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ABSTRACT

In recent years, large amounts of aerial im-
ages are readily available because they are taken
from aeroplanes, hot-air balloons, and unmanned
aerial vehicles. However, these images are not
relevant if their information is not interpreted.
Although there are several techniques to analyse
them, i.e., from statistical methods to machine
learning techniques, at present the most popu-
lar technique is deep learning, where the convo-
lutional neural network (CNN) has shown good
accuracy and success on several studies of satel-
lite images with a ground sampling distance >
10 m. In this work, we employ red-green-blue
(RGB) aerial images taken from 100-300 me-
ters above the ground, which are employed to
build a CNN based on a variant of a VGG16 ar-
chitecture, for the semantic image segmentation.
Four classes are identified, urban zone, vegeta-
tion zone, agricultural zone and roads. Due to the
high spatial resolution, pixels are grouped with
respect to similar texture in superregions to re-
duce the number of pixels classified by the CNN.
Our approach is able to segment an aerial im-
age in three modalities: 1) pixel-wise segmenta-
tion; ii) superpixels, this is, a group of pixels;
iii) superregions, which is a group of superpix-
els. The model is tested with aerial images with
a height between 200 to 400 meters. According
to our results, the accuracy is similar for each
one of the three methods presented in this work.
However, the time performance is significantly
reduced when employing superpixels and super-
regions. Furthermore, we have obtained an aver-
age F-score 0.732, comparable to state-of-the-art
approaches.

1 INTRODUCTION

At present, the interpretation of satellite and aerial image
is an essential task, because this kind of images provides im-
portant data to bring about land cover map, land use map,
and object detection. The land cover and land use maps can
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be used as a tool to plan a city [1] or to monitor either de-
forest or changes of a particular region [2]. Moreover, this
information can be recorded to form a geographical database.
Concerning object detection, some types of targets can be ve-
hicles, buildings, roads [3], aeroplanes [4], and so on.

Semantic segmentation is part of visual computation that
assigns a classification label to each pixel of an image.
There are many algorithms to segment an image, which are
classified in: threshold-based, edge-based, region-based and
classification-based methods, where the last is able to get
more accuracy values with appropriate feature extractors and
classifiers [5]. Deep learning models are used to classify
or segment an image, where Convolutional Neural Network
(CNN) reported the best performance. A CNN is a single
model, for this reason it is regarded as a one-step method [5].

To build a CNN model for semantic segmentation is nec-
essary a dataset, which is employed to train and test the
model. Some dataset available online are ISPRS benchmark!,
Google Maps, Linz Data Service?, among others. Gener-
ally, these are composed of high-resolution orthophotographs
with a ground sampling distance (GSD) of > 10 cm [6].
Most of the studies of semantic segmentation using CNN em-
ploy mainly the ISPRS benchmark, that makes up of high-
resolution images and the digital surface map (DSM), where
the images consist of near infrared (NIR), red and green
bands, and they have a GSD of less than 10 cm. The NIR
can be used to compute the Normalized Difference Vegeta-
tion Index (NDVI) and the Green Normalized Vegetation In-
dex (gNDVI) using the red and the green band, respectively.
Both indexes are utilized to distinguish easily the vegetation
into an image [7]. Furthermore, DSM provides height infor-
mation, that improves the precision of the semantic segmen-
tation [8-10].

At present, most of the research on semantic segmenta-
tion has focused on producing a CNN model through high-
resolution orthophotographs and its DMS. In contrast to, the
CNN models build by means RGB images have been less
explored. Moreover, in this work, we consider aerial im-
ages taken from a lower distance than the high-resolution or-
thophotographs, that is between 100 and 300 meters above the
ground. Thereby these images contain small area in greater
detail. As far as we know, there is not approach to build

Uhttp://www2.isprs.org/commissions/comm3/wg4/semantic-
labeling.html
2https://data.linz.govt.nz/
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a CNN model using RGB aerial images taken close to the
ground. The classification classes for our work are roads,
agricultural zone, urban zone and vegetation zone.

In this paper, a CNN model is produced through raw RGB
aerial images to achieve a semantic segmentation at pixel-
wise classification. To take advantage of the high spatial res-
olution of images, preprocessing techniques to group pixels
similar in colour are employed, and, thereby the number of
pixels classified is reduced. The first technique yields super-
pixels, which are grouped based on their average colour to
constitute superregions. The structure of the paper is as fol-
lows: Section 2 describes the related work. Section 3 details
the implemented system. In Section 4 the experimental re-
sults are presented and in Section 5 the conclusions and future
work are exposed.

2 RELATED WORK

Semantic segmentation is a challenging task for satellite
and aerial images, because of the variety of information on an
image, such as texture or illuminance. On the one hand, dif-
ferent types of textures for buildings or vegetation are present.
On the other hand, the relative absence of light, shadows, are
a source of noise to classify an aerial image correctly. There
are many techniques to segment this kind of images, although
those works that employed a deep learning model have re-
ported the best performance [11].

SegNet has proved to get better results for segmenting
images [12]. Thereby, this architecture has been employed
in several works for semantic segmentation of satellite and
aerial images. [13] extended SegNet architecture to distin-
guish eight classes: building, sealed area, bare soil, grass,
tree, water, car and other on multi-spectral images (RGB +
NIR). Besides, DSM and Digital Terrain Model (DTM) were
used to represent the height information of the experiment
region. In [11], a SegNet variant was proposed to identify
roads, buildings, low vegetation, trees and cars on NIRRG
images. Apart from the dataset, DSM, Normalized DSM
(NDSM), and NDVI were used to improve the final predic-
tion.

One of the most important benchmarks for semantic seg-
mentation of aerial images is ISPRS, which has been em-
ployed in the following approaches. [14] proposed a Local
Attention Network (LANet), composed by a patch attention
module (PAM) and an attention embedding module (AEM),
meanwhile, PAM improves the local context information,
AEM enhances the use of spatial information. [15] solved
it by means a multi-skip convolutional network and Markov
Random Fields. The former extracts the context information
and the latter refines the results. Although their segmenta-
tion is effective, the time required to get it is high. In the
aforementioned approaches, the categories identified were:
roads (impervious surfaces), building, low vegetation, tree,
car and clutter/background. [10] solved the semantic segmen-
tation utilizing CNN and hand-crafted features, in the end, a
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Conditional Random Field (CRF) was applied. They identi-
fied five classes: impervious surfaces, building, low vegeta-
tion, tree, and car. Moreover, the pretrained model was tested
on another type of data. The best performance was got with
NIRRG images, DSM and NDSM. In [16] a Fully Convolu-
tional Networks (FCNs) is proposed, which has two identical
CNN that are merged before the final layer. The input for each
CNN is the image and the digital elevation model (DEM), re-
spectively. TreeSegNet is proposed in [17], which is com-
posed on three elements: (1) the segmentation module, that
is, an encoder-decoder architecture; (2) the Tree-CNN block,
which improves the result of the previous element and it is the
centre part of this approach, and (3) the concatenating con-
nections. This approach was trained and tested through five
channels R, G, B, NIR and DMS. [18] proposed an encoder-
decoder architecture with skip connections, and Fully con-
nected CRF (FCRF) post-processing, which improved the re-
sults. The input CNN model was the NIRRG images and
NDSM from ISPRS benchmark. In [19], a hybrid FCN ar-
chitecture is proposed, which merge the image channels with
DSM. Another approach based on CNN is presented in [9],
where CNN was tested on multispectral orthoimageries and
DSM to classify vegetation, ground, roads, buildings and wa-
ter.

According to the results of previous works, semantic seg-
mentation using CNN reports a high level of accuracy, more-
over, the use of the DMS improved the performance mea-
sures [8—10]. However, DSM is more common for satel-
lite images than aerial images and the NDVI can be com-
puted only in those images with NIR channel. Due to the
semantic segmentation utilizing only RGB aerial images has
been disregarded, in this work builds a CNN model through
RGB aerial images without extra information, such as DMS
or NDVI. Moreover, the images of interest are those taken
from 100 and 300 meters above the ground.

3 METHODOLOGY

In this section, the elements employed in our approach for
segmenting aerial images are presented. Our proposal iden-
tifies four classes: agricultural, urban, vegetation and roads.
Firstly, the dataset employed to train the model is exposed.
Then, CNN architecture is described in detail. Finally, the
types of classification are explained.

3.1 Dataset

The set of images employed to train the model is com-
posed of 36000 images of size 60 <60, named patches, which
were extracted from Google Earth images correspond to the
Megalopolitan area at the centre of Mexico® and pictures of
different states of Mexico taken from drones. The altitude of
the Google Earth images is between 200 and 300 meters, and
aerial images taken by a drone from a range of height of 50

3Mexico City, the State of Mexico, Tlaxcala, Hidalgo, Morelos, and
Puebla constitute the Megalopolitan area.
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and 100 meters.

All aerial images were cropped into non-overlapping tiles
of size 60x60 pixels, where each one has information corre-
sponding to one class. The total of patches for each class is
9000. In Figure 1, four patches for each class are presented.
Agricultural patches present information of sown, harvested
and plantations grow land. Concerning urban patches, roof,
roofing sheets, and objects that do not belong to the other
classes. Information presented in vegetation patches is grass
and trees. Finally, road patches contain roads and earthen
roads.

(a) Agriculture patches.

(c) Vegetation patches.

(d) Road patches.

Figure 1: Example of patches for each class of the dataset.

Due to CNN requires a large amount of training data,
the dataset was increased by the synthetic data augmentation
technique. The applied transformation to the dataset was ro-
tation and translation, with values of 45° and 90, respectively.

3.2 CNN architecture

There are several architectures for deep learning in the
literature, however, the CNN have been applied in classifica-
tion and semantic segmentation approaches with successful
results [15]. CNN was inspired by the visual cortex organiza-
tion of the living creatures [20], and it is composed by one or
several CNN building blocks, that is, convolutional layer, ac-
tivation function and pooling layer, followed by one or more
fully connected layers and the loss layer [13].

The features of the input image are extracted by CNN
layer through filters, named kernels, which are generally of
size 3x3. This layer is the most important of the CNN build-
ing, its output is transformed employing an activation func-
tion. Following, several features are combined with the pool-
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ing layer. In this work the size of kernel used is 3x3 with
stride 1. Moreover, the rectified linear unit (ReLU) is em-
ployed as the activation function, which preserves only the
positive values, and the pooling method employed was max-
pooling with a size of 2x2. In Figure 2 the CNN architecture
employed is shown, which is based on VGG16 [21]. After
the last block building CNN is employed one fully-connected
layer, followed by one dropout layer with proportion 0.5, this
is employed to prevent the overfitting and, finally, a softmax
classifier which computes the probability for each class is
added. The size of output vector is four which corresponds
to the next classes: urban zone, vegetation zone, agricultural
zone and roads. The input to the CNN model is a RGB patch
of size 60x60, and the output is the label corresponding to
the central pixel which is classified according to the rest pix-
els around it, this is considered as a patch-based approach.
Our CNN model was trained from scratch with random ini-
tialization, with 100 epochs, and 80% of dataset were chosen
randomly for training and the rest was employed for testing
the CNN model. Furthermore, the base learning rate is set to
1E-5 with a batch size of 100.

Our approach can segment an aerial image of any size,
however, the minimum size is 60x60. Due to the CNN model
predicts the label of central pixel, this proposal is named
pixel-based classification. As a consequence, the number of
classified pixels is based on the size of the image, multiplying
weight x height, which is a disadvantage for large images.

3.3 Superpixel-based classification

The pixel-based classification can produce a salt-and-
pepper effect on the output image. This problem was tackled
applying a simple segmentation technique, which groups ad-
jacent pixels based on their colour and texture similarity [22],
each group is named superpixel. This reduces the complex-
ity of an image owing to the number of superpixels is lower
than pixels. Therefore, the time required to segment an image
is lower than pixel-based classification approach. Moreover,
the appearance of spots is reduced. To extract superpixels of
aerial image SLIC algorithm [23] is employed because this
algorithm is faster than others superpixels algorithms and it
has a good performance. SLIC is based on k-means using
color and spatial information [22]. This approach is denoted
as superpixel-based classification.

3.4 Superregion-based classification

Due to the lower distance considered for RGB images,
can exist several superpixels with similar texture, which can
be joined on large areas, denoted as superregion [24], also
named super-segments. Therefore, a superregion is a con-
nected set of adjacent superpixels, which have a bit difference
of colour, that is computed by Eq. 1.

D= \J(rj =i + (g — 9 + (b — b2 (1)

where D, represents the Euclidean distance between -
superpixel and j-superpixel, which must be adjacent. r, g,
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Figure 2: CNN architecture, which is composed by thirteen convolutional layers, one fully connected layer, a dropout layer and
a classifier. On the top of each convolutional layer the number of kernels is shown.

and b are average of red, green, and blue values for ¢ and j
superpixels. To merge ¢ and j superpixels, the D, value must
be less than a threshold.

An advantage of superregion is the time required to seg-
ment an image, which is lower than previous approaches be-
cause only a subset of superpixels for each superregion is
classified, thereby, the number of superpixels classified is
lower than the superpixel-based classification. Furthermore,
the salt-and-pepper effect is reduced and the edges for each
class are improved.

In Figure 3 an example of the original image for Image 1
(see Table 1), its version dividing into superpixel, where each
superpixel is surrounded by a green line, and image divid-
ing into superregion, whither each superregion is represented
by different colour are shown. The number of pixels (Figure
3(a)) is 360000, meanwhile the number of superpixels (Figure
3(b)) is 1069 and the number of superregions (Figure 3(c)) is
421.

4 EXPERIMENTS

In this section, the use of our model to segment aerial
images is studied. The model was developed with libraries
Keras and TensorFlow, and the experiments were conducted
on a 2.6 GHz Intel Core i7 processor, RAM of 15GB and
Nvidia GeForce GTX 970M GPU. In the following experi-
ments, five aerial images are segmented, which are taken be-
tween 400 and 200 meters. The images, their size and their
ground truth are presented in Table 1. Regarding ground true,
roads are represented by brown colour, the vegetation zone is
coloured with green colour, the urban zone is shown by blue
colour and the agricultural zone is painted with yellow colour.
With respect to Image 3, the architecture of the houses is dif-
ferent with respect to those employed to train the model.

The test images contain city and suburban surfaces, con-
cerning the urban images present mixture textures for roofs,
such as concrete, steel, and wooden. Meanwhile, the sub-
urban environments are constituted by agricultural fields and
vegetation regions, mainly.

SEPTEMBER 12-16, 2022, DELFT, THE NETHERLANDS

4.1 Performance measures

In order to compute the accuracy of our model, three met-
rics are employed:

Precisi TP

recitsion = —_—

€C1S810 TP n Fp
TP

N = —

Reca TP+ FN

2
F-score = T I
—— +
Precision Recall

where TP (True Positive) is the number of pixels correctly
classified, FP (False Positive) is the number of pixels that ac-
cording to CNN belong to one class but they really belong
to another, and FN (False Negative) is the number of pixels
that according to CNN do not belong to a class but they actu-
ally do. For each measure, its value is a real number between
0 and 1 and a value close to 1 is preferred. Consequently,
Precision is the ratio of the correctly classified pixels to all
classified positive pixels, Recall is the ratio of the correctly
classified pixels to all actual positive pixels, and F'-score,
also called F'1-score or F measure, represents the balance
between Precision and Recall.

The aim of this paper is to segment RGB aerial im-
ages employing a CNN model. For this, we adopted three
schemes: pixel-based classification, superpixel-based classi-
fication and superregion-based classification, where the last
two experiments considered a set of pixels with colour simi-
larity.

For each experiment, the values of precision, recall, and
F-score corresponding to each class (road, agricultural zone,
urban zone, and vegetation zone) for Image 1 and 2 are com-
puted. Furthermore, the final performance values for all im-
ages are shown. In the second experiment, the number of
superpixels is calculated by means Eq. 2:

no_spr = width X height x 0.003 2)
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(b)
Figure 3: (a) Original image. (b) Image partitioning into superpixels. (c) Image partitioning into superregions.
Table 1: RGB aerial image test, their size and their ground truth. The colours employed in ground true are paths in brown,

green zone in green, urban zone in blue and agricultural zone in yellow.
Id / Size Image _ Ground Truth

Image 1
600600

Image 2
900x463

Image 3
900x 675

Image 4
1100x733

Image 5
1651 %850

B
3
il
2
L
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where width and height correspond to the size of each im-
age, the constant value, 0.003, was defined by a set of exper-
iments. Finally, the third experiment, a superregion is com-
posed of adjacent superpixels whose D, is less than 30 (see
section 3.4). The aim to group a superregion is to take advan-
tage of the colour similarity among a set of adjacent superpix-
els, and only a subset of a randomly chosen superpixels was
classified. For the last experiment, we consider two sizes of
subsets, which were a) a quarter, and b) the half of the total
superpixels of a superregion. To define the class of a super-
region, four counters were considered (one for each class),
which were initialized to zero and were increased according
to the class assigned by the CNN model. When the evalua-
tion of the subset of superpixels was finished, the class of the
superregion was related to the highest counter.

In Table 2, the number of elements classified by our
model are listed, where the number of elements is the high-
est for the first experiment, meanwhile the lowest number
corresponds to the superregion-based with a quarter of ele-
ments. Corresponding to superpixel-based and superregion-
based with half of the elements, there is no substantial saving
in the elements classified. Concerning to the time required (in
seconds) for preprocessing and to segment an aerial image is
presented in Table 3. Wherein the behaviour is similar to the
number of elements classifies, so that to high number of el-
ements, the time required is high (pixel-based classification)
meanwhile to lowest number of elements, the time required is
low (superregion-based classification evaluating a quarter of
superpixels). The difference between superpixel-based and
superregion-based classification is between 2 and 3 seconds.
On the other hand, the time required for grouping pixels in
superregions is greater than the time to segment from Image
3 to Image 5, their final time are lower than pixel-based clas-
sification.

4.2 Pixel-based classification

In the first experiment, the number of elements classified
was defined by the size of the image, that is, weight X height.
The performance measures for Image 1 and 2 for each class
are shown in Table 4. Although our model was trained with
another type of architecture of houses, it was able to classify
correctly more than the half of pixels of Image 2 for the ur-
ban zone (F-score 0.762618). On the other hand, the worst
F-score value was obtained for roads, 0.305186, which was
less than 0.802189 (Image 1). The previous result can be
generated because the patches corresponding to urban zone
and roads in some cases have similar textures, in particular in
those roof without waterproofing. The average performance
values are presented in the first and the second rows of Table
5.

In Table 5 the average performance measure for each im-
age are presented. According to the average of the precision
(0.729796), the recall (0.736097) and the F-score (0.728108)
values, our model is able to classify the most of pixels cor-
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rectly. However, it mistook when the altitude of the image
is near the 400 meters (Image 2) and the architecture of the
houses is different to those employed to train the CNN model
(Image 3).

4.3 Superpixel-based classification

In the second experiment, the number of elements clas-
sified was defined by Eq. 2. In Table 6, the performance
measures for Image 1 and 2 for each class are presented. Ac-
cording to the F-score values, the use of superpixels improves
the semantic segmentation for Image I, however the F-score
values for agricultural zone and urban zone are worst than
pixel-based classification approach (see Table 4). The aver-
age performance values (bold text) are presented in the first
and the second rows of Table 6.

The average performance measure for each image using
superpixel-based classification are exposed in Table 6. In
accordance with the performance values, this approach im-
proves the accuracy for Image 1, 3 and 4, due to the values
are higher than those reported in Table 4. Additionally, the
average values for this experiment has been improved.

4.4  Superregion-based classification

Due to the random selection of superpixels to define the
class for a superregion, in this experiment ten runs were exe-
cuted, therefore the statistical values (B: best, W: worst, Av:
average, Md: median and SD: standard deviation) for preci-
sion, recall and F-score measures are presented in Tables 8
and 9. In Tables 10 and 11 the median values for ten runs are
shown.

In Table 8, the statistical results for ten runs evaluating
half of superpixels for a superregion is presented. For Im-
age 1, the performance is better than the results to Image 2.
With respect to the statistical results for ten runs evaluating a
quarter of superpixels for a superregion (see Table 9), the per-
formance values are lower than the first, however this seman-
tic segmentation reduce the number of superpixels evaluated,
therefore this is more fast.

In Tables 10 and 11 the average median values are pre-
sented for half and a quarter of superpixels, respectively. Ac-
cording to these values, the evaluation of half of superpixels
reported the best performance measures, meanwhile the eval-
uation of quarter of superpixels had a similar behaviour than
superpixel-based classification.

4.5 Graphical comparison

In Figure 4 the output images corresponding 1 and 2
are presented. Concerning to output Image 1 (middle col-
umn), pixel-based classification presents the salt-and-paper
effect in the boundary of each region, mainly. Moreover,
the regions labeled by a number represent misclassified re-
gions because this are shadows. The regions surrounded by
red rectangle represent an area of image with low accuracy
of prediction and regions marked off pink rectangles mis-
classified some pixels. Superpixel-based classification and
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Table 2: Number of elements classified by our model for each experiment.

Image Pixel Superpixel lelzﬁzreg II(-)II;I ¢
Image 1 | 360000 1069 460 960
Image2 | 416700 1230 616 1062
Image 3 | 607500 1769 805 1581
Image 4 | 806300 2451 720 2020
Image 5 | 1403350 4127 1338 3722
Total | 3593850 10646 3939 9345

Table 3: Time in seconds required for preprocessing and to segment each image for each experiment.

Preprocessing Segment
Image Superpixel  Superregion Pixel Superpixel Qu:rltlé):rreglﬁzl f
Image 1 0.4971 3.1863 1448.0335 9.7861 3.8260  4.9720
Image 2 0.5756 3.8260 1656.0166 11.2636 5.0356  6.0649
Image 3 0.8152 7.4259 2678.378 17.5957 7.3329  9.1378
Image 4 1.0747 12.9124 3543.2988  26.6574 10.0399 12.9377
Image 5 1.8757 33.5103 5641.1023  55.4430  21.1628 26.9086

Table 4: Precision, Recall and F-score values for Image 1 and Image 2 using Pixel-based classification. Values in boldface
indicate the average value.
Image 1 Image 2
Precision Recall F-score | Precision Recall F-score

Roads | 0.889540 0.730460 0.802189 | 0.286645 0.32629  0.305186

AgrZ | 0912811 0.800453 0.852948 | 0.561734 0.576946 0.569239

UrbZ | 0.628760 0.766913  0.690999 | 0.694606 0.845396 0.762618

VegZ | 0.658451 0.882978 0.754362 | 0.84423  0.843212 0.843721

Avg. | 0.772390 0.795201 0.775124 | 0.596804 0.647961 0.620191

Table 5: Precision, Recall and F-score values for each image using Pixel-based classification. Values in boldface indicate the
average value.
Precision Recall F-score
Image 1 | 0.772390 0.795201 0.775124
Image 2 | 0.596804 0.647961 0.620191
Image3 | 0.66972 0.715261 0.684503
Image 4 | 0.831632 0.780933  0.80491
Image 5 | 0.778437 0.741131 0.755813
Avg. 0.729796 0.736097 0.728108

Table 6: Precision, Recall and F-score values for Image 1 and Image 2 using Superpixel-based classification. Values in boldface
indicate the average value.
Image 1 Image 2
Precision Recall F-score | Precision Recall F-score
Roads | 0914880 0.737076 0.816409 | 0.223892 0.250646 0.236515
AgrZ | 0913373 0.815941 0.861912 | 0.605537  0.55185  0.577449
UrbZ | 0.664871 0.838919 0.741823 | 0.673891 0.846333 0.750332
VegZ | 0.674830 0.881962 0.764616 | 0.845352 0.847048 0.846199
Avg. | 0.791988 0.818474 0.796190 | 0.587168 0.623969 0.602623
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Table 7: Precision, Recall and F-score values for each image using Superpixel-based classification. Values in boldface indicate

the average value.

Precision

Image 1 | 0.791988
Image 2 | 0.587168
Image 3 | 0.674413
Image 4 | 0.834022
Image 5 | 0.775443
Avg. 0.732606

Recall F-score

0.818474 0.796190
0.623969 0.602623
0.719813 0.688764
0.785795 0.808782
0.739259  0.753459
0.737462 0.729963

Table 8: Statistical results (B:best, W:worst, Av:average, Md: median and SD: standard deviation) for ten test for Image 1 and
Image 2 using Superregion-based classification and evaluating half of the superpixels belonging to a superregion. Values in

boldface represent average values.

Image 1 Image 2
Precision Recall F-score | Precision Recall F-score
B 0.799210 0.821027 0.800211 | 0.594172 0.626659 0.603561
W | 0.780585 0.799252 0.781955 | 0.558583 0.595353 0.575089
Av | 0.789611 0.812634 0.791926 | 0.580797 0.614114 0.593997
Md 0.79113  0.81579  0.79400 0.58189 0.616448  0.59545
SD | 0.006109 0.007718 0.006293 | 0.010209 0.011323 0.009934

Table 9: Statistical results (B:best, W:worst, Av:average, Md: median and SD: standard deviation) for ten runs for Image 1 and
Image 2 using Superregion-based classification and evaluating a quarter of superpixels belonging to a superregion. Values in

boldface indicate average values.

Image 1 Image 2
Precision Recall F-score Precision  Recall F-score
B 0.777467 0.812371 0.782793 0.62784 0.71738 0.66644
W | 0.734272 0.755387 0.724421 0.54104 0.58519 0.55893
Av | 0.761531 0.791289 0.762080 0.57714  0.61632 0.59320
Md 0.76166 0.79220 0.76482 0.57277 0.60958 0.58964
SD | 0.013380 0.016181 0.016911 0.02450 0.03704 0.02854

Table 10: Precision, Recall and F-score values for each image using Superregion-based classification. Values in boldface

indicate the average value.

Precision

Image 1 0.79113
Image2 | 0.58189
Image 3 | 0.684791
Image 4 | 0.852012
Image 5 | 0.822926
Avg. 0.746549

superregion-based classification improved the misclassifica-
tion into pink areas. With respect to regions labeled with the
number 1 and 2 were improved. Finally those regions de-
limited by red rectangle preserves the behavior, due to any
approach and our CNN model was not able to improve the
misclassification. With respect to Image 2 (right column), the
CNN model misclassified the roads, which were labeled as
urban region. Furthermore, this problems happen in less de-
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Recall F-score
0.81579 0.79400
0.616448 0.59545
0.753373  0.709578
0.777926 0.812681
0.788309 0.804562
0.750369 0.743254

gree with agricultural and vegetation zone. In these images,
the plantations grow land share features with vegetation area,
for this reason is classified as vegetation area.

4.6 Discussion

The accuracy performance of our CNN model approach
can segment the most of image correctly, the average F-
score for each approach classification is 0.732 approximately.
This is better than [10], which is 55.52%, on the experiment
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Table 11: Precision, Recall and F-score values for each image using Superregion-based classification. Values in boldface

indicate the average value.

Precision

Image 1 0.76166
Image2 | 0.57277
Image 3 | 0.664193
Image 4 | 0.845415
Image 5 | 0.812956
Avg. 0.731398

where RGB satellite images were employed. Furthermore,
this value (0.732) is greater than the overall accuracy (60-70
percent) reported by [8]. The use of superpixels allow defin-
ing more precisely the borders between classes. With respect
the use of superregions, this reduce the time required to seg-
ment an image, but the final semantic segmentation depend
on the randomly chosen superpixels. Two factors can affect
the performance of the CNN model, which are the height of
the image and the shadows presented, due to several elements
are misclassified.

5 CONCLUSIONS

The focus of this work lies on testing the performance of
a CNN model trained with RGB aerial images, that is without
additional information such as DMS or NDVI. Moreover, the
altitude of the images is closer than satellite images, that is,
images taken from 100-300 meters above the ground, which
represent a challenging task because these images contain
more details than satellite images. Due to its high pixel res-
olution, the computing effort to process an image is reduced,
in the number of elements to be classified, by using super-
regions or superpixels. According to the results, our model
can predict most of the pixels correctly. Note that our pixel-
based approach produces the salt-and-pepper effect, which is
decreased with the use of superpixels and superregions. Al-
though the accuracy is similar in the three approaches pre-
sented in this work, the use of superpixels and superregions
reduce significantly the required time to segment an image.

In future work, we aim at optimising our proposed meth-
ods to enable on-line processing. Our goal is to carry out the
classification during operation flight, in particular, by using
small drones.
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Figure 4: Output for each experiment: Px - pixel-based classification, Spx - superpixel-based classification, Srg 1/4-
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