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Determining the moment of inertia tensor of a UAV using
a motion capture system
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ABSTRACT

This article proposes a novel method for find-
ing the mass moment of inertia of a small Un-
manned Aerial Vehicle (UAV). The method re-
lies on a motion capture system to record the ori-
entation of the object-under-test oscillating from
a compound pendulum. The novelty is that it de-
termines the location of the centre of mass and
the full inertia tensor from the same set of ex-
periments. The motion capture system records
the object-under-test orientation when it is sta-
tionary and oscillating from the pendulum. By
doing this for multiple orientations, the process
can accurately determine the location of the cen-
tre of mass to ±2mm error and the full mo-
ment of inertia tensor of the object to an average
3.4% error for objects with inertia in the order of
10−2kgm2.

1 INTRODUCTION

Mass moment of inertia (MoI) is crucial in many dynam-
ical systems, such as robotic manipulators, aerospace vehi-
cles, and automotive systems. For UAV systems, MoI signif-
icantly impacts their flight dynamics and stability. It affects
how the UAV responds to external disturbances and changes
in attitude. Accurate estimation of UAV attitude is crucial for
optimizing UAV performance, ensuring precise control, and
achieving desired flight characteristics.

Many methods have been developed to derive the MoI
of rigid bodies, including the tabulating method, Computer-
Aided Design (CAD) based methods, and pendulum meth-
ods. The tabulating method is one of the most straightfor-
ward methods that estimate MoI. By tabulating each con-
stituent’s inertia as a simplified geometric shape and sum-
ming them together with respect to the principle axes while
assuming symmetry, a quick and simple model is developed
[1, 2]. However, this oversimplification often neglects many
complex-shaped components and does not account for prod-
ucts of inertia.

The CAD-based method improves upon the tabulating
method by allowing computers to estimate a more compre-
hensive list of complex components’ MoI [3]. However, any
deviation in manufacturing of the UAV from the CAD model,
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such as imperfect placement of components, results in inac-
curacies.

Empirical methods account for these imperfections by di-
rectly calculating the MoI of the final product. The most
prominent are the torsional and compound pendulum meth-
ods.

The torsional pendulum method involves suspending the
object of interest on a platform using two or more cables and
then twisting it to produce a torsional oscillation, commonly
known as bifilar, trifilar, etc., pendulum. The period of os-
cillation is recorded to determine the MoI of the object about
the rotating axis. Although accurate measurements have been
achieved with this method [4, 5, 6, 7], its setup can be time-
consuming as the placement of the complex object axis needs
to align with the platform’s throughout the oscillation pe-
riod. Additionally, complex objects may require additional
”ad hoc” support for each measurement when particular axes
are to be measured [7]. This additional material further com-
plicates the experiments.

On the other hand, the compound pendulum method sus-
pends the object from a pivot point and measures its unforced
swinging period. NASA has employed this method to accu-
rately determine the MoI of various aircraft to < 2.5% error
as early as 1934 [8]. However, this often requires multiple
accurate and expensive sensors placed at various locations on
the object [9]. More recently, other combinations of measure-
ment instruments have been employed, such as using an in-
clinometer for obtaining the period of oscillation [10]. How-
ever, the authors comment that the instrument is only suitable
for measuring slow oscillations; the fast changes result in un-
derestimating the angle, requiring an additional marker-based
motion-capturing system to achieve accurate measurements.

These methods rely on the simple principle where a com-
ponent of gravitational force supplies a constant torque to
the system, giving rise to the oscillatory motion. Under the
assumption of small angles, it becomes a second-order un-
damped system. By accurately measuring the period of oscil-
lation, the MoI for that pivot axis can be derived.

However, these methods have limitations, including the
reliance on the small angle assumption and undamped oscil-
lation. It should be noted that the dynamics of a simple pen-
dulum motion is a well-explored problem [11, 12, 13]; the
damping effect due to both the aerodynamic and structure can
be accurately modelled even for large angles.

Furthermore, the major limitation of these methods is the
requirement to know the centre of mass (CoM) of the object-
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under-test. For instance, the trifilar pendulum necessitates the
accurate placement of the object’s CoM on the vertical line
passing through the rotational centre of the platform. Any
misplacement can lead to undesired translations of the en-
tire system, thereby compromising the accuracy of the re-
sults. Estimating the CoM can be challenging, particularly
for complex-shaped or multi-component objects.

This article proposes a novel method that addresses the
abovementioned challenges and provides an accurate and
practical solution for measuring MoI in complex-shaped or
multi-component objects without requiring precise CoM esti-
mation. This approach takes advantage of the sub-millimetre
accuracies of a motion capture system which many laborato-
ries around the world share.

The rest of the paper is organised as follows. Section 2
discusses the high-level approach for this method, followed
by a closer examination of system modelling in section 3.
Then section 4 describes the experimental setup. The experi-
mental data are analysed and the results discussed in section
5. Finally, the paper concludes and discusses future work in
section 6.

2 METHODOLOGY

The fundamental idea follows that of a traditional com-
pound pendulum. The object-under-test, e.g. a MAV, hanging
from the pendulum is displaced from its stationary position.
Its angular motion is then recorded to derive its MoI.

However, the novelty lies in that the object can be hung
from any point on its rigid body in any orientation, and the
CoM location is determined in the same experiments as MoI
simultaneously using a motion capture system (MoCap). The
ideas behind determining both properties are as follows.

When an object is hung from a pendulum with a
lightweight pivot arm, Its CoM naturally lies below the pivot
axis on the vertical plane. By placing the object in various
orientations, multiple planes on which the CoM lies can be
obtained. Then its position in 3D can be calculated by find-
ing the intersection of all the planes.

A full inertia tensor can be obtained from the oscillation
data of various unique orientations. These orientations do not
have to be on the principle axes of the object (Ixx, Iyy, Izz);
they can be arbitrary. Each orientation gives us an MoI value
about a specific axis. With at least six unique axis values, the
full tensor can be derived using linear regression.

The Experimental procedure is explained below:

1. Rigidly attach the object to a pivot arm in an arbitrary
orientation. This is the attachment point and object ori-
entation is denoted as one configuration.

2. Start recording this configuration when it is stationary.
Allow some time to record this stationary configura-
tion, e.g. 5s, as this stationary data will be used for
deriving the location of CoM.

3. When satisfied, give a small displacement to the ob-
ject such that it oscillates freely for at least 10 periods.
This is to allow the MoCap system to capture enough
data for processing later. This part of the data (dynamic
data) will be used for MoI calculation.

4. After the recording, create a new configuration by
hanging it at a different orientation. Note that it is cru-
cial that this new orientation is unique, i.e. not linearly
dependent on the previous ones, otherwise, it results
in a duplicate measurement of MoI about an already-
measured axis.

5. Repeat the steps for at least six recordings for obtaining
a full tensor. Additional testing reduces the error of
final results.

To process the data, a flow chart describing the high-level
process is shown in figure 1. Three groups of data from
MoCap are obtained. Dstatic denotes the static data where
the system is stationary when hanging freely on a pendulum.
Drig and Ddynamic are both the dynamic oscillatory data af-
ter the system is displaced from its stable equilibrium posi-
tion; Drig consists of only the pivot arm in oscillation.

The CoM of the object can be obtained with at least
N = 3 ofDstatic data, whereN is the number of experiments
conducted. Once the CoM is determined, its distance to the
pivot axis can be calculated for each experiment. These dis-
tances, in addition to the MoI of the pivot arm obtained from
Drig and the MoI of the system from Ddynamic, can isolate
the MoI about an axis through its CoM of the object alone.
Then these MoI values are transformed to the full inertia ten-
sor about a set of axes the users defines fixed to the object.
Note that at least N = 6 is needed since the full inertia tensor
has 6 unique values. With this, both the CoM and MoI tensor
are derived.

3 THEORY

This section discusses the notations and equations used
for calculating both the CoM and MoI of the object.

The object-under-test is denoted as O, the pivot arm that
rigidly connects the pivot axis and the object-under-test as A,
and the combined system in oscillation S, such that the mass
of the combined system mS is

mS = mO +mA (1)

where mO and mA are the mass of the object and pivot arm,
respectively.

3.1 Coordinate frames
Three coordinate frames are defined: world frame {W},

object frame {O} , and the pivot arm frame {A}. Figure 2
visualises the relationship between the frames.
{O} is fixed to the body of the object-under-test; its orien-

tation in {W} varies from experiment to experiment depend-
ing on how the object is attached. The CoM of the object in
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Figure 1: Data processing procedural flowchart, showing
the high-level general steps taken towards calculating a rigid
body’s CoM and MoI

the object frame Oc is unknown but constant throughout all
experiments. The pivot arm frame {A} is fixed to the pivot
arm. Its origin lies at the bearing centre such that its y axis is
the pivot axis, which both the object-under-test and the pivot
arm oscillate about. {A} rotates with the pivot arm. Figure
2 shows a case where the pivot arm’s CoM is not directly be-
tween the object CoM and the pivot axis. Note that the system
CoM always lies directly on the vertical plane below the pivot
axis when at rest.

The position of CoM is denoted as c, and other positions
are denoted as p. The distance to CoM of a specific item,
such as the overall system, S, is noted as cS ; the coordinate
frame such measurement is in is noted as W c in the case of the
world frame. For example, OpA denotes the position of the
arm frame origin in the object frame; Ac denotes the position
of the pivot arm’s CoM in the arm frame.

The transformation matrices T of world-to-object O
WT

and world-to-rig R
WT can be defined as

i
WT =

[
i
WR 3×3 −Wpi 3×1

0 0 0 1

]

4×4

(2)

where i ∈ {O,R} , e.g. OWR is the rotation matrix from world
to object frame.

3.2 Centre of Mass

To find the object CoM location Oc, two points on the
same plane satisfy the relationship

On̂T OcS = On̂T OpA (3)

Figure 2: Coordinate Frames. Object frame {O} is fixed to
the body of the object-under-test in an arbitrary orientation.
Arm frame {A} rotates with the pivot arm; its origin sits on
the pivot axis; its y axis aligns with the pivot axis at all times.

where On̂ is the normal vector of the vertical plane in the
object frame and

On̂ = O
WR W n̂. (4)

The vertical plane can be set to align with a world principle
axis, e.g. W n̂ = [0 1 0]T .

As shown in figure 2, OpA can be derived from

OpA = O
WR(WpR −WpO) (5)

where WpR and WpO are the position of the rig and ob-
ject frame origins in the world, measured by MoCap. To
obtainOcS , the CoM equation

mtdt =
∑

i

midi (6)

where mt and mi denote the total mass of the system and the
mass of its constituents, is used. dt, di denote the distance
from the system’s and its constituents’ CoM to a fixed point.
Since the system consist of two components: the pivot arm
and the object-under-test,

mS
OcS = mO

Oc +mA
OcA. (7)

Recall that mA, mA and mO are the mass of the system
(Eq.1), pivot arm, and object, respectively. Oc is the CoM
position of the object to be solved for. OcA can be expressed
as

OcA = O
WR( RWR−1Ac +WpR − WpO) (8)

where Ac = [0, 0, −dA]T , dA is the distance from the rig’s
CoM to the pivot axis. dA is measured by balancing the pivot
arm on a sharp edge.
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Substituting Eq.7 into Eq.3 gets

On̂T m−1
S (mO

Oc +mA
OcA) = On̂TOpA. (9)

Rearranging for Oc yields

On̂TOc = On̂T (OpA −
mA

mS

OcA)
mS

mO
(10)

where all variables are directly measurable by the MoCap
system: OcA is described by Eq.8., and OpA Eq.5.

With N experiments conducted, a system of equations is
obtained as
[
On̂Ti

...

]

N×3

Oc3×1 =

[
On̂i(OpA, i − mA

mS
OcA, i)mSmO

...

]

N×1

(11)
where i denotes each of the experimental data. This can be
written into the standard form for a system of linear equations
Ax = b, and can solve for x by finding the pseudoinverse A†,
yielding

Oc =

[
On̂Ti

...

]† [On̂i(OpA, i − mA
mS

OcA, i)mSmO
...

]
. (12)

Thus, the least-square error value of Oc is found given the
experimental data.

3.3 Moment of Inertia Tensor
To calculate the MoI of an object on a compound pendu-

lum, the equation of motion is

W IS θ̈ + τd +msgdssinθ = 0 (13)

where W IS is the MoI of the system about the pivot axis, θ
is the angle of oscillation, msg is the gravitational force, and
ds is the distance from the system’s CoM to the pivot axis.
The τd term denotes the damping torque experienced by the
system due to both aerodynamics and bearing friction [11]

τd = aθ̇ + bθ̇2sgn
(
θ̇
)

(14)

where a, b are the damping constants Combing Eq.13 and 14
then rearranging to have

θ̈k
W IS + aθ̇k + bθ̇2ksgn(θ̇k) = msgdssinθk (15)

where θk is the angle measurement from the MoCap sys-
tem at time step k. From the dynamic data, a times series
of θk, θ̇k, θ̈k that can be written into matrix form can be ob-
tained:
[
θ̈i θ̇i θ̇2i sgnθ̇i
...

...
...

]

K×3



W IS
a
b


 = msgdssin

[
θi
...

]

K×1

(16)

where i denotes the value at each corresponding time step and
K = the total number of time steps. Solving for [W IS a b]T

results in


W IS
a
b


 = msgsds

[
θ̈i θ̇i θ̇2i sgnθ̇i
...

...
...

]†
sin

[
θi
...

]

K×1

.

(17)
The same equations apply to finding the MoI of the pivot

arm about the pivot axisW IA. OnceW IS andW IA are found,
the MoI of the object through its CoM can be derived:

W I = W IS −W IA −mo||WpR −W pO||2 (18)

where W I is the MoI of the object about an axis through its
CoM in the world frame. That axis is parallel to and on the
same plane as the pivot axis. mo||WpR −W pO||2 is the par-
allel axis term. With N experiments, there are N W I values.

To transform these MoI values about the arbitrary axes
onto the user-defined object body frame, it can be shown that

O ẑTOIO ẑ = W I (19)

where O ẑ3×1 = [x, y, z]T is the directional vector describing
the orientation of the pivot axis in the object frame, and OI3×3

is the full inertia tensor of the object in the object frame.
For N experiments, Eq.19 can be written as

[
xi yi zi
...

...
...

]

N×3



Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz





xi ...
yi ...
zi ...



3×N

=

[
W Ii

...

]

N×1

(20)
and expanding the LHS using a standard 2nd-order trinomial
expansion yields

[
x2i y2i z2i 2xiyi 2xizi 2yizi
...

...
...

...
...

...

]

N×6




Ixx
Iyy
Izz
Ixy
Ixz
Iyz



=

[
W Ii

...

]

N×1

(21)
thus solving for OI yields



Ixx
Iyy
Izz
Ixy
Ixz
Iyz



=

[
x2i y2i z2i 2xiyi 2xizi 2yizi
...

...
...

...
...

...

]† [W Ii
...

]
.

(22)
The full tensor of the object-under-test in a frame that is fixed
to the object is now derived.

4 EXPERIMENTAL SETUP

This section describes an implementation of the method-
ology in section 2.
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For the purpose of validation, an object of known MoI is
used. Shown in figure 3, the object is a Polymethyl methacry-
late (PMMA) circular disk of dimension 400mm in diameter,
10mm in thickness and uniform density. The hole cutouts are
for the purpose of attachment. The analytical value of the

Figure 3: Circular disk PMMA. Dimensions in mm.

full inertia tensor is calculated given the radius, thickness and
mass to be

OIanalytical =



1.4810 0 0

0 1.4810 0
0 0 2.9521


× 10−2kgm2

(23)
which is in the same order of magnitude as a small UAV [14,
15, 16, 17]. Note that the hole cutouts are also taken into
account.

The physical rig setup is shown in figure 4. Two tripods
rigidly hold a steel rod horizontally above the ground. They
stand a suitable distance apart such that the object-under-test
can swing without obstruction. A laser pointer is used to en-
sure the rod is levelled. Two retro-reflective markers are put
on the ends of the rod, marking the pivot axis.

The pivot arm consists of a bearing, two 3D-printed parts,
and an aluminium bar. The 3D printed parts are used to
rigidly attach the bar to the bearing and the object to the
bar. Note that the pivot arm should be constructed in a way
such that the distance from its CoM to the pivot axis can be
obtained from simple methods such as balancing on a sharp
edge accurately. One more marker is placed on the pivot arm
such that it tracks the angular displacement of the arm.

For the object-under-test, the object frame is defined by
placing 4 markers on the object, marking the origin, +x, +y
and +z directions. This origin does not lie on the CoM.

For the motion capture system, VICON cameras with
software VICON 3.9.0 is used for recording the object pose.
An instance of the recorded objects is shown in figure 5. In
the figure, the rig frame is defined such that its x-axis is the
pivot axis, and the origin of the frame lies on the leftmost
marker. The object frame is fixed to the object-under-test at
an arbitrary pose.

Figure 4: An instance of the rig setup

Figure 5: An example of tracked markers.

5 DATA PROCESSING AND RESULT

This section discusses the data processing and visualisa-
tion when calculating the CoM and MoI of the object, using
MATLAB.

After following the steps described in section 2, VICON
exports the data to a list of .csv files and is read by MATLAB.
Figure 6 shows one of the experimental data sets. For at least
the first 5s, the system is stationary. This section of the data
is Dstatic, used for locating the object’s CoM. Dynamic data
Ddynamic starts from 17s in the example in figure 6.

Transformation matrices (Eq.2 ) are first constructed us-
ing Dstatic for each experiment. Figure 7 shows an instance
of the object rotation in the world frame (poseplot() func-
tion). This should reflect the orientation of the object shown
in VICON. With all the transformation matrices obtained, the
CoM location in the object frame can be derived by finding
the point with the least distance to all the intersecting planes
with Eq.3.

On the other hand, for Ddynamic, it is required to obtain
the angular velocity and acceleration from the measured an-
gle data by VICON. They are needed for Eq.17. A simple
difference function is applied twice to obtain velocity and ac-
celeration data. To resolve the issue of derivative noise am-
plification, a zero-phase filter function smoothdata() in MAT-
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Figure 6: VICON recorded data for one experiment including
both static and dynamic data

Figure 7: OWR visualisation for one experiment. In each ex-
periment, the object frame has a unique orientation in the
world frame.

LAB is used with the method parameter specified as ’sgolay’,
denoting a Savitzky-Golay filter. It is good at rejecting par-
ticularly high-frequency noise such as those from derivatives
[18].

Once the kinematic data are obtained, Eq.8 is applied and
finds the system MoI about the pivot axis and the two damp-
ing coefficients. The accuracy of the fitted model parameters
[IS a b]

T can be verified by comparing the experimental data
and model-generated data given the initial conditions

[
θ0
θ̇0

]
=

[
θpeak
0

]

where θpeak denotes the angle of oscillation at a peak from
the corresponding experimental data. These peaks can be
found using the findpeaks() function in MATLAB on the fil-
tered data. For the experiments, all the fitted models obtained
above 95% match to the experimental data. Figure 9 shows
an instance of the compared data.

Figure 8: A segment of angle, velocity, and acceleration of
the object’s oscillation derived and filtered from one experi-
mental VICON data.

Figure 9: Model validation. By providing the same initial
conditions to the fitted model, the model response can be
simulated and compared to the experimental data. The fig-
ure shows a segment of a 97% match fitted model from one
experiment

The CoM value is calculated as, in m,

Oc =



−3.75× 10−4

4.96× 10−2

−1.01× 10−2




Because an object of known geometry is used to validate the
experiment, the location of the CoM can be directly measured
on the object to be

Ocmeasured =




0
5.0× 10−2

−1.2× 10−2


m

Both the x and y components have less than 1mm error, how-
ever, there is a 1.9mm difference in the z axis. This error
becomes significant later in the MoI result.
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The experimental inertia tensor of the object-under-test in
the object frame OI is found to be, in kgm2,

OI =




0.014871 0.00066724 0.00029924
0.00066724 0.014910 −9.8791× 10−5

0.00029924 −9.8791× 10−5 0.031907




Compared with analytical values OIanalytical , the percentage
error can be calculated

%error =



0.8% − −
− 1% −
− − 8.2%




Averaging the percentage error on the diagonal terms to ob-
tain an overall error percentage of 3.4%. The experimental
values show good estimates in Ixx and Iyy with a low per-
centage error of around 1%. However, there’s a larger error
in Izz of 8.2%; this can be traced back to inaccuracies in the
derived CoM position in z, where a large error in the CoM
values led to a larger inertia percentage error.

The error of 1.2mm is because there is not enough vari-
ation in the third component of the normal plane vector On̂
in Eq.12, i.e. the z axis angle. This made the least-square
regression unable to filter out the error in this term. Physi-
cally, this means that more different angle placement about
the z axis of the object relative to the vertical plane would
help with the CoM calculation.

The experiment also shows good estimate about the prod-
ucts of inertia terms. While unable to obtain the percentage
error, it can be seen that values are all in the order of mag-
nitude 10−4kgm2. Compare to the diagonal terms which are
in the order of 10−2kgm2, the products of inertia terms are
negligible and reflects those in OIanalytical. It is worth noting
that the calculation does not treat the products of inertia dif-
ferently from the main diagonal terms, and that the fact that
all six value are calculated to be close to that of the analytical
values demonstrates the accuracy of the method.

6 CONCLUSION

An experimental method to determine the moment of in-
ertia tensor of a rigid body is proposed in this paper. It also
calculates the object’s centre of mass location relative to a
body frame defined by the markers that the user attaches to
the object.

For the object studied, the average percentage error across
the three principle axes is calculated to be 3.4%, proving that
the method is valid and that the experiments are suitable for
obtaining the inertia of objects of this size. To achieve good
accuracy, a wide variety of orientations that define new con-
figurations in all three axes is desired.

Future work includes further validating the experiment
with asymmetrical objects, as to determine the percentage er-
ror of the products of inertia. Additionally, more investigation
can go into the sensitivity analysis of the MoI of the object-
under-test to the length of the pivot arm. Experiments found

that a long pivot arm increases the parallel axis term in Eq.18
which dominates the system inertia W IS , making it more dif-
ficult to obtain an accurate W I .
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