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ABSTRACT

Autonomous Drone Racing (ADR) has garnered
significant interest in the aerial robotics commu-
nity. Early solutions used classical computer vi-
sion algorithms for gate detection, while more
recent approaches employed visual Simultane-
ous Localisation and Mapping (SLAM). The lat-
est advancements have showcased solutions ca-
pable of winning races against world champi-
ons. However, these rely primarily on visual data
from onboard cameras, whereas humans com-
plement visual sensing with auditory perception.
Motivated by the benefits of auditory perception,
this study investigates the use of audio signal
processing to detect when a drone crosses a gate
during a race. This detection addresses the blind
spot issue, where the gate disappears from the
visual sensor’s view after crossing. Initial results
indicate the feasibility of using audio signals to
identify gate crossings, based on sound changes
caused by drone propellers. This is a first effort
to explore the broader potential of auditory per-
ception in autonomous drone racing.

1 INTRODUCTION

Autonomous Drone Racing (ADR) is a scientific chal-
lenge that has garnered significant interest within the aerial
robotics community. Initially, solutions relied on classical
computer vision algorithms for gate detection to guide the
drone’s flight towards the gate [1]. Subsequent competitions
incorporated more sophisticated techniques such as visual
Simultaneous Localisation and Mapping (SLAM) [2]. Re-
cently, impressive results were achieved in [3], demonstrating
a comprehensive solution that won several races against two
world champions.

Despite these advancements, the best solutions to date
rely primarily on visual data captured by onboard cameras.
While impressive, humans do not rely solely on visual sens-
ing to navigate through the flying arena. Our sense of sur-
roundings is complemented by auditory perception, which, in
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Figure 1

the context of a drone race with several adversaries, is used
to infer when other drones fly by. Furthermore, trained pi-
lots use auditory perception to detect malfunctioning motors
or propellers.

Motivated by the advantages of auditory perception, we
present a preliminary study on how audio signal processing
could be used for a specific task in autonomous drone racing:
detecting when the drone crosses the gate during the race. De-
tecting gate crossings can be highly beneficial for designing
navigation policies for autonomous drone racers. If a policy
relies on vision for gate detection, the gate will eventually
move out of the visual sensor’s view once the drone crosses
it. However, this can also occur if the drone navigates off the
planned trajectory, flying past the gate but not through it.

The moment the drone flies towards the gate and crosses
it—when the gate disappears from the visual sensor’s field of
view—is what we call the blind spot. Given the importance of
detecting this blind spot, we explore the use of audio signals
to detect when the drone crosses the gate. This is based on
the observation that there is a slight change in sound due to
the wind produced by the drone’s propellers hitting the gate
structure.

Our initial results indicate that this detection is possible.
We acknowledge that this detection might be specific to our
experimental setup, including the type of drone and gate used.
Nevertheless, it is intriguing to see that audio signals can be
utilised in this context. Further research could explore the
potential of auditory perception in autonomous drone racing
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2 RELATED WORK

Drone racing is a challenging benchmark to gauge
progress in complex perception, planning, and control algo-
rithms, as drones must be able to perceive and interpret the
scene, plan, and act within milliseconds [2, 4, 5]. In a racing
setting, the quadrotor must fly through a sequence of gates
in the minimum time without collisions. Two strategies are
proposed to solve this challenge.

The first strategy uses external sensors, such as a motion
capture system, and assumes a controlled environment with
privileged knowledge. This means that the control system has
full access to the drone’s state (position and orientation) and
the number and state of the gates, which makes it possible
to implement a time-optimal planner and a flight controller
based on MPC [6, 7]. Nevertheless, this is a partial solu-
tion to drone racing because the perception task is removed
to complete the racetrack at high speed.

The second strategy uses only onboard sensors for state
estimation and gate identification [2, 8, 9, 10], the latter em-
ploying techniques based on Deep Learning used for object
detection, such as a Single Shot Detector (SSD) [11, 12] or
YOLO [13]. However, systems based on visual information
face a challenge when the drone crosses the gate because the
gate disappears from the field of view, making it impossible
for the system to determine if the drone is in the middle of
the gate or outside. This issue is referred to as a blind spot.
Some solutions have utilised different sensors to overcome
this problem, such as a camera to see the gate’s base [8, 9], a
LIDAR to measure changes between the drone and the ground
[1], an IMU to estimate the drone’s displacement [14, 15], or
visual temporal information to identify the entrance and exit
of the gate [16, 12, 17].

This paper proposes a novel approach based on acous-
tics to assist in blind spot detection. By incorporating audio
sensors, the system can detect subtle changes in sound that
indicate the drone’s position relative to the gate, providing an
additional layer of information that visual sensors might miss.
Auditory perception offers several opportunities. Audio sen-
sors have introduced auxiliary features that can be useful for
drone navigation. In [18], the authors provide an extensive
analysis of works that have reported using microphones to
capture audio signals and the applications where drones are
involved. For example, avoid collisions [19], sound source
localisation [20, 21], detection of propeller anomalies [22],
intruder detection [23, 24], classification [25, 26, 27], and
drone proximity [28]. This motivates the analysis of noise
production and mitigation [29].

3 PROPOSED METHODOLOGY

When a drone is passing through a gate, its height sen-
sor will briefly sense the gate, which may cause the drone
to assume that the floor has suddenly “jumped” up which,
in turn, may cause its flight control framework (that has the
task of maintaining a given altitude) to incorrectly fly upward.

To avoid this, it is common for drones’ flight control frame-
works to ignore high-variance changes in the height sensor
values. Additionally, since the height sensor sampling fre-
quency and/or the frequency of the feedback loop are usually
relatively low (¡ 5 Hz.), this issue may not even be contem-
plated.

In any case, it is frequently observed in flight control
frameworks that the drone’s altitude is briefly “corrected” to
counter this sudden change in height. During this momentary
correction, the drone’s motors can be heard being briefly en-
gaged. In Figure 2, it can be seen how the pitch (reported in
Hertz in the vertical axis) changes through time (horizontal
axis). It can also be seen how the pitch of the drone’s motors
presents sudden but major changes while crossing the gate
(this moment is presented as a vertical black line1).

Figure 2: Drone’s motor pitch through time. Black vertical
line: a rough estimation of when the drone crossed the gate.

In this work, the pitch of an audio signal refers to its
highest-magnitude frequency. The pitch reported in Figure
2 was estimated by first carrying out the Short-Time Fourier
Transform (STFT, with a FFT window length of N samples
and hop length of H samples) of Lw seconds of the audio
recording of the drone’s noise. Since the pitch is the main
focus of the proposed technique, it is important that its esti-
mation is not limited by the frequency binning of the discrete
Fast Fourier Transform (FFT). Thus, the maximum value of
each FFT window of the resulting STFT’ed signal was refined
using the popular quadratically-interpolated FFT technique
(QIFFT) [30]. This process finds a closer value of the true
peak, between frequency bins, by extrapolating a parabola
using the frequency bin of the maximum value of the FFT
window and its two neighbouring frequency bins. The result
is similar to using a maximum-likelihood estimator, since a
parabola is a Gaussian window in the decibel scale.

The proposed technique is as follows:
Every Lh seconds, the pitch information

([p1, p2, . . . , pK ]) is estimated from each of the K FFT
windows of the current Lw seconds of captured audio.
Then, it is established if the estimated pitch of the last FFT

1This is a rough estimation, based on manually checking the video of the
drone’s flight.

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 171



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-20 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

Algorithm 1 Pseudo-code for proposed technique.

K := number of FFT windows from STFT
p̄ := mean pitch of the last Lw window
σp := pitch variance of the last Lw window
for every Lh seconds do
X := STFT of current Lw seconds
Xk := kth FFT window of X
for k = 1 to K do
pk ← max(QIFFT(|Xk|))

end for
if |pK − p̄| > Mσσp then

DRONE IS CROSSING GATE
end if
p̄←

[∑K
k=1 pk

]
/K

σp ←
√[∑K

k=1 (pk − p̄)
]
/K

end for

window (pK) has suddenly considerably changed from past
pitches. This is the case if the difference between pK and
the mean pitch of the last Lw seconds (p̄) is greater than its
pitch variance (σp), multiplied by a sensitivity factor (Mσ).
Finally, p̄ and σp are re-calculated with the pitch information
of the current Lw seconds to be used for the next capture
window.

An important virtue of the proposed technique is that its
response time can be calibrated by establishing the value of
Lh. The lower limit of this value is the processing time of
Algorithm 1. This time, in turn, depends on the processing
time of carrying out the STFT and QIFFT, both of which are
quite efficient. However, to allow for real-time operation, the
reduction of the value of Lh should be accompanied with a
reduction of Lw, since the STFT operation depends on it, as
well as the k ∈ [1,K] loop in Algorithm 1. Reducing the
value of Lw provides less past pitch information, making the
pitch change less predictable. The values of Lh and Lw pre-
sented in the next section provide a good balance between
response time and predictable behaviour.

It may be tempting to change Algorithm 1 so that, instead
of calculating the STFT of the whole Lw audio window ev-
ery Lh seconds, we only calculate the FFT of the last FFT
window. Doing so would reduce the processing time consid-
erably. However, this would be equivalent on carrying out
the STFT with no overlap between FFT windows (H = 0
samples), which would result in a highly varying pitch-over-
time signal. Carrying out the STFT of the whole Lw audio
window results in a much smoother pitch transition through
time, which simplifies detecting sudden pitch changes. More-
over, the LibROSA [31] implementation of both the STFT
and QIFFT was used (via the piptrack function), which pro-
vided very low response times (∼ 0.002 seconds to process
Lw = 1.5 seconds of audio in hardware of moderate comput-

Figure 3: Drone and hardware employed in our experimental
framework. We used a wireless microphone transmitting to
the GCS, an Alienware 15 R3 laptop.

ing power). Having established all of this, it would be of in-
terest (and left for future work) to further lower the response
time of Algorithm 1 by only updating p̄ and σp using only
the current FFT window to model a smooth pitch-over-time
signal.

It is important to mention that this technique is aimed to
be used once a gate crossing is expected in the near future
of the planned flight; no further flight adjustments should be
carried out once this technique is triggered. This is because a
change in pitch can occur mid-flight for reasons other than a
gate crossing. As a reminder, the advantage of this technique
is its potentially low response time compared to using other
light-based sensors, which (as previously described) is highly
configurable given different scenarios.

4 EVALUATION AND RESULTS

For our experiments, we used the Bebop 2.0 Power Edi-
tion drone from Parrot. We attached a Bluetooth microphone
to this drone, which transmitted to the Ground Control Sta-
tion (GCS) - an Alienware 15 R3 laptop equipped with a
GeForce GTX 1070 Graphics Processing Unit. The micro-
phone weighs 80g and can transmit over a distance of up to
20 metres, see Fig. 3.

Several recordings were captured for testing, where the
drone was given a linear route that passes through a gate. A
microphone was connected to the onboard computer to record
the audio. Additionally, a video recording was also captured
during the flight to provide an estimate of when the drone
passed through the gate.

In our tests, we used the following configuration that al-
lows for real-time operation, with a relatively low response
time:

In Figure 5, three runs are shown using the proposed tech-
nique to detect the crossing of the gate. Similar to Figure 2,
a vertical black line shows a rough estimation of the moment
when the drone is crossing the gate. To facilitate the visuali-
sation of the results, an orange line reports the gate crossing
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Figure 4: From left to right: image shots illustrating one of the runs in the lab where the drone flew through a square gate with
a width of 1m and 2m in height. The drone has a microphone attached on board transmitting the audio signal to the GCS.

Lw 1.5 seconds
Lh 0.1 seconds
Mσ 2
N 2048 samples
H 512 samples
fs 48000 samples per second
K Lwfs/H → 140 FFT windows

Table 1: Configuration values used in tests.

detection results in the form of a peak.
As it can be seen, a peak is present when the pitch

has changed dramatically from the value of its predecessors,
clearly marking the moment when the drone’s motors were
briefly adjusted. This, in turn, can be assumed as being the
moment in which the drone is crossing the gate.

It can also be seen how the technique picks up other pitch
changes after the gate crossing, probably due to the drone’s
motor changing speed during the drone’s landing procedure.
This recalls what was mentioned earlier of how this technique
should only be used when the gate crossing is eminent in the
drone’s flight plan.

5 CONCLUSION

In this work, we have presented initial results on the use of
audio signal processing to detect when a drone flies through a
gate in the context of autonomous drone racing. We used an
off-the-shelf Bluetooth microphone that transmits the audio
signal to the Ground Control Station (GCS). As shown in our
experiments, our methodology enables the detection of spikes
in the audio signal triggered by the drone’s propellers when it
crosses the gate. This sound is similar to that produced by the
propellers during take-off or when switching to forward mo-
tion after hovering, and likewise when stopping and returning
to hovering. However, it is notable that this similar sound is
produced when crossing the gate.

We argue that when crossing the gate, the drone detects
the change in height from the floor to the horizontal bar of
the gate with its altimeter sensor, and its internal controller at-
tempts to maintain horizontal flight to keep moving forward.
This slight compensation produces the change in sound that

can be detected with our methodology.
Although detecting the gate crossing could be done with

the altimeter alone, audio processing could act as a comple-
mentary measurement, hence our interest in investigating this
approach.

Aware of the specificity of our experimental scenario, in
our future work, we plan to conduct additional experiments
with various gate types and different drones. Furthermore,
we will assess whether the changes in the audio signal are
caused by the gate’s aerodynamics or result from the Bebop’s
internal control system, where the altitude sensor detects the
base of the gate and adjusts the drone’s signals to maintain
the required altitude.
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