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Abstract

Drones need to detect and localize each
other if they are to collaborate in multi-robot
teams or swarms. In this paper, a method
based on dense optical flow (OF) is devel-
oped that detects dynamic objects. This
is achieved by comparing the flow vectors
with the direction to the Focus of Expansion
(FoE) in the image plane. A simulation in
AirSim is developed to validate this approach
and to create a data set for motion-based
dynamic object detection. This simulation
includes ground-truth FoE, depth, OF and
IMU data. The results show that our method
performs well if the OF vector’s magnitude is
large enough and its angle is sufficiently dif-
ferent from those of static world points. We
expect that the presented method will serve
as a useful baseline for deep learning meth-
ods using dense optical flow as input.

1 Introduction

Nowadays, Micro Air Vehicles (MAVs) are becom-
ing more and more common. Reasons for their popular-
ity include their high maneuverability, vertical take-off
capabilities and ability to perform tasks that humans
cannot endure [1]. To further enhance the capabilities of
MAVs and overcome the individual limitations of MAVs,
swarms of MAVs were introduced. To enable the proper
functioning of the swarm, sensing of the environment
and the other MAVs is paramount. In particular, the
relative locations of MAVs inside the swarm are needed
for collision avoidance and swarm coordination [2]. The
most basic and robust method of obtaining the loca-
tions of other MAVs, is by exchanging positions obtained
from Global Navigation Satellite System (GNSS) signals.
However, GNSS signals are not always available, for ex-
ample when the signals are blocked, spoofed, jammed or
distorted by multipath effects.
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Computer vision is a promising alternative, because
cameras are small/lightweight and provide a vast amount
of information [2]. There are two main types of ap-
proaches solving the relative localization problem. The
first is to create a shared map of the environment and
have the MAVs exchange their location in this map. Si-
multaneous Localization and Mapping (SLAM) is a wide
field of research that targets the first type [3]. The sec-
ond type of relative localization focuses on the detection
of the MAVs themselves. This process is often simplified
by the use of physical devices called markers. These can
be either infrared (see the work of Walter et al. [4]) or
ultraviolet (see the work of Roberts et al. [5]) LEDs,
or colored objects. Markers require specific hardware
changes to the device, which may not always be desir-
able. Markerless detection represents a more difficult
problem. Some methods quite successfully rely on stereo
vision [6, 7]. Of course, for resource minimization, meth-
ods using a single camera are of interest. Currently, the
main approach with a single camera is to employ deep
neural networks that detect other MAVs in a single im-
age [8, 9]. These neural networks show promising results,
but it is not yet clear how well the trained networks can
deal with cluttered backgrounds. Moreover, if the drone
appearance or environment changes substantially with
respect to the training set, retraining may be necessary.

In order to obtain a solution that does not depend on
stereo vision or markers and that is more generic com-
pared to appearance-based methods, it may be useful
to use optical flow. Optical flow has multiple advan-
tages over its alternative vision-based methods. Firstly,
MAVs will possibly be detected in situations where they
are barely distinguishable for the human eye due to back-
ground clutter. Additionally, optical flow based methods
are less dependent on shapes and appearances of MAVs
compared to other methods. Finally, optical flow can
offer a larger maximum detection range compared to ac-
tive markers.

Some papers incorporate motion into their
appearance-based neural network, the so-called hy-
brid methods, such as the work by Yoshihashi et al.
[10], where the temporal information improves the
performance of the object detector in situations where
there is little contrast between the background and
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foreground. Nonetheless, it is a ground-based method
and uses static cameras, which is less challenging
compared to the situation where the observer is moving.

To our knowledge, the research done by Li et al. [11]
is the only work using purely optical flow without ar-
tificial neural networks for the detection of MAVs from
a moving observer in the air. With their method, they
were able to detect other MAVs, even when they were
barely visible because of their size and the cluttered
background. It has approximately the same detection
accuracy (87%) as appearance-based neural networks ap-
plied to MAV detection (maximum accuracy of approx-
imately 90%) [8, 12]. However, it is based on some as-
sumptions. The method of Li et al. is based on a combi-
nation of background subtraction and Lucas-Kanade op-
tical flow. The background subtraction process assumes
that the tracked objects have a very different motion
compared to a distant background, of which the motion
is modelled with a homography transformation.

This paper focuses on motion-based object detection
to detect MAVs from onboard a moving MAV in more
general, 3D environments. Specifically, we present an
optical-flow-based algorithm to detect dynamic objects
in video feeds from a moving camera. This is done by
comparing the flow vectors with the direction to the Fo-
cus of Expansion (FoE) in the image plane. This method
is applied to simulations run in AirSim [13]. These simu-
lations output ground-truth FoE, depth, optical flow and
IMU data, which are valuable for the development and
validation of motion-based object detection techniques.
The proposed algorithm’s image processing pipeline is
mostly ‘traditional’, exploiting knowledge on the prop-
erties of the (derotated) optical flow field. We believe
that eventually purely deep learning motion-based meth-
ods will achieve higher performance, but expect that the
presented, completely comprehensible pipeline will be a
useful benchmark method. Moreover, the results of our
method show some of the challenges that will also be
faced by deep learning methods, including difficult de-
tection for small optical flow, flow directions similar to
those of static world points, and the fact that other dy-
namic objects are not differentiated from MAVs in our
current pipeline. On this last point, in this paper all
moving objects are assumed to be MAVs, except for the
clouds, which we detect with a deep neural network. To
output only MAVs in an environment with other types
of dynamic objects, the pipeline has to be extended to
differentiate MAVs from other moving objects.

2 Detection method

The object detection method is illustrated in figure 2.
First, the optical flow (OF) field is derotated using the
rotation rates of the IMU. The location of the FoE is cal-
culated using the derotated flow. FoE is the point where

the translational flow is 0. This is the motion direction
of the camera. All static points in the environment move
away from the FoE. Points that are closer to the cam-
era in terms of depth, have larger flow. Points that are
further away from the FoE have larger flow as well. Dy-
namic objects may move in other directions. Then the
associated flow vectors do not point away from the FoE.
Unfortunately, they may move away from the FoE lead-
ing to flow that is similar to static objects. The angle
κ between the vector pointing towards the FoE and the
flow vector is calculated, as illustrated in figure 1. The
larger κ, the more likely a pixel belongs to an object
moving relative to the camera. In the following subsec-
tions, the individual steps of the method are explained
in detail. All code used to reproduce this method and
its results can be found publicly online1.

Figure 1: Illustration of κ for a camera moving forward.
The κ angle denotes the difference between angle of the
vector pointing at the FoE and the angle of the flow
vector. For pixels of static objects, κ is approximately
zero. For dynamic pixels, κ is non-zero, except when the
object moves away from the FoE.

2.1 Calculating optical flow

As the object detection method relies on optical flow,
an accurate dense optical flow estimator must be used.
In figure 3, four neural networks estimating optical flow
are compared. They illustrate that on the MIDGARD
[14] dataset, LiteFlowNet [15] and Maskflownet [16] per-
form worse compared to RAFT [17] and FlowNet2 [18].
For all networks, the default weights were used. By vi-
sual inspection, FlowNet2 appears to perform best for
small moving objects. Therefore, FlowNet2 is used for
the results in the rest of this paper.

2.2 Derotation

Derotation has to be applied to the optical flow field
to estimate an accurate FoE. The derotation technique in
this paper is based on the work of Dinaux et al. [19]. The
derotation vector per pixel coordinate can be calculated

1https://github.com/evroon/mav-detection
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Video

Calculate OF

Derotate OF

Calculate FoE

Calculate �

Thresholding

Sky segmentation

Figure 2: The proposed image processing pipeline.

from equation 1 describing optical flow (u, v) for a world
point i in terms of ego-motion (U , V , W being the body
velocities in X, Y , and Z direction and A, B, and C the
rotations around those same axes) and the coordinates
of the observed point (Xi, Yi, Zi, with image coordinates
xi = Xi

Zi
and yi = Yi

Zi
), cf. [20].

ui = − U
Zi

+ xi
W

Zi
+Axiyi −Bx2i −B + Cyi = uT + uR

vi = − V
Zi

+ yi
W

Zi
− Cxi +A+Ay2i −Bxyi = vT + vR

(1)
The optical flow can be split into two factors: the ro-
tational (uR, vR) and translational (uT , vT ) parts. The
rotational part is only dependent on the pixel coordinate
and rotational rates of the camera (A, B, C). Therefore,
the structure of the scene (in particular, depth) has no
influence on the rotational part of optical flow. The In-

(a) FlowNet2. (b) RAFT.

(c) Maskflownet. (d) Liteflownet.

Figure 3: Different neural networks estimating optical
flow compared using the MIDGARD [14] dataset.

ertial Measurement Unit (IMU) of an MAV can be used
to measure the rotational rate.

2.3 Calculation of the FoE

The Focus of Expansion (FoE) is the point where all
flow vectors point towards or originate from when an
observer moves through an environment. This point can
lie outside the camera’s Field of View, but in this paper
it is assumed to lie in the image plane. Nonetheless, the
method does work for FoEs outside the Field of View.

The FoE is calculated as presented in figure 4. First,
two optical flow vectors are randomly sampled. The in-
tersection of the two vectors is calculated. This process
is repeated N times, where N equals 1000. A RANSAC
scheme [21] is applied to the set of intersections to make
it more robust against outliers. The RANSAC method
calculates a location in the image where most intersec-
tions have a distance to this point that is lower than a
certain threshold. The resulting location is taken as the
location of the FoE.

OF

N times

Calculate

Intersection
FoE

Randomly sample

flow vector

Randomly sample

flow vector

RANSAC

Figure 4: FoE method flowchart.

2.4 Sky segmentation

In outdoor environments, clouds in the sky can also
move independently from the camera and generate sub-
stantial flow. Therefore, we segment clouds and sky by
appearance and mask them out from the result. To this
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end, we use HRNet-OCR [22] with the default weights
trained on the Cityscapes dataset [23]. By comparing the
depth buffer from AirSim with the segmentation mask
for the sky, one can validate the performance of the seg-
mentation. Because of the visual simplicity of the envi-
ronment in AirSim, the TPR of the sky segmentation is
at least 99.5% and the FPR is less than 0.1%. The sky
segmentation is performed at half the resolution of the
captured images from AirSim, to reduce memory and
computational effort of the GPU.

2.5 Thresholding and detection output

The output of the algorithm is based on the angle κ
as illustrated in figure 1. The larger κ, the more likely it
is that that pixel belongs to an object moving relative to
the observer. Pixels with a κ angle larger than 15° are
marked as moving objects. Out of these marked pixels,
flow vectors with a magnitude smaller than 1 pixel/frame
are discarded, because the angle of such vectors is sensi-
tive to noise. However, the threshold on κ can be more
substantiated by analyzing how the error in the angle of
the flow vectors behaves for various magnitudes of flow.
One would expect that the error of the estimated OF di-
rection increases for decreasing OF magnitude. This is
the case, as shown in figure 5. For 100 FlowNet2 images,
the radial error with respect to the ground truth OF data
is plotted for all pixels (except the sky) versus the mag-
nitude of the OF. The white line of 0.25± (0.5 + 8

|OF| ) is

fitted manually. The flow magnitude and value of κ that
lie in the area between the upper and lower parts of this
function, are discarded. Additionally, flow vectors with
a magnitude lower than 0.5 pixels/frame are removed.
The performance difference when using this ‘dynamic’
method of thresholding depending on the flow’s magni-
tude is presented in the results section (see figure 10).

3 AirSim

Simulations in AirSim [13] are carried out for var-
ious reasons. Most importantly, simulations can pro-
vide ground truth optical flow and FoE data that cannot
be retrieved in real life. The ground truth optical flow
makes it easier to develop a motion-based object detec-
tor, because the ground truth optical flow has no noise
or artifacts. Simulations also enable validation of the
algorithm on a low level, by for example comparing the
FoE estimation with the ground truth FoE. Specifically,
AirSim is chosen because of its realistic rendering and
support for MAVs, including various simulated sensors.

3.1 Environments

One environment is used in AirSim: Landscape-
Mountains2. LandscapeMountains is a freely available

2https://www.unrealengine.com/marketplace/en-US/

product/landscape-mountains
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Figure 5: Histogram of the radial error in FlowNet2
(compared to the ground truth OF) versus the magni-
tude of the OF. Averaged over 100 OF fields.

project from Epic Games, the publisher of Unreal En-
gine. It was chosen because of its realism, while at the
same time being not too demanding. To diminish the
influence of visual effects on the estimation of optical
flow and the performance of the object detector, most
of these influences were removed from the simulation.
All moving actors (gates to fly through, birds) are made
invisible. The clouds are translated vertically by 500m
such that they appear above the terrain. Additionally,
to avoid reflections, the ice is replaced by a grass ma-
terial and the fog is disabled. This limits the method
to a set of real-world environments, but in a large range
of applications these assumptions can still be considered
valid. The only visible visual effect is the shadow of the
terrain and MAVs.

3.2 MAV control

The MAVs are controlled using Python scripts. A
loop is run for each simulation configuration, in which
the MAVs are controlled and the data from AirSim is
captured. First, the control inputs are calculated for the
MAV to detect and the observing MAV. The time is ad-
vanced for 43ms (23Hz) and lastly, the data from AirSim
is collected. The simulation is paused while obtaining
the data of AirSim, such that the IMU data and camera
frames are taken at the same timestep. The MAVs follow
their flight path with a maximum deviation of 0.14m.

Two types of sequences are recorded. Firstly, colli-
sion courses, where the MAVs fly towards the same point
at the same time at 4m/s. Secondly, sideways trajecto-
ries in which one MAV moves sideways in front of the
observing MAV, which moves forwards at 4m/s.
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3.3 Data acquisition

There are three visual outputs of the simulations: the
RGB camera image, the depth in the camera image and
the segmentation mask of the MAV inside the images.
These three outputs are taken from the same camera, so
all use the same projections. These outputs are shown
in figures 6a to 6c. The camera image and segmentation
mask are saved as PNG files, while the depth image is
saved in AirSim’s pfm format, enabling the use of floats.
Additionally, sensor data is stored of both MAVs. This
includes IMU and GPS data, but also contains collision
data, the control inputs, FoE coordinates and camera
properties. The ground truth FoE is calculated using
the view projection matrix of the observer’s camera and
the observer’s velocity vector. The images are collected
at a resolution of 1920x1024 pixels with a framerate of
approximately 23Hz. The field of view of the camera is
90° and there is no distortion or noise in the image.

(a) RGB camera output. (b) G.t. segmentation mask.

(c) Depth output. (d) Ground truth optical flow.

Figure 6: The different ground truth (g.t.) output
frames captured in AirSim (a-c) and the g.t. optical
flow (d) calculated from the depth output.

3.4 Ground truth optical flow

AirSim has no built-in method of calculating dense
ground truth optical flow. However, it can be calculated
from the depth image and the viewprojection matrix of
the camera. This method is based on the work of Mayer
et al. [24]. A visualization of the ground truth optical
flow is shown in figure 6d and the steps of the method
are shown in figure 7. Using the depth image, one can
deduce the 3D world positions of all projected pixels by
multiplying the inverse of the viewprojection matrix with
the homogeneous pixel coordinates. This will result in
a point cloud. From these 3D points, one can calculate
their 3D positions one timestep ago. Finally, by apply-
ing the viewprojection matrix of the previous frame to
the 3D points, one obtains the 2D coordinates of the
original pixels one timestep ago. The difference between

the original and the reprojected coordinates yields the
ground truth OF. The optical flow calculation has some
limitations. For example, the flow of visual effects is not
taken into account. This includes shadows, animations
of vegetation, reflections/refractions etc.

Depth buffer Project to

3D point

cloud

Add MAV 

velocity to

MAV's points
viewprojection

matrix

viewprojection matrix

of previous frame Reproject

3D points to 

2D screen Subtract

Original 2D depth

coordinates

g.t. OF

Figure 7: Flowchart for calculating the ground truth OF.

3.5 IMU

The IMU is modeled using the default IMU in Air-
Lib, the library implementing MAV dynamics and sen-
sors inside AirSim. The biases and random walks of
the gyroscope and accelerometer are set to zero, leaving
IMU noise to future work. The IMU data is used for OF
derotation, cf. subsection 2.2.

3.6 Overview of parameters

An overview of all parameters for the simulations and
the object detection method is shown in table 1.

Table 1: Parameters of the simulation and method.

Parameter Value
Resolution 1920x1024 px
Framerate 23 Hz
Field of View 90°
Observing MAV speed 4m/s
Fixed OF magnitude threshold 1 px/frame
Fixed OF radial threshold 15°
Number of collision course sequences 6
Number of sideways sequences 9
Number of FoE validation sequences 3

4 Results

This section will present the results in terms of per-
formance on the FoE estimation and object detection for
the simulations in AirSim.

4.1 AirSim

Because the accuracy of the object detection depends
on the quality of the FoE estimation, the error between
the estimated and ground-truth FoE is analyzed for dif-
ferent situations. A histogram of the FoE errors for one
sequence is shown in figure 8. This is recorded for an
MAV moving (without rotation) at 4 m/s with an FoE
20 pixels from the left and right edges of the image and
an FoE in the center. Two characteristics are notable.
For a forward moving MAV, the estimated FoE is on av-
erage slightly offset upwards (by 7.2 pixels) and to the
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right (by 2.8 pixels), but this is small compared to the
total resolution of the image and therefore negligible for
the majority of all pixels. Moreover, the location of the
FoE affects the mean of the x distribution slightly, as the
estimated FoE tends towards the center.
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Figure 8: Histograms showing the error (in x and y di-
rection) between the g.t. FoE and estimated FoE, for a
FoE in the far left (at x = 20 px), center (at x = 960
px) and far right (at x = 1900 px) part of the image.
The legend includes the means and standard deviations
of the distributions.

The performance of the object detection method is
determined by the True Positive Rate (TPR) and the
False Positive Rate (FPR). TPR is the percentage of
pixels from dynamic objects that are identified as dy-
namic object pixels. FPR is the percentage of pixels
from static objects that are identified as dynamic object
pixels. Ideally, one would have a large TPR for a very
small FPR. In this case, the FPR is always relatively
small, but the TPR varies considerably. This is shown
in figure 9, where the TPR is plotted against κ for var-
ious speeds of the MAV to detect. As can be seen, the
object detector is less accurate for slower moving objects.

The relation between the TPR/FPR and the mag-
nitude of the OF of the detected object is presented in
figure 10). The average TPR for κ between 180° and
90° is taken as measure of performance. It is clear that
lower OF magnitudes decrease the TPR, but the FPR is
unaffected. As hypothesized in section 2.5, a threshold
that is dependent on the magnitude of the OF vector (a
dynamic threshold) indeed results in a higher TPR for
slower moving objects. However, this also increases the
FPR to 0.5% - 2.0%, which could be considered accept-
able depending on the application. In situations where
the object to detect has a large OF vector, a fixed thresh-
old would be more suitable.
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Figure 9: TPR vs κ, where MAV to detect moves from
left to right with four different speeds (thus four magni-
tudes of OF) at a relative distance of 5m, decreasing κ
from 180° to 0°. A dynamic threshold is applied.

Additionally, lower values of κ degrade the perfor-
mance of the object detector. This is illustrated in fig-
ure 11, in which the angle κ is visualized. A higher inten-
sity in the image indicates a higher value of κ, meaning
that the flow vector is not pointing towards the FoE.
Thus, such a flow vector does not only correspond to the
flow created by the translation of the camera, but also
to the motion of the object belonging to that pixel. In
figure 11a, κ is large and therefore the MAV is easy to
detect. In figure 11b, the MAV is more challenging to
detect and in figure 11c, the method is unable to detect
the MAV as κ is close to zero.

To test the method in more complex circumstances,
data was recorded for a collision course where the flight
paths of the MAVs cross at an angle of 75°, shown in
figure 11d. In this case, the MAV to detect remains
at the same location in the image during the sequence,
but becomes closer and therefore larger in the image.
It can be seen that the right part has a κ angle close
to zero. However, using a dynamic threshold, the TPR
is still high (0.98) at the cost of a relatively high FPR
(2.8 ·10−2). Unfortunately, this is only the case for short
distances. For a collision course, the flow magnitude at
large distances is too small to properly estimate κ.

5 Discussion and Conclusion

We have introduced an optical-flow-based algorithm
for detecting other moving objects, where our interest
lies in the detection of other drones. The object detec-
tion method in this paper proves to work successfully if
the angle of the optical flow vector of the object to de-
tect is sufficiently different from the background flow, as

NOVEMBER 17th TO 19th 2021, PUEBLA, MÉXICO 47

http://www.imavs.org/papers/2021/4.pdf



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2021-4 12th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

0 1 2 3 4 5 6
OF magnitude [px/frame]

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

TPR, dynamic TPR, fixed FPR, dynamic FPR, fixed

0.000

0.005

0.010

0.015

0.020

0.025

0.030

FP
R

Figure 10: TPR and FPR vs the magnitude of the OF of
the MAV to detect for κ > 90° using a fixed and dynamic
threshold.

(a) κ ≈ 180°. TPR: 0.97,
FPR: 6.2 · 10−3.

(b) κ ≈ 90°. TPR: 0.95,
FPR: 4.3 · 10−3.

(c) κ ≈ 0°. TPR: 0.93,
FPR: 1.5 · 10−2.

(d) CC. TPR: 0.98,
FPR: 2.8 · 10−2.

180°

0°

90°

Figure 11: κ displayed for various situations. In (a) to
(c), the MAV moves sideways from left to right. In (d),
the observer and target are on a collision course (CC)
of 75°. The white dot represents the FoE. A dynamic
threshold is applied to calculate the TPR and FPR.

illustrated in figure 11. This means that objects moving
towards the FoE, which are crossing the flight path of
the observer and are thus considered dangerous, can be
successfully detected. Although the method is based on
assumptions of the OF, it does not assume a specific ap-
pearance of the moving object, which makes it suitable
for a wide range of applications.

The method in this paper has the following limita-
tions. Most importantly, if the observer is stationary
or the dynamic object has no optical flow, detection
by means of flow direction will not succeed. Therefore,
MAVs on head-on collision courses cannot be detected
in this way because they have the same flow field as
the surroundings. A solution would be to utilize the
divergence of the OF field to detect head-on colliding
objects (just as for static objects). Another limitation is
the computational effort of our current implementation,
which is large due to the remaining deep network parts
of the pipeline. For example, FlowNet2 runs on approx-
imately 1.7 Hz on an RTX 2070 for 1920x1024 images.
This would be too slow to use in real-time on MAVs
themselves. Therefore, the resolution has to be reduced
and/or another optical flow method must be used on-
board.
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