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ABSTRACT

Photovoltaic (PV) panels play a crucial role in
renewable energy generation. Ensuring their op-
timal performance and longevity requires regular
inspection. Traditional methods rely on sched-
uled inspections with manual, offline path plan-
ning. Our system employs a dynamic online
planning algorithm that allows for real-time task
allocation and inspection on a per-panel basis. In
this paper, we propose a new approach where
each panel is embedded with IoT sensors that
communicate inspection requests to a sensored
UAV swarm. This allows to create a specific in-
spection plan for each UAV, adapting to panel
conditions and requests. Our approach con-
tributes to the advancement of sustainable energy
systems by focusing on individual panels when
demanded, reducing overall inspection time and
enhancing accuracy. We present the design, im-
plementation, and evaluation of this system. 1

1 INTRODUCTION

The transition to a sustainable energy future necessitates
innovative solutions to maximize the efficiency and effective-
ness of renewable energy sources. In this context, solar pho-
tovoltaics (PV) has been the fastest growing power generation
technology in the world over the last decade [1]. All the sce-
narios towards a climate neutral energy assign a central role
to PV. The widespread adoption of photovoltaic installations
holds immense promise, but also presents unique challenges.
To fully unlock the potential of solar energy, it is crucial to
optimize the economic and energy performance of PV plants
while ensuring seamless integration with existing grid infras-
tructure.

Another major challenge is how to carry out the mon-
itoring and maintenance of photovoltaic plants. Many of
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1System validation video

Figure 1: DJI M300 inspecting a PV plant.

these plants are too large, making their inspection very time-
consuming if it has to be done by workers. To address this
issue, various proposals have emerged, among which the use
of drone fleets offers an efficient and novel solution [2]. To
accomplish this mission, drones are equipped with cameras
and various types of instruments [3], as shown in Figure 1.
While thermal cameras mounted on UAVs can detect most
PV issues [4], additional PV mounted sensing is needed, as
not every issue in PV panels manifests itself in form of tem-
perature increase, depicted in Figure 2. Additionally, it is
worth noting that early fault detection is crucial in the mainte-
nance of photovoltaic plants to ensure adequate performance
and prevent defects from spreading to healthy areas. Further-
more, detecting the different aging mechanisms that can also
affect photovoltaic modules is important, as a mismatch phe-
nomenon can occur between them [5].

The primary objective of this work is to integrate state-
of-the-art communication technologies and autonomous UAV
capabilities to streamline the control and monitoring of PV
plants.

To do that, we use autonomous swarm planning algorithm
for drone fleets tailored specifically for solar park inspection.
These plans are generated by an online planning system that
uses information coming from low-cost IoT systems for dig-
italized solar panels capable of self-assessment and commu-
nication in order to ensure efficient and comprehensive mon-
itoring of PV plants.
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Figure 2: Image capture during the inspection process, with
the thermal and RGB images.

This planning approach is swarm-oriented, meaning that
each generated plan takes into account specific factors to de-
termine which drone is assigned to which plan, along with the
corresponding parameters.

We have also integrated computer vision and deep learn-
ing algorithms that work with the imaging sensors mounted
on the drones to perform real time detection and evaluation of
rgb and thermal images.

By pursuing this objective, we aspire to contribute to the
advancement of solar energy technologies and facilitate the
transition towards a more sustainable energy future. Our find-
ings not only hold the potential to enhance the performance
and reliability of PV installations but also play a crucial role
in mitigating the effects of global warming by maximizing
the utilization of renewable energy sources.

Concisely, the main contributions of this work are as fol-
lows:

1. Design of a novel IoT architecture that integrates solar
panels and UAV swarm in a PV plant.

2. An innovative swarm-oriented online-planning algo-
rithm to optimize on demand PV inspections.

3. An onboard real-time visual inspection and evaluation
pipeline for rgb and thermal images.

4. Experimental evaluation of the system in a real pho-
tovoltaic plant, providing precise and efficient inspec-
tions.

2 INDUSTRY DRONE-BASED INSPECTION
TECHNIQUES AND PV MONITORING

The rapid expansion of PV markets has spurred the de-
velopment of large-scale solar power plants, intensifying the
need for more advanced inspection and monitoring tools. Tra-
ditionally, manual inspections have been the norm [6], but
there’s a growing shift towards employing more dynamic sys-
tems, particularly drones, for these tasks. Drones are increas-
ingly recognized as a fitting solution for the solar industry
due to their diverse surveillance and monitoring capabilities,
long-range inspection potential, and ease of control. Over
recent years, they have gained popularity for their ability to
swiftly monitor expansive solar parks more efficiently than

human inspection teams. Equipped with sensing technology,
drones efficiently gather essential data and transmit it to the
cloud for analysis, significantly reducing time and enhancing
accuracy.

Current state of the art usage of drone-based PV plant
monitoring suggests having an experienced drone pilot to re-
motely manipulate the drone [7]. However, for a fully au-
tonomous drone, the focus and range (i.e., correct tempera-
ture range set on thermal camera) of the cameras, as well as
the flying distance are difficult to dynamically reconfigure,
and they require proper settings during image capture.

During an automated aerial infrared thermography opera-
tion, the UAV navigates through a series of waypoints, ensur-
ing comprehensive coverage of the solar plant’s modules [8].
Consequently, the deployment of a refined path-planning al-
gorithm is crucial to achieve the most efficient route in terms
of time and battery usage [9].

Moving on to fully autonomous UAVs, we can clearly dif-
ferentiate between a planning phase and a navigation phase.

When focusing only on planning of UAVs, a semi-
supervised remote control system is proposed in [10], where
there is no planning needed as it is integrated in the human
pilot control loop. In [11] a GUI is integrated with the capac-
ity of defining waypoints for more specific curvilinear terrain
shapes or polygons in case the layout allows it, to then cre-
ate a grid shaped path within that polygon. A sequence of
georeferenced waypoints is introduced in the system prior to
navigation phase in [12], which implies user having to look
up to exact GPS coordinates with a third party tool. A form
of semi-automated planning is performed in [13] in which the
boundary information can be gained from design drawings of
the photovoltaic plant, GPS, and aerial images together with
Geographic Information Systems. A polygon is then built and
path is created using back and forth algorithm. A previously
designed trajectory is used in [14], being unspecified the way
of creating it. In [15], travelling salesman shortest path algo-
rithm to devise a route encompassing a random assortment of
modules that collectively depict the entire photovoltaic (PV)
plant, thus optimizing battery utilization is utilized. In [16] a
strategy is developed utilizing density clustering, boustrophe-
don motion planning, and Bezier curves. Similarly, path plan-
ning optimization algorithm using Bezier curves is crafted in
[17], in conjunction with particle swarm optimization. This
approach also factors in the dynamics of flight attitude, the
constraints of the gimbal, and the overall path distance.

All of previously mentioned autonomous or semi-
autonomous UAVs PV inspection systems have one thing in
common, planning is made offline, which means there would
be a limitation in time and workload if the inspection zone
layout changes and planning needs to be reconfigured.

Motivated by this scarcity, we present a solution that ad-
dresses the problematic of offline planning by enabling spe-
cific panel and drone communication in order to perform on-
line per-panel planning.
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3 AUTOMATED ONLINE INSPECTION SYSTEM

The main problem addressed in this work is the imple-
mentation of an on-demand panel inspection system that is
able to integrate PV intelligent monitoring system with an
aerial inspection system.

3.1 IoT Architecture Overview
The pipeline of the automated online inspection is com-

posed by three main components, depicted in Figure 3.
Alongside, we propose a communication scheme to connect
these components. Moreover, we develop a two-step swarm-
oriented planning strategy, approach and inspection, to adapt
to on-call PV panel inspections. The three main components
of the system are:

Figure 3: Overview of the inspection system components. It
is composed by the PV plant intelligent monitoring subsys-
tem, with the IoT integrated within every panel, the aerial
inspection subsystem, with a swarm of UAVs, and a ground
station, acting as a manager.

• Intelligent PV plant monitoring subsystem. The
intelligent PV plant monitoring is composed by IoT
boards that have been wired to the electrical system of
the panels, along with self-diagnosing tools capable of
generating different types of alerts. These alerts reach
to the ground station in form of request. Additionally,
aerial inspection results are sent back from the ground
station to the panels as responses in form of hot-spot
location within the panel.

• Ground station. The ground station serves as cen-
tral node, responsible for processing the information
received from the panels and managing the aerial in-
spection subsystem. It acts as a broker between both
subsystems, assigning PV panel request to UAVs in the
swarm and monitoring inspections in progress.

• Aerial inspection subsystem. The aerial inspection
system consists of a swarm of UAVs capable of cap-
turing and processing thermal images of the PV pan-
els. The swarm is homogeneous, carrying all UAVs the
same payload formed by a gimbal and an hybrid RGB-
IR camera.

3.2 Communication Scheme
The communication scheme is responsible for connect-

ing the PV plant’s intelligent monitoring subsystem with the
aerial inspection subsystem through the ground station.

To achieve this, two communication protocols are used.
On one hand, the communication between the PV plant and
the ground station is carried out using the MQTT protocol.
On the other hand, the connection between the ground station
and the agents of the aerial swarm is established using ROS
2, as depicted in Figure 4.

Figure 4: Communication scheme layout. Blue dashed lines
stands for info interface, while black dashed lines for re-
quest/response interfaces. Boxes on top show fields of each
message for every communication interface.

We establish a link between each PV panel and each UAV
using three different types of message interfaces: info, re-
quest, and response. Table 1 summarizes these interfaces on
both sides, PV plant and UAVs systems.

Interface Direction Trigger Event
Info PV→ UAVs Panel initialize

Request PV→ UAVs Panel failure
Response UAVs→ PV Image processed

Table 1: The defined communication interfaces between the
intelligent PV plant monitoring system and the aerial inspec-
tion system, along with their respective trigger events.

In the MQTT side, the info interface is used to send po-
sitioning information of each PV panel that is needed for the
ground station to build a custom plan for that panel. The re-
quest interface is utilized by the panel to request an inspec-
tion when an alarm is triggered by the self-diagnosing tool of
the IoT board connected to the panel sensors. The response
interface is employed to receive the requested inspection re-
sults taken by the aerial subsystem, mainly the maximum,
minimum and mean measured temperature.

In the ROS 2 side, the info interface is utilized to localize
the positions of the PV panels relative to the swarm coordi-
nate system. The request interface is employed to assign and
define the mission that the UAV must perform to inspect the
panel. The response interface is used to transmit the tem-
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perature information of the panel, which results from image
processing by the UAV.

3.3 Swarm-oriented Online Planning Algorithm
The planning algorithm is in charge of translating from

request to missions, assigned to UAVs. These inspection mis-
sions are managed by the ground station. For every request
sent, the ground station assigns a new mission to a specific
UAV, and then monitors its inspection. The UAV assignment
is based on the distance to the panel position where the re-
quest came from, aiming to optimize flight time and, conse-
quently, energy consumption. When the mission reaches the
UAV, it is added to its inner First In First Out (FIFO) queue.
The UAV will perform each inspection in the queue sequen-
tially, and once the queue is empty, it will land in the safety
zone waiting for new inspection requests.

The ground station defines two phases of the mission: ap-
proaching to the panel and performing the inspection.

1. Approach phase: The approach maneuver is done at
a different height for each UAV in flight, and differ-
ent from the inspection height, to avoid collisions in
case of trajectory crossing. If the UAV starts from the
ground, the maneuver will require a prior takeoff to the
specified height, and if it is already in the air, it will
perform a vertical movement only. The approach point
is located at a distance from the perpendicular to the
panel, using the position and elevation information of
the panel.

2. Inspection phase: The goal of this phase is to capture
a image of the panel and obtain its temperature data.
To achieve this, initially, the UAV positions itself at the
relative image capture distance from the panel. Sub-
sequently, it adjusts the gimbal to center the panel in
the image. Next, the image is captured and processed,
with the results being sent to the ground station. Fi-
nally, the UAV returns to the approach point, with the
security height, awaiting a new request of this panel in-
spection, or concluding it to proceed with the next task
in its queue.

We have used the behavior-based interface of
Aerostack2 [18] for mission definition. A mission is
formed by tasks, and each task correspond to a behavior from
Aerostack2. Figure 5 shows a description of an inspection
mission when a panel makes a request, while a visual
example of the generated mission is depicted in Figure 6.

3.4 Onboard Real-Time Visual Inspection
During the aerial inspection phase, there are two key

points in our strategy to extract the temperature data from the
panel. First, centering the panel in the image, and second a
three-step onboard image processing pipeline.

The camera gimbal is used for centering the panel in the
image, which is important for a better analysis later. To

{"takeoff": {"z": approach_height, "frame_id": "earth"}},
{"go_to": {"position": [current_pos_x, current_pos_y,

approach_height], "frame_id": "earth"}},
{"go_to": {"position": [0.0, 0.0, approach_height], "

frame_id": "panel_x"}}

{"go_to": {"position": [0.0, 0.0, capture_distance], "
frame_id": "panel_x"}},

{"gimbal": {"frame_id": "panel_x"}},
{"image_process": {}},
{"go_to": {"position": [0.0, 0.0, approach_height], "

frame_id": "panel_x"}}

Figure 5: Approach (top) and inspection (bottom) of a panel
inspection mission definition using behavior-based tasks from
the Aerostack2 standard.

Figure 6: Planned mission relative to PV panel: step 0, 1 and
2 constitute approaching phase, being step 1 executed only if
the UAV is landed first. Inspection phase are formed by steps
3 to 7, both included.

achieve this, we introduce a multi-frame coordinate system,
as shown in Figure 7. The variables to be controlled are the
translation of the UAV with respect to the Earth (TUAV

earth) and
the rotation of the gimbal with respect to the UAV (Rcamera

UAV ).
The desired reference is the camera’s translation (Tcamera

panel ),
defined by the desired image capture distance, and its orien-
tation (Rcamera

panel ), which should be perpendicular to the panel,
as shown in Equation 1. The UAV’s frame positioning uses its
localization system, while the panel’s frame positioning uses
the information received from the panel.

TUAV
earth = Tpanel

earth ·Tcamera
panel ·TUAV

camera

Rcamera
UAV = Rearth

UAV ·Rpanel
earth ·Rcamera

panel

(1)

Once the PV panel to capture is centered in the image,
a picture is shot and the onboard image processing pipeline
starts. The pipeline’s objective is to measure the maximum,
average, and minimum temperature of the panel, for transmis-
sion to the intelligent monitoring subsystem. Our approach is
optimized for embedded platforms and to fulfill real-time ca-
pabilities. To achieve this, we propose a three-step strategy.
First, we perform a keypoint-based (vertices) panel detection
using the framework described in [19]. Subsequently, the
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Figure 7: Multi-frame coordinate system used for calculating
the positioning of the UAV relative to the panel and the ori-
entation of the camera relative to the UAV.

central panel of the image is segmented using the vertices pre-
viously detected. Last, the thermal image is processed finding
local maxima and minima over the temperature values of the
segmented panel, Figure 8 shows the described image pro-
cessing pipeline.

Figure 8: Sequence of the image processing pipeline, from
right to left and top to bottom; panel vertices detection, panel
segmentation and local maximum detected in thermal image.

4 EXPERIMENTAL VALIDATION

In order to validate our inspection strategy, we performed
extensive experiments on simulation and real world environ-
ments. We first followed a simulation to real methodology in
order to validate our system, then we performed a mission in
a real PV plant with a swarm of two UAVs.

4.1 Experimental setup
To first test the algorithms, we followed the simulation

to real methodology that ensures safe real deployment of the
system described in [20]. During this methodology we used
only one UAV in order to have a minimal setup working. We
started with a simulation development phase, followed by a

precise Hardware-In-The-Loop (HITL) simulation and finish-
ing with the industrial environment validation.

After testing the system from simulation to real scenario
with a minimal setup, we added one UAV to the swarm, in-
creasing the complexity of the mission. Real scenario is lo-
cated at Repsol Technology Lab in Madrid.

For performing the real missions two different UAVs form
the swarm were used to inspect the PV plants, these are the
DJI M300, used in the single UAV setup, and DJI M350,
used in the swarm setup together with the M300. Executing
Aerostack2 software onboard, NVIDIA Xavier AGX boards
have been mounted on top of each UAV.

For both real missions PV panel damage is simulated with
an intentional hot-spot in the cells. Then, PV panel sends a
request and the closest UAV executes the inspection. The re-
sults are sent to the panels (simulated and real) and the infor-
mation is then managed by them. When no more requests are
planned to be sent, the UAVs perform a return to land (RTL)
operation.

Table 2 presents pairs time-distance from approach phase
and inspection phase, main metrics used during the experi-
ments.

Header Description Unit
tap Time for approaching phase Seconds
dap Distance for approaching phase Meters
tins Time for inspection phase Seconds
dins Distance for inspection phase Meters

Table 2: Time and distance metrics used during the experi-
ments.

Moreover, through the ground station there are certain
configurable parameters in the system, these are: speed, in-
spection altitude and safety altitude. Choosing this parame-
ters depends on PV plant configuration and swarm capabil-
ities. Table 3 details the parameters set during our experi-
ments.

Drone Speed (m/s) IA (m) SA (m)
M300 2.0 15 20
M350 2.0 15 30

Table 3: Setup for parameters in the experiments below.
Speed: Maximun speed for flying. IA: Inspection Altitude,
SA: Safety Altitude.

4.2 Simulation to Real Validation
For development purposes, we have first setup a simula-

tion using Gazebo simulator. Simulation have been set imi-
tating every possible parameter from real experiments; GPS
initial positions, PV panel GPS positions, same configured
speed and altitude and same communication protocol. Af-
ter this, we shifted to DJI’s HITL simulation. We decoupled
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Gazebo’s UAV simulation and used HITL instead. We then
integrated the information from simulated panels in Gazebo
together with the UAV HITL. Finally, we tested our system
on a industrial environment with the same configuration used
before.

Mission consists on using a single UAV (M300) that re-
ceives the requests from two panels multiple times. It receives
a total of six requests. Panel 1 requests two times, then panel
2 make three requests, then at last, panel 1 sends one final re-
quest. The UAV then performs RTL operation. Path compar-
ison between simulated and real mission can be seen in Fig-
ure 9. Time and distances measurements for both approach
and inspection phases during the real mission can be found in
Table 4.

Figure 9: Path comparison between simulated path and real
path. Mean square error between both paths is 0.19 meters.

Panel ID tap(s) dap(m) tins(s) dins(m)

Panel 1 30.23 29.34 15.08 10.35
Panel 1 0.41 0.11 14.27 10.87
Panel 2 5.97 10.07 21.85 10.89
Panel 2 0.53 0.09 17.12 11.22
Panel 2 0.55 0.10 15.18 11.06
Panel 1 6.05 10.36 18.15 10.99
Total 43.74 50.07 101.65 65.38

Table 4: Time and distance results from the industrial envi-
ronment flights during simulation to real validation experi-
ment. First row’s approach phase includes takeoff distance
and time.

Discussion

The simulation to real methodology ensured that no material
or human resource was at risk. When looking at the trajec-
tory comparison between the real and simulated mission, we
see that we get a relatively low mean square error in meters

(MSE = 0.19), increased only in the takeoff phase where
the real UAV could not keep a straight path, but decreased in
the rest of the mission where trajectory differences are within
less than 0.1 meter error. Therefore, we conclude that simu-
lation is reliable to test navigation and planning algorithms.

From time and distances tables, we can see that distance
relates directly with time in the approach phase, however, as
we can see in the first row where takeoff phase in included,
the more vertical motion there is in a path, the longer it takes
to reach. There is also high variability in inspection times due
to variability introduced by inference times of the detection
model.

4.3 PV plant swarm inspection

To validate the whole scope of our system, we increased
the complexity from the previous experiments by adding an
additional panel which is inspected by an additional UAV. By
doing that, request management and mission planning com-
plicate showing the strength of our system.

Mission consist on using a swarm of two UAVs (M300
and M350) and three panels making request wit no order.
For this experiment, each panel requests only one inspection.
Then, once inspections are finished, both UAVs perform RTL
operation.

Figure 10 depicts paths followed by each UAV in this mis-
sion. Notice that the inspection altitude is the same for both
UAVs, while the approach altitude differs to avoid collision
if the trajectories cross each other during the approach phase.
In this particular case, M350 is assigned to inspect panel 3,
while M300 inspects panel 1 and 2 due to the proximity of
each panel. Panel 1 is inspected first than panel 2 because its
request arrived first to the ground station. Time and distances
measurements for both approach and inspection phases can
be found in Table. 5.

Figure 10: Swarm paths from real flights. M300 goes to panel
1 and panel 2. M350 goes to panel 3.
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Panel ID tap(s) dap(m) tins(s) dins(m)

Panel 1 30.60 29.98 19.99 11.37
Panel 2 6.58 9.17 15.99 10.86
Panel 3 51.16 64.57 34.00 32.50

Table 5: Time and distance results from the swarm inspection.
Panel 1 and 2 corresponds to M300. Panel 3 corresponds to
M350. First and third row’s approach phases include their
respective UAV’s takeoff distance and time.

Discussion

We can conclude that the IoT architecture integrates satis-
factorily the intelligent PV plant monitoring subsystem with
the aerial inspection subsystem, enabling a powerful dialog to
cope with PV malfunctions. We also verified that the swarm
oriented online planning is able to deal with multiple request
arranging collision free inspection with a swarm of multiple
UAVs. Finally, our onboard visual inspection and analysis
was feasible to detect and report defects on real time. Inspec-
tion phases took on average 18 seconds, including a vertical
descend (and ascend back) of 5 meters, a gimbal maneuver to
center the panel on image, image capture and processing and
reporting the result.

Comparing both UAVs inspections, we can confirm from
the values in the last row of the results table that safety dis-
tance plays an important role in the inspection time, due to the
vertical motion approach to inspect the panel. Difference be-
tween tins from panel 1 and 3 differs in ∼14 seconds, which
is noticeable for an extra path of ∼11 meters only.

Our system offers a per-panel inspection approach. When
a panel detects a failure and sends a request to the ground sta-
tion, it takes less than 60 seconds for a UAV landed within 60
horizontal meters from the panel that made the request to be
flying, positioned and ready for inspecting. Plus less than 35
seconds for it to inspect the panel, given a safety altitude of
30 meters and inspection altitude of 15 meters. For a current
PV plant, if a panel fails, it won’t be detected until inspection
is scheduled and executed. Our approach ensures a more ef-
ficient PV panel energy production by addressing failures in
an on-demand manner.

5 CONCLUSIONS

In this work, we introduced an autonomous UAV-based
approach for on-demand inspections of photovoltaic panels.
Unlike traditional manual path planning, which often relies
on predefined paths or polygons, our system adapts in real
time to environmental conditions and panel requests. Our
method leverages online planning algorithms to optimize in-
spection routes dynamically, reducing overall inspection time
and energy consumption while enhancing inspection accu-
racy.

Rather than inspecting entire arrays uniformly, our system
focuses on individual panels, optimizing the resource alloca-
tion. When a panel signals a need for inspection (e.g., due to

reduced output or anomalies), the UAV autonomously adjusts
its flight path to address that specific panel. This targeted ap-
proach maximizes inspection accuracy while minimizing re-
source usage. Panels that perform within expected parameters
receive fewer visits, while those with issues receive prompt
attention. So that, this resource-efficient strategy enhances
overall system reliability.

Integrating additional sensors (such as thermal cameras
or multi-spectral imaging) further enhance our system. These
sensors provide valuable data on panel temperature, cell
health, and potential defects. By fusing this information with
our online planning, we can achieve even more precise in-
spections.

We evaluated our system on a real photovoltaic facility,
previously tested on simulation, performing successful per-
panel inspection. The results showed our swarm oriented on-
line planning algorithm working for multiple requests from
the intelligent PV plant monitoring tool. Our onboard visual
inspection and evaluation pipeline is able to detect faults on
the panels on real time.

As part of the future work, a visual information method
should be integrated in the inspection pipeline for better cen-
tering the panel center on image, rather than only using RTK
and odometry measurements. Also, the proposed online plan-
ning algorithm should be improved to avoid cross paths be-
tween UAVs, instead of using different approach heights to
avoid collisions. Finally, we aim to optimize the assign
request-to-UAV algorithm to include priority information on
the requests following certain criteria like severity of the pos-
sible fault or the distance to the panel.
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