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ABSTRACT

Here, we demonstrate obstacle and secondary
drone avoidance capability by quadcopter drones
that can perceive and react to modulation of
their self-generated acoustic environment when
in proximity to surfaces. A ground truth for
the interpretation of self-noise was established
by measuring the intrinsic, three-dimensional,
acoustic signature of a drone in an anechoic
chamber. This was used to design sensor ar-
rangements and machine learning algorithms to
estimate the position of external features, obsta-
cles or another drone, within the environment.
Our machine learning approach took short seg-
ments of recorded sound and their Fourier trans-
forms, fed these into a convolutional neural net-
work, and output the location of an obstacle or
secondary drone in the environment. The convo-
lutional layers were constructed with a suitable
topology that matched the physical arrangement
of the sensors. Our surface detection and avoid-
ance algorithms were refined during tethered
flight within an anechoic chamber, followed by
an exercise in free flight without obstacle avoid-
ance, and finally free flight obstacle detection
and avoidance. Our acoustic sense-and-avoid ca-
pability extends to vertical and horizontal planar
surfaces and tethered secondary drones.

1 INTRODUCTION

Many methods exist by which a drone might sense its en-
vironment, such as LIDAR and laser range-finders[1], cam-
eras and optical flow sensors[2], pressure sensors [3], or even
bioinspired “hair sensors”[4, 5]. Each such sensor modality
has strengths and weaknesses.

Another method of environmental detection is acoustic
sensing with microphones. These have been used to estimate
the distance[6] and bearing[7] between drones and the rela-
tive location of drones[8] in a swarm. Drone mounted acous-
tic sensors, when integrated MEMS and particle velocity sen-
sors, have been shown to be capable of detecting the location
of large civil aircraft[9]. Ground based acoustic sensors have
also been used to localise small gasoline-powered UAV over
hundreds of meters[10].
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Acoustic surface detection methods have enjoyed suc-
cess on robotic platforms drawing inspiration from biological
systems[11]. Echolocation has been used to relocate a robot
in an environment by comparison with existing maps of said
environment[12]. Active echolocation on has also been em-
ployed on the crazyflie drone to identify surfaces[13], though
this requires a loud on-board speaker to generate the required
sound, which we wish to avoid.

Flying drones generate sound, principally from the mo-
tors and the aeroacoustic noise from the propellors (which
we term the acoustic signature), and nearby surfaces in the
environment reflect that sound. The spatio-temporal structure
of the reflected acoustic signature contains information about
the position of the drone relative to obstacles in the environ-
ment. Microphones that observe this information can also
detect the acoustic signature of other drones in the environ-
ment. While physics based acoustic modelling approaches
have been shown to be theoretically viable for surface de-
tection in real time[14], here we employ a machine learning
approach.

This method of obstacle and drone detection offers sev-
eral advantages over others. Unlike cameras, microphones
work in the dark and draw minimal power; our arrays draw
only a few mA. This makes them suitable even for micro-
drones weighing only a few tens of grams.

They can be used passively to listen for the sound of other
drones, or actively by listening to the reflected sound of the
drone’s own acoustic signature. In either case, they make
such a drone no more conspicuous than it would be operating
in free flight, since a flying drone must operate its engines to
resist gravity regardless of whether or not it is sensing the en-
vironment. This in contrast to laser range-finding or LIDAR;
if a laser beam is directed at a suitable sensor it can be readily
detected and the direction of the drone quickly determined.

The approach is also more general than sensing environ-
mental changes by monitoring motor power consumption di-
rectly. Such sensing can be used to detect a surface below
a drone and shut off the motors for landing (for example
in[15]), but has limited utility for sensing vertical planar sur-
faces in the environment and no capability to detect other
drones.

Here, we show how to use such information to detect sur-
faces, both in ideal conditions while tethered in an anechoic
chamber, and in the variable, suboptimal conditions that oc-
cur in free flight. We then demonstrate how such information
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Figure 1: Various microphone arrays deployed on the
Crazyflie and Mormoops prototype. At the top are the
analogue microphone arrays deployed in a ring around the
Crazyflie on the left and the Mormoops on the right. Below
are the digital microphone arrays (in ground detection con-
figuration with microphones on top of and below the drones
body), again with the Crazyflie on the left and the Mormoops
on the right). The bottom left drone was the final prototype
used in the sense and avoid experiments

can be used to avoid collision with obstacles in free flight.

Finally, we demonstrate how such a sensor system can be
used to detect another drone’s location in the environment,
while tethered, with a high degree of accuracy.

2 METHODS
2.1 Acoustic sensors

We have developed several acoustic sensor systems as re-
quired, including tethered analogue microphone arrays, on-
drone analogue microphone arrays digitised by an onboard
microcontroller, and onboard digital microphones managed
by an onboard microcontroller ((Fig. 1)). While specialised
small, directional acoustic sensors do exist we opted for an
array of microphones similar to those that have already seen
successful employment on drones[16]. Directional micro-
phones were rejected because it was felt having multiple
recordings on an array would allow for better detection of
interference effects.

The outputs from tethered analogue microphone arrays
were digitised during the characterisation of the acoustic sig-
nature of the Crazyflie, and for tethered surface detection in
the anechoic chamber, and for the detection of anther drone
in the environment when both drones were tethered.

Following measurements of the acoustic signature of the
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drones and the tethered trials, for our recordings in free flight
we used digital I5S microphones connected to a teensy 4.0.
This permitted the fast onboard notch filtering and power es-
timation of recordings needed for in flight surface detection
and avoidance.

2.2 Self-generated drone acoustic signature

In order to design and calibrate our surface detection al-
gorithms for our drone, we needed to to obtain the self-
generated acoustic signature: that is, the sound the drone
made in various directions while hovering.

To do this, we mounted an array of analogue acoustic mi-
crophones on a Crazyflie and recorded the sound generated
at a fixed distance at a range of angles (elevations at 45 deg
intervals and at 18 azimuthal angles approximately 15 deg
seperation, n = 90) arranged around the drone. Note these
arrays are not the same as those fixed to the drone, as can be
seen in figure 2, these microphones are attached to the fixed
white semicircle suspended in the chamber. Recordings were
taken with 6mm diameter uni-directional electret condenser
microphones (RS PRO, 50 to 16000 Hz at -47dB) wired to
separate signal conditioning amplifiers (Vishay 2210B), and
a Powerlab DAQ (PowerLab 16/35, ADInstruments).

We took recordings in an anechoic chamber (Fig. 2) to
maximise the quality of the acoustic signature signals, shown
in Fig. 5.

2.3 Tethered surface detection using self-generated sound

Based on the results from the self-generated acoustic sig-
nature of our drones(Fig. 5), we designed a microphone array
for detecting surfaces in the environment with a high density
of sensors at eight different azimuthal angles and two sen-
sors above and below the drone (Fig. 1, top right). We used
this array to detect detect planar surfaces while tethered in an
anechoic chamber using self-generated noise.

Based in part on the results from the acoustic signature of
the drone we decided to implement a machine learning clas-
sifier built using PyTorch[17]. The classification network is
built from a configurable input layer, two convolutional lay-
ers, two fully connected layers and an output layer.

The input layer can be adjusted to match the sensor suite
being used via a human readable YAML configuration file. In
this configuration the data is split into blocks.

These blocks are the microphone recordings from the
eight sensors in a ring, the two microphone on the top and
bottom of the drone, and two additional blocks formed from
the Fast Fourier Transform (FFT) of these two sets of signals.
The FFT was taken along the time axis of each block using
the rfft function of tensor flow.

Two convolutional layers are then used. A useful sum-
mary of recent applications is provided in [18] . The sur-
rounding sensors form a ring around the drone, and any clas-
sification network should respect this topology, i.e. there
should be no ‘start’ or ‘end’ sensor, and any mathematical
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Figure 2: Apparatus for measuring quadcopter acoustic sig-
nature. The arc is fitted with five microphones and can be
rotated in azimuth to repeatable angles around the tethered
quadcopter. Microphones are mounted at the North and South
poles, the equator and +/- 45 degrees. The microphones are
fed by common excitation and the output signal is received
by individual Vishay 2210B signal conditioning amplifiers.
The quadcopter motors are provided with a voltage known to
support the weight of the aircraft.
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operation should be invariant to a transformation which shifts
all the sensors around this ring.

As such we use a circular convolution for the sensor in-
put elements on the ring. Since the top and bottom elements
of the microphone are completely included in the convolution
along the sensor number axis, these can be a regular convolu-
tion.

If x;7 is an element of the blocks, z, discussed above,
with ¢ running from one to the sample length N, that is if we
take 20 millisecond blocks at 22 kilohertz this would be 440
samples, j running from one to the number of elements in
this block (for example eight if we are dealing with the eight
microphones around the drone), then this layer performs the
following operation:

Yp=btw,*z (D

Where * is the cross-correlation operator, w,, is the kernel as-
sociated with the pth convolution, of which there are M total,
and b is a constant matrix. In the language of convolutional
neural networks, this first layer assumes inputs with only one
channel, and outputs M channels.

All units in the network are Rectified Linear Units [19]
(ReLU) to improve training ease training and speed conver-
gence, and so this response y is modified by:

y,, = max (0,y,) 2)

Our network pools after every convolutional layer to gener-
ate invariant features, which makes the network less sensitive
to the precise locations of features and reduces the number
of parameters in the network [20], reducing the risk of over-
fitting. We found that two-dimensional max pooling worked
well, splitting the layer activations into K x L blocks and
transforms the layer by downsampling to only the maximum
value in these blocks.

Our network then proceeds with another convolutional
layer with ReLU and pooling. Next, we have two fully con-
nected layers. We treated the output of the last convolutional
layer as a single vector a,. The activation b; of the fully con-
nected layer is

bj =cj+ Z M@y 3)
1

The units in the fully connected layer are again ReLU units,
for the same reason as previously discussed. No pooling
is performed here as the fully connected layer respects the
topology of the input only in the most trivial way (every unit
is connected to every input), meaning neighbouring units are
likely to be unrelated.

Another fully connected layer is then used followed by
the output layer. The output layer is, for this case, the az-
imuthal angle of the obstacle, and a vector pointing to the
obstacle in the plane. The azimuthal angle can only be 0 or
90 degrees, and is re-interpreted after the network is trained
as a class variable indicating wall position.
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The network is trained using Stochastic Gradient Descent
(SGD) [21] to minimise the mean square error.

The network performance was evaluated on a test data set
of ten thousand sections two milliseconds in length that were
not used in the training data. As the testing and training data
are drawn randomly from sixty second length trials there is
a risk that temporal correlation within the longer trials could
allow for identification of the sample.

2.4 Surface detection in free flight

As a precusor to surface avoidance we created a version of
our prototype drone with the ability to detect surfaces in free
flight. The prototype (called Mormoops) consisted of a Bolt
flight controller (Bitcraze, Malmo, Sweden), a custom cha-
sis and four Betafpv 1105 5000KV brushless motors Betafpv,
Hong Kong, PRC). The drone was operated near a planar sur-
face, and our neural network tasked with detecting the sur-
face.

A Centeye optical flow sensor, (Centeye, Washington,
DC, USA) was used to measure the change in height of the
drone over one minute trials. The flight controller maintained
constant height based on optical flow odometry and no obvi-
ous drift was observed over these short flights. The drone was
flown at three different heights, one deep in ground effect at
approximately 5cm height and two outside at 15 and 20cm.

Surface detection in free flight benefits from higher band-
width microphone recording and processing. As such we
decided to use a digital microphone platform combining
SPHO0645LM4H I2S microphones (Adafruit, New York City,
USA) with a Teensy 4.0) microcontroller (PJRC, Sherwood,
OR, USA) with custom SD card reader for storage.

This would allow us to use the Teensy microcontroller’s
specialised 125 audio processing hardware that enables high
quality recording, fast filtering, Fourier transforms, and other
signal processing.

Our neural network was then required to distinguish these
states using the sound recordings from 20ms samples.

2.5 Free flight surface avoidance

Tests of wall detection capabilities were performed during
the previous free flight experiments. However, this version of
our drone could not safely resist wall effect, so insufficient
training data could be gathered.

We modified our algorithms to detect and avoid both hor-
izontal (ground) and vertical (wall) planar surfaces in free
flight. We used the difference in power of the recording from
two notch filtered microphones, a method that was based on
examination of the structure of the machine learning approach
- specifically the frequency dependency - and required mini-
mal tethered training data.

The controller requires platform-specific calibration. The
frequency range of the notch filter is specific to the drone
that carries the sensor package, as are the gains on the mi-
crophones, and the threshold for detection. Ground detection
is insensitive to these parameters, with simple benchtop tests
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Figure 3: Image of the autonomous flight arena during its
early development showing Qualisys motion tracking cam-
eras and a Crazyflie UAV on the floor in the centre of a netted
enclosure. This was used to track and control the Crazyflie
during sense-and-avoid flight trials.

sufficient for a good calibration. Wall detection requires in-
flight refinement and iteration and is less reliable. In both
instances the threshold for engaging the avoidance behaviour
had to be set prior to the test.

At present, for avoidance purposes the system behaves
as a classifier (the conditions being “wall present” and “no
wall”). For the ground plane this is a simplification of the
multiple heights that can be discerned by the machine learn-
ing controller, but for wall detection little evidence of contin-
uous signal was apparent beyond the simple detection of wall
effect.

Once an estimate of the surface position is available on
the Teensy microcontroller, the information is communicated
to the onboard Crazyflie flight controller by a parallel digital
on the GPIO pins (Fig. 1). This distance estimate is then
transmitted, via the Crazyradio, to a computer that tracks the
Crazyflie using a Qualisys motion capture system (Qualisys,
Goteborg, Sweden). (Fig. 3)

If an obstace is detected, evasive action is taken to reposi-
tion the drone by updating the target position set on the con-
trol computer.

2.6 Sensing other drones

We determined to what extent it was possible to identify
a second drone using the same acoustic sensor array. Ini-
tially, we confined our considerations to detecting drones that
are physically different, the Crazyflie and our new Mormoops
drone.

We ran both drones simultaneously in tethered flight and
recorded the acoustic signature of each at a range of distances
and angles, as in Fig. 4. The objective was to use our mi-
crophone array and machine learning approach to detect and
locate the secondary drone, from the observer drone.

The analogue array was used to record from ten micro-
phones distributed as for tethered surface detection. Record-
ings were performed in the same manner, though outside of
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Figure 4: Experimental configuration for detecting and local-
ising a prototype Mormoops drone from a Crazyflie, and vice
versa. Recordings were taken from the microphone array on
each drone, and used in conjunction with our machine learn-
ing approach to identify and localise each drone.

the anechoic chamber due to space constraints.

3 RESULTS

3.1 Self-generated drone acoustic signature

Acoustic signatures are shown in Fig 5. Position depen-
dent differences are apparent in these signals, which sug-
gested that discerning positional information about quad-
copters from external acoustic recordings was highly feasi-
ble. The spatial distribution of the signal suggests the need for
multiple sensors around the body of the drone. These results
suggested, and later observations confirmed, that a single pair
of microphones mounted above and below the body would be
sufficient in these directions for planar surface detection.

3.2 Tethered surface detection through self-generated
acoustics

Performance of the network was excellent (see Fig. 6 and
Fig. 7).

The drone was able to distinguish perfectly between the
two conditions (wall to the side, floor below) for all examples
in the test data set. When estimating the height of the drone
above the surface the standard error was 36.1mm. This er-
ror was relatively consistent over the range of distances mea-
sured, meaning that when deep in ground effect the detec-
tion of the ground was relatively inaccurate (although amply
sufficient to trigger a surface avoidance response), and sur-
prisingly good at large distances (although we note that these
constitute close to ideal conditions). The limits of this floor
detection capability were not found as we reached the maxi-
mum height of the anechoic chamber before such a limit was
reached. For practical purposes this is sufficient, although de-
tecting such a limit for a free-flying drone is highly desirable
and is a priority future objective.

Similarly, the horizontal distance at which performance
begins to degrade was not detected, as the algorithm main-
tained a good performance out to 250mm, with a standard
error on the distance to the wall at 39.5mm and an angular
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Figure 5: The external acoustic signature of a crazyflie. Here
is shown a sphere around the drone and the acoustic power
recorded at that location around the drone is displayed, cool
colours indicate low acoustic power while hot colours indi-
cate high acoustic power. The engines generate high pressure
below the drone, and this can be seen as the red region on
the bottom of the sphere. The four sphere are four differ-
ent views, left and right are different elevations and the plots
are spheres are rotated half a circle azimuthally going from
the top to bottom row. The covariance matrix used in our
anomaly detection algorithm can likely be inferred (or at least
constrained) through these observations. This has the virtue
that a physically derived estimate is guaranteed positive defi-
nite.

standard error (assuming a Gaussian distribution, rather than
von Mises, which is a reasonable approximation here as the
error is small), of 16.4 deg.

3.3 Surface detection in free flight

For the trials in ground effect, the sound recordings were
clearly different, close approach to surfaces can be reliably
detected from acoustic signatures. The drone was set to hover
at three discrete heights, 5cm, 15cm and 20cm. The diameter
of the rotos was 5.08mm. For the case where the drone was
at 5¢cm height, deep in ground effect, 96% of trials were suc-
cessfully identified. For the 15cm and 20cm cases 46% and
48% were successfully identified. Close detection of planar
horizontal surfaces is reliable, especially if integrated over
several seconds.

3.4 Free flight surface avoidance

The drone sucessfully takes action to avoid collisions with
planar surfaces. It manoeuvres away from them as they are
brought close. Examples of such behaviour can be seen in
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Figure 6: Performance of the machine learning sensory inte-
grator in detecting the position of a surface to the side of the
drone. The drone is shown inside the red circle, the wall is
the solid black line, the x- and y-axis are position in meters.
The white dots show the estimated position of the wall ac-
cording to the algorithm, with the kernel density plot [22] in
blue, black and red constructed from this data. There is strong
agreement between these estimates and the actual wall posi-
tion. The standard error in the estimated position by shortest
distance to the wall was 39.5mm, and the standard error on
the angle was 16.4 deg
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Figure 7: Performance of the machine learning sensory inte-
grator in detecting the position of a surface to the below of the
drone. On the x-axis is the true position of the surface below
the drone in meters. On the y-axis is the estimated position of
the surface according to the algorithm. The standard error on
the estimated distance was 36.1mm.

the in Fig. 8 and supplemental movies.

Detection of horizontal planar surfaces was reliable.
However, surface avoidance of vertical planar surfaces was
extremely unreliable. Only two successful trials (defined by
no premature triggering of the avoidance behaviour and cor-
rect avoidance when presented with a surface) were recorded,
out of dozens of such trials.

3.5 Sensing other drones

The Mormoops prototype was always reliably detected by
the Crazyflie observer, and both distance (Fig. 9) and orienta-
tion in the Crazyflie frame of reference (Fig. 10) could read-
ily be identified. The reverse scenario was not the case, and
no reliable estimates of the position of the Crazyflie by the
Mormoops observer could be obtained due to signal being
overwhelmed by self-noise. Adjustment of gains and more
sophisticated filtering may improve detection capability.

The bearing to a secondary drone was always reliably ex-
tracted, with a standard error around 30 degrees. The dis-
tances were somewhat reliable out to around 20 cm, with a
resolution of around 7cm at this distance. Resolution im-
proved as the target drone got closer. At distances greater
than one meter, estimates of distance could no longer be ob-
tained with accuracy.

Our Mormoops prototype can thus be detected reliably
and consistently from a Crazyflie observer when tethered.
The reverse was not the case, largely because the Crazyflie is
approximately two orders of magnitude quieter than the pro-
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Figure 8: Still images from movie of surface avoidance be-
haviour. Above: horizontal planar surface avoidance as a sur-
face approaches. Below: wall avoidance as a vertical planar
surface approaches.

totype. No signal was therefore detected for our microphones
when gains were configured to avoid clipping on the proto-
type. In short, the configuration for obstacle avoidance on the
Mormoops was not compatible with detection of a secondray,
much quieter, drone.

4 CONCLUSION

Detection of horizontal planar surfaces is very reliable
and robust across modes, tethered, post free flight recording
and in drones in flight engaging in surface avoidance. De-
tection of vertical planar surfaces is reliable while tethered,
but far less reliable in the other testing modes. The detec-
tion of a larger, louder, more powerful drone from a smaller
drone while tethered is possible, and the angle and distance
of this drone can be estimated somewhat reliably via acoustic
recordings. Detection of the louder drone might be improved
by the implementation of motor denoising techniques[23].

For free flight surface avoidance, latency was an issue
due to the long chain between sensor systems and flight con-
trol (recording to on board microcontroller, to flight control
board, to radio, to flight control computer). A reduction in
the latency from detection to avoidance could see this evolve
into a practical system. At present the latency is around
250ms. Larger spikes in latency are also seen, and arguably
the most pressing challenge for further use of the wall de-
tection method is variability in latency as wall effect quickly
renders a drone in an unrecoverable state. Reducing latency
is achievable and would substantially improve drone sense-
and-avoid performance.

These trials were conducted under good conditions, in-
doors and free from wind, both of which could negatively
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Figure 9: Performance of our machine learning approach
when estimating the distance of a target drone from the sens-
ing drone. The x-axis shows the actual distance (ground
truth); the y-axis shows the estimate inferred from the mi-
crophone recordings and machine learning algorithm. Per-
formance is reasonable for shorter distances, with the error
at 20cm approximately 7cm. Shorter range recordings (not
shown), suggest accuracy is improved as distance decreases.
Above 20cm accuracy deteriorates with a bias towards under-
estimates although estimates of distance are possible and may
be useful.
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Figure 10: Performance of our machine learning approach
when estimating the orientation of a target drone (angle rela-
tive to forward on the observer drone). The x-axis shows the
actual orientation (ground truth); the y-axis shows the esti-
mate inferred from the microphone recordings and machine
learning algorithm. Performance is excellent, with a typical
error around 30 degrees, although some variation is observed
by angle.
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contribute to performance of both surface detection and
avoidance. It is unclear how robust a neural network based
approach will be to the additional sounds that occur outdoors,
including wind. Unlike physics based approaches which have
predictable responses to new conditions (and which allow
for those new condition to be incorporated into the physical
model), neural network based approaches may not perform
stably in conditions that are not in the training data. One ap-
proach to this problem would be to intentionally create noise
in the training data to simulate wind or external noise in an
effort to make the algorithm more robust. Wind would also
likely make avoidance manoeuvres more difficult.

The multiplatform capability of our sensor, and sensor
integration, packages mean that multi-drone operation with
drone identification are achievable with the current system.
We have high temporal resolution digital microphones us-
ing the specialised audio processing available on the Teensy
should frequency range and audio processing be a limiting
factor and we have analogue microphone arrays should spa-
tial resolution and multi-direction sampling be critical.

A quiet, light drones capable of supporting these sen-
sors like the Crazyflie could be used for future development
should background motor noise be an issue, and a larger,
more capable, but louder, like our Mormoops platform could
be employed should extra sensors and equipment be needed
for drone identification. This capability could be compli-
mented by integrating acoustic surface detection with surface
detection using other sensor modalities such as optical flow
Or pressure Sensors.

This work demonstrates novel capabilities of surface de-
tection via self-noise can be extended in exciting new direc-
tions including wider sensor integration and in-flight drone
detection.
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