Sec-
tion 1.4 explores the state of the art, further assessing the need
for a tool like WildBridge, as well as listing the different tools

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM

and methods already in use by conservationists. Section 2
provides an overview of the different components of Wild-
Bridge and how they interact. This section also presents how
WildBridge can be adapted to different platforms and tailored
for different needs. Section 3 describes how the localisation
is performed. Section 4 presents preliminary results based
on data collected by WildBridge and discusses the nature and
magnitude of measurement errors. Finally, Section 5 con-
cludes and presents further development directions of Wild-
Bridge.

1.4 State of the Art

Several research groups have tried to address the ques-
tion of localizing animals using UAS. In particular, several
conservation groups have used mapping techniques or ortho-
graphic photos to count, locate and measure animals in op-
tical images: such as various crocodylians [21], European
brown hare (Lepus europaeus) [23] or Black-Necked Swan
(Cygnus melancoryphus) [24]; and thermal images: north-
ern bobwhite quail (Colinus virginianus) [17]. The benefit of
using nadir imagery is the simplification of the problem’s ge-
ometry and ensures a well-known Ground Sample Distance
(GSD), thus enabling size measurements [21]. It also lever-
ages well-established mapping tools such as Pix4D (Prilly,
Switzerland, pix4d.com). However, generating a map is com-
putationally intensive and does not allow real-time localiza-
tion and mapping. Moreover, the requirement for nadir im-
ages and a specific overlap constrain flight operations and
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Figure 2: WildBridge system block diagram. store.dji.com,
etrix.com.sg

does not give the user the flexibility to react to unexpected
changes during the survey.

A different problem which has, however, a related solu-
tion is the problem of UAS localization in GNSS-denied envi-
ronments. There are several approaches to solve this problem,
but one of them is triangulating the UAS position from known
reference points [25] and [26]. The geometry of the problem
is the same, but the unknown is the UAS position instead of
the animal position (reference point).

It is also worth mentioning that using image-based tech-
niques is not the only viable approach to animal localization.
Radio-based approaches have also proven to be effective [27]
and have led to companies offering it as a service, such as
Wildlife Drones (Acton, Australia, wildlifedrones.net). Ra-
dio location has the benefit of not relying on any resource-
intensive image processing pipeline, of being able to identify
specific individuals, and of permitting reliable localization in
occluded and dense environments. It comes however at the
cost of having to tag the animals to be tracked, which might
be difficult or even impossible. DJI has also released a laser-
based approach, enabling the localisation of POIs seen by the
drone (DJI PinPoints). To achieve this, a laser range finder is
used to measure the distance between the drone and the POL.
This distance is then used to localise the POI based on the
drone’s position and orientation.

Finally, authors in [28] investigated the use of UAS to
locate invasive trees (Miconia calvescens) using a similar ap-
proach to the one presented in this work. However, in [28],
the localization is performed in post-processing.

Note that most papers cited in the section use DJI drones,
which suggests their adequacy for wildlife conservation ap-
plications.

2 EXPERIMENTAL SETUP

2.1 Overview

Figure 2 shows an overview of WildBridge and the fol-
lowing sections describe each component of the system.
2.2 Drone platform

The UAV selected for this work is the DJI Mavic 3 En-
terprise (Figure 2). A summary of its specifications can be

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM

Aircraft Weight 915¢
Diagonal 380.1 mm
Max hover time 38 min
Wide cam. | Sensor 4/3 CMOS, 20 MP
Lens FOV 84°
Lens format equi. 24mm
Lens aperture /2.8-1/11
Video resolution FHD or 4K at 30fps
Tele cam. Sensor 1/2-inch CMOS, 12 MP
Lens FOV 15°
Lens format equi. 162mm
Lens aperture f/4.4
Video resolution FHD or 4K at 30fps
Digital Zoom 8x (56x hybrid zoom)

Table 1: DIJI Mavic 3E specifications. Summarised from
https://enterprise.dji.com/mavic-3-enterprise/specs.

found in Table 1. The platform was selected due to its wide
use and its proven record in remote and harsh environments.
In addition, it features high-quality cameras with a zoom ca-
pacity of up to x56, which is ideal for animal surveys while
avoiding any disturbances on the animals. While this plat-
form has been selected for its high performance, WildBridge
should be compatible with all DJI products supporting Mo-
bile SDK V5!, i.e. Mavic 3, Mini 3 and Matrice 300 series
(see Section 2.3 for more details about the SDK). However,
WildBridge has not been tested on any of those platforms yet.

2.3 Remote Controller (RC)

The RC selected for this work is the DJI RC Pro (Figure 2.
This is the default controller delivered with the DJI Mavic
3E. Importantly, the RC runs on Android and supports DJI’s
Mobile SDK V5 (MSDK). This Software Development Kit
(SDK) provides an interface to the drone and thus enables
the WildBridge app to access the drone’s telemetry and video
streams, and send control commands back to the drone. The
RC communicates with the drone over a 2.4 GHz and a 5 GHz
radio link and with the GCS laptop via a Local Area Network
(LAN).

2.4 WildBridge app

The WildBridge app is the actual ’bridge” of the project.
It enables any device on the LAN to receive telemetry data
and to send control commands from and to the drone. This
is achieved by implementing an HTTP server answering
to telemetry and control command requests. The Wild-
Bridge app also runs an RTSP server broadcasting the drone’s
camera feed. The app is written in Java and Kotlin and
has been adapted from the MSDK’s example application.
The telemetry fields accessed in this work over the MSDK
are KeyAircraftLocation3D, KeyAircraftAttitude, KeyGim-

Thttps://developer.dji.com/mobile-sdk/
2Mobile-SDK-Android-V5
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balAttitude and KeyCameraZoomRatios®. Note, that this im-
plies that the drone cannot be flown using the native Pilot 2
app and the WildBridge app must be used instead for piloting.

2.5 Laptop

In this work, a Dell Inc.Latitude 5440 operating on
Ubuntu 22.04.4 LTS was used and was able to perform around
4 to 5 localizations per second. However, most modern com-
puters can be used as long as they can access the LAN and
can run Python scripts. Given that the computer is running an
object detection algorithm it is recommended the computer
has reasonable image processing capabilities. This machine
also hosts the web-based user interface, displaying the local-
ization results (Figure 1).

3 METHODOLOGY

3.1 Notations and reference frames

A vector r in a frame f is noted as rf. A rotation matrix
C transforming a vector from frame a to b is noted as CE, ie.
rP = Cbr2.

There are three reference frames to consider: the image
frame (i), the camera frame (c) and the world frame (w). The
image frame is a two-dimensional frame, spanning the cam-
era sensor plane. Its origin is in the top left corner of the
image. The camera frame has its origin at the focal point of
the camera and is oriented such that its y- and z-axis are par-
allel to the x- and y-axis of the image frame, respectively. The
camera frame’s x-axis is perpendicular to the sensor plane and
crosses it in its centre (see Figure 3). The distance between
the origin of the camera frame and sensor plane and the focal
length. Finally, the world frame’s x-, y- and z-axis are aligned
with the North, East and Down cardinal directions.

3.2  Localisation

The localisation problem can formulated as finding the
relationship between a POI detected in the image and a POI
in the world. Let’s call the former the virtual POI (vPOI) and
the latter the world POI (wPOI).

Assuming a vPOI has been found in the image frame, lo-
cating it in the world can be achieved by tracing a ray originat-
ing from the camera focal point (origin of the camera frame)
and passing through the vPOI. The intersection between this
ray and the ground is the location of the wPOI (see Figure 3).
Hence, this section needs to derive a parameterization of this
ray in the world frame. Thus, let’s assume a known vPOI in
the image frame such that:

. :I/.Z

rypor = [ ?POI} 6]
YvpPOI

where x! 5, and y! p; are expressed in meters. However,

the position of the detected POI in the image is measured in

pixels. The conversion can be achieved by knowing the phys-

ical size of a pixel in the camera sensor. For the zoom lens of

3DJI MSDK Documentation
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Figure 3: Reference Frames.

the DJI Mavic 3E used in this work, the pixels have a length
s = 1.6 [um]*. Thus:

7
Lypor

i
=S T POI.pi (2)
y:;POI:| e P

rypor = {
where I'iVPOLpix is the position of the vPOI in the image
frame expressed in pixels.
Then the position of the vPOI in the camera frame can be
expressed as:

f
rypor = |Typor — W/2 (3)
Yopor — H/2

where W and H are the total image width and height respec-
tively and f the camera’s focal length. Hence a parametric
line d originating from the camera origin and passing through
the vPOI can be written as:

d(\)€ = Aripor 4

Where ) is the parameter. Now let’s express this line in the
world frame:

d(\)Y = ACTripor + 1o ©)

where r¥ = [n. e. d.]" is the known translation of the cam-
era frame with respect to the world frame and CY’ is the ro-
tation matrix encoding the relative orientation of the world

4Calculated from the surface each pixel covers based on the DJI Mavic
3E specifications.
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frame with respect to the camera frame. This rotation can be
expressed as an intrinsic “zy” rotation:

CypCo  —Syp  CypSg
CY =C,(¢)Cy(8) = |sycs cyp  SySo (6)
—Sp 0 Co

where v is the camera heading, 6 is the camera pitch and
s and c represent the sine and cosine functions of the sub-
scripted angle. Finally, the intersection between d(A\)™ and
the ground can be expressed as:

NwPOI
€wPOT @)
dwpor

d(A)%

W _
=TI'wpoOIl =

where n.,,por and e,, po are the northing and easting of the
wPOI, which are unknown, and d,,po; the elevation of the
wPOL. The elevation could be known using a digital elevation
model of the area of interest and then finding the intersec-
tion of the traced ray and the elevation map. However, this is
outside of the scope of this paper. Hence, it is assumed the
terrain is flat and since the POIs are animals evolving on the
ground d,,po; = 0. This is a strong assumption and a major
source of error and will be address in future work. Thus, as-
suming d,,por = 0, (7) is a system of three equations with
three unknowns: A, ny,por and e, por. Solving for A leads

to:
dc

co(Yypor — H/2) = sof
Explicit solutions for n,,por and e, por can be expressed
using (5) and (7). This system is solvable as long as:

co(Whpor — H/2) — sof #0 )

i.e. as long as the ray is not horizontal. The system has 11
parameters: T, por, Yypors 5> f» W, H, ne, ec, de, 1 and 6.

)\ =

®)

4 RESULTS AND DISCUSSION
4.1 Ol Pejeta (Kenya) test campaign - Proof of concept

WildBridge has been tested during two different test cam-
paigns with different aims and objectives. The first cam-
paign took place in the Ol Pejeta Conservancy in Kenya and
aimed at testing WildBridge in an environment representative
of what conservationists may experience during their field-
work. It was also an opportunity to present this work to the
rangers and researchers of Ol Pejeta and discuss potential fur-
ther developments of WildBridge.

Four flights were performed at various locations in the
park, mainly observing zebras. The flights were conducted
within visual line of sight (VLOS) since the WildBridge app
does not yet implement some critical safety features to enable
Beyond Visual Line of Sight (BVLOS) flights. To ensure the

5The camera is controlled such that its roll is always zero, hence the ab-
sence of an ”’x” rotation.
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regulatory compliance of those flights, a Specific Operational
Risk Assessment (SORA) [29] was submitted to both the
Kenya Civil Aviation Authority (KCAA) ¢ and the Kenyan
military, since Ol Pejeta is a military controller airspace.

A snapshot of the WildBridge interface during one of the
flights can be seen in Figure 1. Some flights were also live-
streamed using Starlink to Ol Pejeta’s control room, thus giv-
ing live information about animals in the park to the rangers.
Note, however, that the accuracy of the localization was not
assessed here due to the challenges related to the acquisition
of a ground truth.

The main takeaways from this campaign are:

* The system was successfully used in a remote environ-
ment with real animal observations.

e The system awoke the interest of Ol Pejeta’s rangers
and has the potential to be integrated with Earthrange’,
Ol Pejeta’s current monitoring interface.

* The WildBridge app, while being useable, should im-
prove its user interface to enable safer piloting of the
drone.

* The regulatory approval was more complex and time-
consuming than expected due to the involvement of
multiple stakeholders. Future missions should allocate
sufficient contingency time for potential delays.

4.2 Llanbedr (Wales) test campaign - Characterisation

The second test campaign took place at Llanbedr Airfield
in Wales and aimed at evaluating and characterising the lo-
calisation error of WildBrige. To achieve this, several flights
were performed looking at a stationary POI on the ground,
placed at a known location. The flights were flown manually
and such that the POI was kept in the frame. All flights were
achieved by controlling only two of the five control inputs
available on the DJI RC Pro and they can be grouped into
four categories: straight horizontal flight away or towards the
POI (vertical left stick and gimbal pitch), straight ascent or
descent (vertical right stick and gimbal pitch), diagonal flight
away or towards the POI (vertical right and left stick), and
orbit around the POI (horizontal left and right stick). In ad-
dition to those four flight types, flights were also performed
only using one of the five available control inputs, but they
are limited in range since they cannot control the POI to stay
in the frame. These flights will be used in two different ways,
first to understand and compensate for the limitations of the
localisation method, second to make a first evaluation of the
accuracy this system can achieve. Two sample flights can be
seen in Figure 8 and 9.

Shttps://kcaa.or.ke/
7EarthRanger website
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Sensitivity to Gimbal Pitch
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Figure 4: Correlation between pitch angle and longitudinal
error during a vertically descending flight.

4.3 Error definition

The performance metric chosen in this work is lateral and
longitudinal error with respect to the azimuth between the
drone and the ground truth. In other words, the longitudi-
nal error is the projection of the error vector on the horizontal
axis connecting the ground truth point and the drone’s posi-
tion on the ground. The lateral error is the projection on an
axis perpendicular to the longitudinal axis.

4.4 Sensitivity to gimbal pitch error

As described in Section 3.2, (7) is only solvable when the
ray is not horizontal. But it is also worth noting, that for rays
close to horizontal, the denominator in (8) is close to zero,
making A very sensitive to small errors in gimbal angle or
vPOI detection and thus leading to large errors in the position
estimation of the wPOI. This can be illustrated by looking at
a vertically descending flight as shown in Figure 4. During
the descent from approximately 120m to 20m above ground,
the gimbal is operated such that the POI always stays in the
field of view. As expected, the longitudinal error increases
with decreasing gimbal angle.

4.5 Sensitivity to focal length

Unless the vPOI is in the centre of the image, the local-
isation estimate is dependent on the focal length (and more
generally on the camera model used). DJI’s MSDK enables
access to several measurements of focal length, but after in-
spection of the data, it is unclear how any of the available
values relate to the true focal length of the camera. Hence, in
this work, the focal length used is the telemetry field named
KeyCameraZoomRatios® scaled by a manually tuned param-
eter such that the localisation error is minimized. To illustrate
the impact of the focal length tuning, Figure 5 shows two sets

8DJI MSDK Documentation KeyCameraZoomRatios
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Sensitivity to Focal Length

50% increase on focal length
Tuned focal length
Ground truth

52°49'05.15"N

52°49'05.1"N
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52°49'04.95"N
52°49'04.9"'N
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4°07'40.4"W

Esri, TomTom, Garmin,
METINASA, USGS

rsquare, GeoTechnologies, Inc

4°07'40.2"W
Longitude

4°07'40"W

Figure 5: Impact of focal length tuning on localisation esti-
mate during a stationary flight featuring yawing and gimbal
pitching movements.

of localisation estimates, first with the manually tuned focal
length, then with a 50% increase of the focal length. The
flight in this example is a stationary flight during which the
camera has been moved such that the POI draws a cross and
a square in the image frame. The structure present in the esti-
mation of the artificially increased focal length replicates the
path drawn by the POI on the image frame. This results from
the algorithm being unable to compensate for the displace-
ment of the vPOI in the image frame.

4.6 Sensitivity to image and telemetry sychronisation

For a correct localisation, all the data used by the al-
gorithm must be time synchronised. Given that image and
telemetry are broadcasted over different channels, they are the
most at risk of suffering from synchronisation issues. To ver-
ify this, the vertical position in the image frame of the vPOI
has been overlayed on the gimbal pitch angle during a station-
ary flight (Figure 6). It is clear in this example that the gimbal
pitch signal is leading the object position in the image signal.
Measurement of this delay resulted in approximately 4 sam-
ples (= 1s) and all the data in this work has been shifted by
this amount. The reason for this delay is that images are only
timestamped once received by the GCS, but their transfer (in-
cluding compression and decompression) takes time and this
duration can vary depending on the network setup, the traffic
on the network and the size or even content of the images.
It is unclear whether it is possible to properly timestamp im-
ages before sending them, but this would be the best way to
measure and compensate for this delay.

4.7 Gimbal heading measurement

DIJI’s MSDK allows the user to access a parameter named
KeyGimbalAttitude, which according to the SDK’s documen-

328



.org/

/[/[www.1mavs

http

IMAV2024-39

Time delay between image and telemetry
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Figure 6: Vertical position in the image frame of the vPOI
overlayed on gimbal pitch angle during a stationary flight,
before time delay compensation.

tation® describes the heading of the camera in a NED world
frame. However, after inspection of the data, this was not true
in certain conditions. Thus, in this work, the drone heading
was used (body heading). While this is not the true value,
it is a fair approximation since the gimbal heading is con-
trolled to be aligned with the forward direction of the drone
and uses this degree of freedom only to smooth out yawing
movements. In other words, gimbal heading and drone head-
ing are equal when the drone is not yawing, but their differ-
ence may be high during yawing movements.

4.8 Heading and pitch biases

Figure 7 shows the localisation estimate (in blue) for a
straight flight towards the POI (in green). Computing the
heading bias to minimize the lateral error and the pitch bias
to minimize the longitudinal error leads to the biased esti-
mates (in red). The fact that biased estimate collapses to an
ellipsoid around the ground truth, suggests that there is in-
deed a constant error in the heading and pitch measurements.
Comparing this bias on different flights unfortunately leads to
the conclusion that these biases are not constant across differ-
ent missions. A possible explanation for this observation is
that relative encoders are used in the drone’s gimbal, which
are well suited for filming since they can be used to stabilise
the camera. However, relative encoders are sensitive to their
initialization routine and may drift over time if steps are mis-
counted. This could be mitigated by including a calibration
routine in the drone’s flight. For example, by localising the
pilot holding the remote controller which features a GNSS
receiver and thus can be used as a ground truth.

9DJI MSDK Documentation KeyGimbalAttitude
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Constant heading and pitch bias

52°49'06"N |- Uncorrected estimation
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Figure 7: Impact of constant heading and pitch bias on local-
isation estimate during a 30m altitude flight toward the POIL.
Biased estimates feature a constant heading and pitch bias
and were computed to minimize lateral and longitudinal error
respectively.

4.9 Mission planning recommendation

While the contributions of the error sources listed above
could be mitigated by a better understanding of the system
or by an improved processing pipeline, they can also be mit-
igated during mission planning. Hereafter, are three recom-
mendations that can improve the estimation accuracy.

* Ensure that the gimbal pitch is as close to vertical as
possible, either by flying higher or closer to the POI
(see Section 4.4). This is limited by other requirements,
such as image quality, safety distance to the POI or
compliance with regulations (altitude ceiling).

» Keep the POI as close to the image centre as possible,
thus mitigating the impact of lens distortion and error in
the focal length (see Section 4.5). However, this might
be hard to achieve during manual flight or even impos-
sible when looking at multiple POIs.

¢ Make slow movements and maximise stationary obser-
vations. This reduces the impact of bad telemetry syn-
chronisation (see Section 4.6).

4.10  Performance evaluation

This section presents two selected flights that can be seen
in Figure 8 and 9. Both Figures show the drone’s flight path
(in red), the estimated position of the POI (in blue) and the
ground truth (in green). These flights were selected since they
feature two simple movements (moving towards and orbiting
around a POI) that are likely to occur during field observa-
tions. Moreover, both flights happen at an altitude of 120m
above ground, which maximises the performance of the al-
gorithm (see Section 4.4 and 4.9), thus showing how well
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Figure 8: Straight flight towards the POI, altitude: 120m, dis-
tance to POI: 385m to 95m, max lateral error: 19.2m, max
longitudinal error: 14.4m.

the algorithm can perform in good conditions. Both flights
were processed taking into account the tuned focal length dis-
cussed in Section 4.5 and the time delay discussed in Sec-
tion 4.6, but they are not corrected for the constant bias (see
Section 7).

For flight A (Figure 8), it is interesting to note that at
385m the error is not larger than 19.2m laterally and 14.4m
longitudinally. For flight B (Figure 9), flying at a distance
of 95m to the POI, the error is reduced to 16.1m laterally
and 7.4m longitudinally. However, there is a lot of structure
in the estimated position, suggesting that there are camera
movements not properly accounted for. It is likely that this
results from the camera heading approximation discussed in
Section 4.7.

5 CONCLUSION AND FUTURE WORK

In summary, this work presented a simple localisation al-
gorithm that can be run on a commercial platform: the DJI
Mavic 3E. The method has been successfully deployed in
the Ol Pejeta Conservancy (Kenya) and at Llanbedr Airfield
(Wales). The analysis of the data acquired led to a better un-
derstanding of the capabilities and limitations of this algo-
rithm and platform. In particular:

* The estimation error can be reduced by ensuring that
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Figure 9: Orbit around the POI, altitude: 120m, distance to
POI: 95m, max lateral error: 16.1m, max longitudinal error:
7.4m.

the camera is as close to vertical as the mission require-
ments allow it to be (Section 4.4).

* The estimation is sensitive to the knowledge of the
camera focal length (Section 4.5). This can be miti-
gated by ensuring the POI is in the centre of the image.

* There are synchronisation issues between image and
telemetry (Section 4.6).

e There is a constant heading and pitch bias, probably
specific to each flight, that should be calibrated out
(Section 4.8).

Based on these findings, this work also presented mission
planning recommendations to improve the estimation accu-
racy (Section 4.9).

The resulting localisation error, for a POI 385m away, can
be as good as 19.2m laterally and 14.4m longitudinally (Sec-
tion 4.10).

Further work will address the shortcomings pointed out in
the article, such as:

* Develop a more accurate camera model based on a bet-
ter understanding of the DJI Mavic 3E’s camera.

* Address the data synchronisation issue.
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Improve the pilot’s user interface for better and safer
control of the drone.

Implement a gimbal calibration routine to determine
heading and pitch biases.

Account for terrain elevation during the localisation.

Filter the estimation over time to improve localization
precision.
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