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1 Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
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ABSTRACT

Pose estimation using aerial images captured by
Unmanned Aerial Vehicles (UAVs) allows the
localisation in GPS-denied scenarios. Several
methods based on deep learning approaches with
convolutional neural networks (CNN) have be-
come tools for estimating localisation from im-
ages. However, building a model that can es-
timate the pose from a single image needs a
large dataset and training time to obtain a re-
sult. Besides, the model can be inappropriate in
assessing the correct pose in dynamic scenarios
with multiple changes. Therefore, we propose a
methodology using a binary network with a Con-
tinual Learning (CL) strategy to create an estima-
tion model during the same flight mission. Also,
we use a submap scheme and multiple models
to acquire the UAV’s localisation into different
parts of the trajectory. Finally, we use PoseNet,
ORB-SLAM2 and single-model for comparison
purposes in four scenarios, achieving a percent-
age error of 14% of the total trajectory and a
processing time of 51 ms with our proposed ap-
proach.

1 INTRODUCTION

Pose estimation has been implemented in diverse applica-
tions within robotics using LiDAR sensors, IMU, and monoc-
ular cameras. The latter has gained significant relevance due
to the use of images captured by UAVs, providing better
information about the environment during a flight mission.
With these images, deep learning (DL) methods using convo-
lutional neural networks (CNN) have leveraged visual infor-
mation to create pose estimation models and thus enable lo-
calisation from images. Nowadays, these methods have been
employed in UAV tasks such as inspection [1], crop area mon-
itoring [2], visual mapping [3], among others.

PoseNet [4] was the first CNN designed for camera local-
isation using a single image. Its success inspired the commu-
nity to develop CNN architectures to improve training time
and accuracy, especially in domains such as geo-localisation
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Figure 1: BitNet for aerial localisation: We propose using a
binary network to accelerate the training process. In addition,
we implement continual learning based on progressive train-
ing to extend the knowledge into a multiple-models approach
and estimate the pose from a single aerial image.

applications with UAVs [5]. However, these architectures
typically demand extensive datasets and training time to es-
tablish a reliable model. Consequently, new strategies have
been explored to generate estimation models during the same
flight mission. Continual learning has emerged as an effi-
cient method for creating these models, requiring less time
and data.

The continual learning strategy known as latent replay is
well-suited for training and updating a model with new infor-
mation without forgetting prior knowledge. This strategy has
proven effective in real-world robotics applications, allowing
continuous training while accumulating additional informa-
tion. However, while continual learning provides efficient
pose localisation and time efficiency, accelerating and im-
proving camera pose estimation can be achieved using binary
networks. These networks reduce the number of processes,
parameters, and calculations in training through weight and
activation binarisation. For instance, in [6,7], authors reduced
the size of language model weights to one-third of their orig-
inal size by transitioning from 32-bit to 8-bit representations.

In this work, we propose a methodology that utilises con-
tinual learning with a binary network to expedite the train-
ing process for obtaining an estimation model. We aim to
achieve UAV localisation as a contingency measure in sce-
narios where GPS signals fail, ensuring uninterrupted flight
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missions. Based on prior research and the SLAM systems’
sub-mapping approach, we support using multiple models
along the UAV’s flight trajectory. This strategy leverages data
acquisition to develop localised models for each flight path
segment. Our methodology provides new insights into aerial
localisation, by integrating a binary network with continual
learning for pose estimation during flight missions. Figure
1 illustrates our aerial localisation methodology using BitNet
and continual learning.

This paper is organised as follows. Section 2 shows re-
lated works based on continual learning methods; Section 3
outlines the methodology employed, dataset generation and
binarised continual training; Section 4 discusses experiments
and results obtained. Finally, conclusions and future work are
mentioned in Section 5.

2 RELATED WORK

Aerial localisation has been challenging in scenarios with
recurrent changes, especially for UAVs conducting flight mis-
sions in previously visited environments. Therefore, various
methods have been developed to acquire position from an
aerial image and use it to locate the UAV when the GPS sig-
nal fails. CNN architectures such as PoseNet [4] have enabled
significant advancements in camera pose estimation in metres
using only one monocular camera, which can be applied to
the development of geo-localisation systems [5]. Some com-
pact architectures of PoseNet have been developed to acquire
position quickly in outdoor scenarios, such as CompactPN
[8], and in indoor environments with DeepPilot4Pose [9].

However, these networks require a lengthy process and
an extensive dataset to obtain an estimation model. There-
fore, techniques of continual learning have been explored to
accelerate the learning process and obtain a model while con-
tinuing to collect information. One of the most used strategies
is latent replay [10], which involves storing previous informa-
tion to combine later with new information in external mem-
ory. This method avoids catastrophic forgetting and is em-
ployed in real-time robotic tasks. In [11], an analysis of con-
tinual learning techniques is presented, focusing on human
teaching styles. It concludes that teaching experiences do not
significantly affect the learning style performed by a robot.
Another application of continual learning is presented in [12],
where a traversability estimation model adapts a robot to new
environments using experience replay with uncertainty, con-
tinuously updating the model with new data.

In robotics, systems like Visual Odometry (VO) and
SLAM (Simultaneous Localisation and Mapping) have been
employed alongside continual learning. Visual Odometry, for
instance, is a localisation technique based on camera move-
ment, utilised in continual learning to enable UAV localisa-
tion through LiDAR systems in GPS-denied environments
[13]. When combined with experience replay, VO facilitates
the creation of efficient models using images and dual net-
works to achieve localisation in diverse scenarios [14]. How-

ever, these methods still face the challenge of catastrophic
forgetting, as discussed in [15], which examines VO-based
continual learning models. This study identifies information
loss with minor scene changes, endorsing latent replay strate-
gies that better preserve information without forgetting previ-
ous knowledge.

On the other hand, unlike VO, SLAM systems, such as
ORB-SLAM2 [16], create a map of the environment, which
has been utilised to expand the map of scenarios and achieve
UAV localisation in unknown environments [17]. Another
approach, Continual SLAM [18], leverages point clouds, im-
ages, and loop closure to predict new trajectories using dual
networks. Additionally, in [19], researchers utilise dual net-
works as feedback with linear optimisers to improve the cam-
era pose’s visual prediction by identifying BIAS correspon-
dences. However, implementing dual networks and latent re-
plays can incur significant time consumption during the cre-
ation and update of estimation models as new information is
acquired.

Continual learning finds diverse applications, particularly
in localisation systems. In [20], recent research explores con-
tinual learning approaches for camera localisation using im-
age inputs. The study emphasises the retention of previous
information, the integration of new experiences, and various
strategies tailored for localisation, including the use of dic-
tionaries [21]. Furthermore, the research delves into aerial
localisation with UAVs, showcasing advancements such as
topological localisation based on mean poses [22] and hier-
archical search techniques employing sub-maps and multiple
models [23]. These studies demonstrate effective UAV locali-
sation using single images, employed for classification-based
localisation and recovering poses close to ground truth.

Motivated by previous works, we propose leveraging con-
tinual learning with multiple models and submap search com-
bined with BitNet, a binary network initially designed to
enhance efficiency and reduce computational costs in Large
Language Model (LLM) [6, 7]. This approach opens new
possibilities for extending BitNet’s capabilities to UAV lo-
calisation. By binarising convolutional layers and integrat-
ing continual learning, BitNet aims to enrich knowledge and
maintain precise position information across diverse scenar-
ios, even in GPS-denied environments.

3 METHODOLOGY

This work aims to develop a localisation system for UAVs
using continual learning and a binary network. The method-
ology involves progressively learning incoming information
to expand knowledge through multiple models alongside tra-
jectory. In this way, we generate the dataset and sub-maps for
the training process using continual learning strategies. Thus,
our methodology aims to estimate aerial poses to localise a
UAV within dynamic or GPS-denied scenarios.
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3.1 Dataset Generation
The dataset used for this work is the same presented in

[22], which consists of 4 trajectories with fewer than 300 im-
ages for the first three of these. In contrast, the fourth trajec-
tory contains 7,000 images with continuous coordinates dif-
ferent from the first ones, whose coordinates are not constant.
For this dataset, we used the UAV Matrice 100 connected
with the Robot Operating System (ROS) to establish commu-
nication between the ground control station (GCS) and the
onboard computer. Thus, our configuration enables real-time
acquisition while the UAV performs a mission flight.

The training scenarios consist of transversal lengths of 1.0
km for Trajectory 1, 3.0 km for Trajectory 2, 4.6 km for Tra-
jectory 3 and 6.0 km for Trajectory 4. We captured the aerial
images with an HD resolution, GPS coordinates, and 50 to
100 metres altitudes. For training purposes, we resized the
images to 224 × 224 and converted the GPS coordinates to
metres to handle the flight coordinates better. Besides, we
create sub-maps along the trajectory, dividing it into ten sec-
tions where each one has 20 to 30 images with coordinates in
x, y, and z.

We decided to create sub-maps along the trajectory to
train a model for each one, allowing us to manage the lo-
calisation in case the UAV loses its position. Thus, we cre-
ate a sub-map when the UAV moves between 50 to 100 me-
tres from its preceding coordinate, achieving between 5 to 20
flight coordinates for each sub-map. In addition, we gener-
ate three keyframes representing the sub-map using indexes,
which will be used in the training to identify the correspond-
ing one using the current UAV image. In Figure 2, we show
a representation of dataset generation, the creation of sub-
maps, the keyframes, and the trajectory of the UAV.

Figure 2: Representation of the UAV trajectory, sub-maps
and keyframe generation during a flight mission. We show
the UAV trajectory in green, coordinates in green circles, and
keyframes in green outlines.

In this way, we generated ten sub-maps for each trajec-

tory, with 30 keyframes for training purposes. In contrast,
we generated five keyframes for each sub-map in trajectory
four because it is the most extended trajectory, increasing the
keyframes for better representation. In this way, we have two
datasets, one with aerial images and flight coordinates to train
the binary network and the second with keyframes to train a
classification network. In Table 1, we show the information
about the datasets and the sub-maps generated with the num-
ber of images for training.

Table 1: Datasets generated: aerial images include flight co-
ordinates, and keyframes include sub-map indexes.

Traj. Aerial Images Keyframes
Train Test 1 Sub-Map 10 Sub-Maps

1 220 144 3 30
2 188 117 3 30
3 236 84 3 30
4 7826 607 5 50

3.2 Binary Network
BitNet is a neural network architecture designed to im-

prove the efficiency and scalability of deep learning models,
particularly in applications like large language models [6, 7].
It uses 1-bit representations instead of higher precision for-
mats such as 16-bit or 32-bit, significantly reducing mem-
ory requirements and computational load. BitNet employs
advanced quantisation techniques to lower the precision of
model weights and activations, optimising performance with-
out compromising accuracy. Additionally, it integrates de-
quantisation techniques to recover information lost during
quantisation, preserving as much detail as possible. In some
cases, BitNet also employs linear layers instead of convolu-
tional layers to make models lighter and more efficient re-
garding computational resources.

In this work, we follow the methodology proposed in [6]
to implement a binary network, where the binarisation of
weights W ∈ Rn×m is formulated as:

W̃ = Sign(W − α) (1)

Each weight Wij is transformed into +1 or −1 based on
whether it is greater or less than α, where α represents the
average of the weights.

Sign(Wij) =

{
+1, if Wij > 0,

−1, if Wij ≤ 0
(2)

α =
1

nm

∑

i,j

Wij (3)

To ensure that the gradient during backpropagation re-
mains consistent with the original function, we implemented
the Straight-Through Estimator (STE) method for W̃ . This
allows the gradients to be calculated as if no binarisation had
occurred, making the training more stable and effective.
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The binarisation of activations is described as follows:

x̃ = Quant(x) = Clip(x× Qb
γ
,−Qb + ϵ,Qb − ϵ) (4)

Clip(x, a, b) = max(a,min(b, x)), γ = ∥x∥∞ (5)

whereQb = 2b−1 for a quantisation of b bits (in our case 8
bits), γ is the maximum absolute value of x, Clip ensures that
x is in the range [a, b], and ϵ is a small floating-point number
(set to 1×10−5) that prevents overflow during clipping. With
the above quantisation equations, the matrix multiplication
can be written as:

y = W̃ x̃ (6)

3.3 Continual Learning
We carried out two continual learning processes for model

training using a rehearsal and architectural strategy with
aerial images, flight coordinates and sub-maps indexes. The
first training was based on an architectural strategy called pro-
gressive learning, which focuses on expanding the knowledge
within a network architecture. The second training is based
on a rehearsal strategy called latent replay, which consists of
saving the previous information and combining it with the
new one using external memory. Therefore, we use both pro-
cesses to train dual networks simultaneously during the UAV
flight mission.

The first training was a progressive learning process, and
instead of expanding the knowledge within a network archi-
tecture, we decided to extend it to multiple models. Thus,
we trained each model with aerial images and flight coordi-
nates as labels, maintaining the information without suffering
catastrophic forgetting. The network is a 4-layer architec-
ture with convolutional layers binarised and a fully connected
layer with a regression with three outputs for x, y, and z co-
ordinates. This learning allows us to have a suitable model in
case GPS is lost, with the last model responsible for localising
the UAV.

Furthermore, this learning strategy allows us to generate
a model and acquire new data to create the next one while the
UAV perform the flight. Each model was trained with less
than 30 images in each sub-map, with 5 to 20 coordinates de-
pending on the scenario. In addition, we perform traditional
training using all the images in the dataset to train the binary
network, generating a single model of the entire trajectory
for evaluation purposes. We train the binary network using
100 epochs, Adam optimiser, and a learning rate of 0.001 for
multiple and single models.

We used the keyframes generated in the dataset genera-
tion step for the second training. Thus, we use a classifica-
tion network called InceptioV4 to determine the index and
identify the corresponding sub-map using the current aerial
image. Therefore, we train the network using the rehearsal
strategy based on the latent replay method, which consists of
using external memory to keep the previous information. In

this way, InceptionV4 extracts maximum and minimum fea-
tures from the keyframes and stores them in the sample vector
whose dimension is ten indexes, each representing a sub-map.

Subsequently, we use this vector to compare the stored
features with the features extracted from the current aerial im-
age, thus obtaining the index of the corresponding sub-map.
In this way, InceptionV4 allows us to identify the place cor-
responding to the image to load the binary network model
and estimate the pose. The progressive learning and latent
replay methods were implemented using a computer laptop
with CUDA 12.2, PyTorch 2.3, 8GB of RAM and a GeForce
960M Nvidia card. Thus, our methodology estimates the pose
from aerial images, identifying the corresponding sub-map
and obtaining the localisation of the UAV. Finally, we show a
representative diagram of the continual learning process us-
ing aerial images and keyframes in Figure 3.

4 EXPERIMENTS AND RESULTS

We conducted experiments to evaluate the pose estima-
tion and obtain the aerial localisation from a single aerial
image. These experiments assess a two-stage process. The
first stage consists of searching for the submap correspond-
ing to the current view of the UAV. The second stage aims
to estimate the aerial pose using multiple models and estab-
lish the UAV localisation into a scenario. For comparison, we
evaluate our methodology across four trajectories to estimate
the pose frame-by-frame, comparing the error and process-
ing time results with a neural network, PoseNet, and ORB-
SLAM2.

4.1 Submap Search Stage

The main idea for the UAV localisation is to find the cor-
rect area and estimate the pose using the current aerial image.
For that, we present the sub-map search using the features
extracted with InceptionV4 and features from a colour his-
togram. In this way, we find the corresponding submap using
the index obtained by matching features between those stored
and those extracted from the current image. Thus, if the im-
age matches any keyframe representative of the sub-map, it
will return the corresponding index, locating the UAV in a
section of the total trajectory.

To show the sub-maps search results, we present a com-
parison using histogram colour and InceptionV4. In Table
2, we show the number of images in the test dataset used
to find the corresponding sub-map, the keyframes found cor-
rectly and the accuracy results with each method. We can see
that InceptionV4 outperforms the colour histogram due to the
better management of the features, with minimums and max-
imums that grow as the continuous training of the keyframes
progresses. Moreover, we argue that using a classification
network as a search system can offer advantages due to high-
quality features, resulting in the best performance. The re-
sults obtained can be used to search the sub-map and load the
multiple models of the binary network.
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Figure 3: Our training methodology is divided into two parts: Firstly, we train a binary network using aerial images with flight
coordinates to create multiple estimation models. Secondly, we train the InceptionV4 network using keyframes to identify the
corresponding sub-map.

Table 2: Results of the submap search using colour descrip-
tors and those obtained by the InceptionV4 network.

Traj. Test Histogram Colour InceptionV4
Kfs Found Acc. Kfs Found Acc.

1 144 87 0.60 117 0.81
2 117 65 0.55 84 0.71
3 84 56 0.66 60 0.71
4 607 310 0.51 467 0.76

4.2 Localisation Stage

This second stage establishes aerial localisation using a
single image to estimate the UAV pose. Thus, our method-
ology works from the moment the UAV images arrive at our
localisation system, passing through the InceptionV4 network
to find the sub-map index to which it belongs. Once the sub-
map is found, the model corresponding to that sub-map is
loaded to estimate the pose evaluating the same image. In
this way, this process is repeated continuously as each image
from the test set arrives. In Figure 4, we illustrate the exper-
imental setup for aerial localisation, showing the sub-maps
search, the models’ loading and the poses estimation using
the input image.

For comparison, we have implemented a 4-layer neural
network (NN) to train a single model and multi-model using

our methodology. We also used PoseNet and ORB-SLAM2
methods to localise the UAV using a single image. Likewise,
we train our binary network using all the images in the dataset
to generate a single model and compare it with our multi-
models approach. In this way, in Table 3, we present the re-
sults obtained with these approaches in the four trajectories,
obtaining the Mean Euclidean Distance Error in metres.

Figure 4: Aerial localisation diagram: The images pass
through the InceptionV4 network to identify the correspond-
ing sub-map. Subsequently, we loaded the corresponding es-
timation model to get the aerial pose.

Similarly, we show the percentage error per axis in Table
4, where a higher percentage consists of a larger error in the
pose. These results indicate whether the image obtains the
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Table 3: Mean Error Euclidean Distances in metres. The best results are highlighted in bold.

Approach Trajectory 1 Trajectory 2 Trajectory 3 Trajectory 4
x y z x y z x y z x y z

PoseNet 47.4 15.3 5.07 94.1 82.3 12.7 59.9 38.3 19.0 146.1 130.8 2.09
ORB-SLAM2 - - - 13.04 10.68 6.90 - - - - - -

NN-Single 39.4 9.72 0.10 82.09 75.7 5.80 34.4 37.9 6.06 140.7 120.6 7.30
NN-Multiple 12.8 10.9 4.07 45.8 48.47 13.5 27.8 21.5 7.05 52.64 52.75 23.2
BitNet-Single 12.3 11.6 3.40 77.2 61.2 12.5 35.7 29.8 8.58 59.1 64.6 17.7

BitNet-Multiple 9.63 5.38 2.97 33.8 28.8 7.32 26.3 21.9 7.39 57.3 57.3 11.9

Table 4: Percentage Error per Axis (%). The best results are highlighted in bold.

Approach Trajectory 1 Trajectory 2 Trajectory 3 Trajectory 4
x y z x y z x y z x y z

PoseNet 48.7 30.8 9.91 60.4 43.0 12.7 19.0 33.6 18.9 76.9 53.2 2.11
ORB-SLAM2 - - - 16.6 5.74 7.56 - - - - - -

NN-Single 40.5 19.5 5.54 52.6 39.6 5.70 10.9 33.3 6.03 74.0 49.0 7.26
NN-Multiple 13.1 22.0 8.07 29.4 25.3 13.4 8.82 18.8 7.02 27.7 21.4 12.1
BitNet-Single 12.7 23.31 6.74 49.58 32.0 12.5 11.3 26.1 8.54 31.1 26.2 17.6

BitNet-Multiple 9.90 10.8 5.89 21.7 15.0 7.29 8.34 19.2 7.35 30.1 23.3 11.9

correct aerial localisation, depending on the sub-map identi-
fication. Besides, we noted that the z-axis shows the lowest
values because all flights are conducted at a consistent height
without changes. In contrast, we see a broader percentage of
error in the x and y axes due to the low number of images in
the dataset, the fast training, and the binary network, which
reduces the precision of the training process.

Likewise, we present the total percentage error using each
approach in Table 5, which is the sum of the translation error
across the entire length of the real trajectory. Thus, we no-
ticed that the ORB-SLAM2 did not obtain the localisation be-
cause the aerial images are not continuous, causing the map-
ping to break. Nevertheless, it achieves the lowest error in
trajectory two but does not complete the others, for which
we do not obtain a result. In contrast, PoseNet obtained the
highest error percentage in all the trajectories due to the low
number of images used during the training process. Finally,
our multi-model approach with a binary network obtained a
mean percentage error of 14.9, showing the lack of precision
when performing binary calculations in the training process
but being suitable to get the localisation.

Table 5: Total Percentage Error (%). The best results are
highlighted in bold.

Approach Traj.1 Traj.2 Traj.3 Traj.4 Mean
PoseNet 34.3 42.2 22.1 52.0 37.6

Orbslam2 - 11.7 - - -
NN-Single 26.3 46.5 14.8 50.0 34.4
NN-Multi 14.1 24.0 10.6 21.9 17.6
BitNet-S 13.8 33.7 13.9 25.3 21.6
BitNet-M 9.11 15.6 10.5 24.6 14.9

Finally, we present in Figure 5 the visual results of the
localisation using PoseNet, a multi-model approach with a 4-
layer network, and our multi-model approach using the binary
network. For better visualisation, we show the real trajec-
tory in red and the estimated trajectories in other colours, in
which PoseNet is represented in column 1, multiple-models
with the 4-layer network in column 2, and our multiple-model
approach in column 3. PoseNet presents several estimation
jumps, resulting in erroneous localisations, while the 4-layer
network approach achieves good estimation results but with
some jumps. Finally, our approach estimates the poses closer
to the test trajectory, showing better performance than the oth-
ers.

4.3 Discussions

In order to evaluate the effectiveness of binary networks,
it is necessary to know the estimated time to give the pose
for each image that arrives. Thus, given the binarisation in
the convolutional layers, the training parameters of the net-
work are reduced, making the estimation models have less
weight. Furthermore, taking it to a continuous learning pro-
cess, a model’s training and acquisition time can occur during
the same UAV flight mission. This process can benefit real-
time localisation tasks using images captured with UAVs.

Table 6 presents the total time with the approaches used
to estimate the pose and acquire the localisation. Therefore,
we evaluate the efficiency of our approach, measuring the
processing time in milliseconds (ms) and comparing the en-
tire process from searching the submap to loading the corre-
sponding model to obtain the estimated pose from a single
image. PoseNet achieves the slowest processing time of the
other approaches, while ORB-SLAM2 only finishes trajec-
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Figure 5: Pose estimation results: we show the testing trajectory in red and circle the ground truth poses. BitNet’s multi-model
approach obtained better pose estimation results than the other approaches, acquiring the UAV localisation in most images.

tory 2 with a processing time similar to PoseNet. The single
model approach with a 4-layer network and BitNet exhibits
faster processing time by handling a single model without
sub-maps searching to get the aerial pose.

Table 6: Total Processing Time (ms). The best result is high-
lighted in bold.

Approach Traj.1 Traj.2 Traj.3 Traj.4 Mean
Orbslam2 - 79.12 - - -
PoseNet 71.94 73.74 73.52 72.15 72.83

NN-Single 56.01 50.25 45.22 49.82 50.32
NN-Multi 61.45 61.43 64.60 64.18 62.91
BitNet-S 18.47 19.94 18.73 18.69 18.96
BitNet-M 51.80 52.22 49.91 51.85 51.44

Nevertheless, the multi-model approaches with a 4-layer
network and BitNet require loading models w.r.t the sub-map
index found. Thus, the processing time increases when han-
dling a load of multiple models, even with small 4-layer net-
works, and the binarisation of the convolutional layers with
BitNet. Despite this, our approach achieves good perfor-
mance and a lower time than PoseNet, which is suitable for
real-time localisation tasks with non-continuous and small

datasets. Additionally, we can reduce the inference time by
handling fewer training bits in the quantisation, but we will
take it for future work.

5 CONCLUSION

We proposed a methodology for aerial localisation based
on pose estimation with multiple models using BitNet. We
leverage the quantisation to binarise the convolutional lay-
ers of BitNet, improving the training process to use 8-bit
computes instead of float values. Besides, we implemented
a localisation by sub-map identification comparing the fea-
tures of the current images with those of the representative
keyframes. This method allows us to load the correspond-
ing BitNet model to estimate the pose from a single image.
Our main contribution is the first implementation of BitNet
to localisation tasks using aerial images captured by UAV and
adapted to a continual training strategy based on progressive
learning.

To evaluate the effectiveness of our approach, we com-
pare the poses estimated with PoseNet, ORB-SLAM2, and a
4-layer network. Also, we performed traditional training with
all the data to get a single model without sub-map searching.
The total percentage error results demonstrated that our ap-
proach outperformed the others across all four trajectories,
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with a percentage error of 14% with multiple models and
21% using a single model. Besides, we achieved a processing
time of 51 ms using multiple models and 18 ms with a single
model using BitNet.

Finally, implementing a binary network for pose estima-
tion accelerates the processing time using the quantisation
method. Furthermore, with progressive learning, we ensure
that we retain prior knowledge by using multiple models with
flight coordinate information. It should be noted that quanti-
sation reduces the precision of the training, obtaining a suit-
able result in the UAV localisation. However, the poses help
recover the UAV in cases where the GPS signal is lost. In
future work, we want to take advantage of and exploit bi-
nary networks, improving the processing time and accuracy
of pose estimates.
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