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ABSTRACT

Self localization in GNSS denied environments
is a key requirement for Micro Aerial Vehicle
(MAV) applications. Indoor environments have
an abundant presence of high-level semantic in-
formation that can be exploited to improve the
environment understanding, as well as their pose
estimation. Given that MAVs cannot carry much
weight, they can only be equipped with light
sensors, such as RGB-D cameras, and process-
ing units with limited computational resources.
In this paper, we tackle the problem of real-
time visual semantic SLAM running on-board
lightweight aerial robotic platforms by using the
OAK-D RGB-D sensor. The proposed algo-
rithm is divided into two parts. In the first part,
the robot state is propagated using VO/VIO es-
timation by using low-level features of the en-
vironment. Then, to counterpart the accumu-
lated drift of such low level algorithms, we as-
sociate high-level sensed objects with previously
mapped landmarks. Thus, the second part of the
algorithm corrects the estimation and builds a
sparse semantic map of the landmarks extracted
from the detections.

1 INTRODUCTION

Our aim is to provide MAV the ability to navigate around
narrow constrained spaces during disasters . This kind of
vehicles cannot carry a lot of payload, so they can only be
equipped with light-weight sensors, such as RGB or RGB-D
cameras (OAK-D), and processing units with limited compu-
tational resources. To operate in a truly autonomous way,
accurate localization and meaningful mapping results are
needed, which is indeed a challenging problem, especially
regarding robustness.

Simultaneous Localization and Mapping (SLAM) using
visual sensors may be feature-based (sparse, semi-dense or
dense) or intensity-based. Most semi-dense SLAM tech-
niques, like [1, 2, 3], rely on low-level characteristic features
of the environment such as points, lines, and planes. This
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kind of approaches typically deteriorate in performance in the
presence of illumination changes and repetitive patterns. On
the other hand, other state of the art SLAM based techniques,
such as [4, 5], focus on dense 3D mapping of the environ-
ment, hence requiring high-end CPU and GPU hardware to
achieve real-time operation, which is a clear limitation on
board an aerial robot with low computational capabilities.

Recent improvements in computer vision algorithms have
made it possible to achieve object-based detectors running
real-time on lower end CPUs or GPUs. Combining such de-
tectors with Visual Odometry (VO)/ Visual Inertial Odometry
(VIO) systems depending on low-level features can improve
the accuracy of the data associations and provide more ro-
bust loop closure without high computational requirements,
as shown in [6, 7]. Although adding semantic information to
SLAM systems undoubtedly provides additional knowledge,
extracting the accurate 3D position of semantic objects is a
challenging problem with important implications, since er-
rors in the position estimation can induce errors in the data
association and mapping of such semantic objects.

The inaccuracies in estimating the 3D positions of seman-
tic objects are mainly due to two factors: Uneven and com-
plex 3D structures of different instances of semantic object
classes. Errors in the semantic object detections, i.e, bound-
ing boxes provided by the object, detectors do not fit accu-
rately around the detected object.

Most indoor scenarios include some static key objects
(screens, tables, windows, etc.) that can be used as reference
landmarks. Hence, to overcome the above-mentioned limi-
tations and to achieve a robust and lightweight SLAM algo-
rithm, we use a semantic SLAM approach using key objects
within the semantic detections.

In this paper, we present a Semantic SLAM algorithm that
can be divided into two parts. In the first part, the robot state
is propagated using a VO/VIO estimate. Low-level features
from the environment are used at this stage for the propa-
gation of the robot state. Due to the inaccuracies in low-level
feature detection and matching, as well as to errors and biases
in the IMU measurements (for VIO systems), the VO/VIO es-
timations of the robot state often accumulate errors over time.
We address this by associating the high-level detected objects
with the previously mapped key objects.

To estimate the position of the key detections, we inte-
grate state of the art detectors on the OAK-D, using its neural
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inference feature. Being able to perform the detection of both
cameras allows us to fuse the output information and gather
3D information. Hence, the second part of the algorithm cor-
rects the estimation and builds a sparse semantic map of the
key objects extracted from the detections. The created se-
mantic map consists of centroids along with their class labels
and type, which may be augmented by new detections of the
semantic objects.

2 RELATED WORK

The research community has already given a great interest
in visual SLAM based algorithms applied to robotics. In this
section, we are going to review some of the latest and most
significant visual SLAM related literature.

Salas-Moreno et al. [8] presented a pioneer work in this
direction. A real-time semantic SLAM called SLAM++. This
type of SLAM was developed for a RGB-D sensor and it ex-
tracts estimates of poses from a 3D camera pose track using
the ICP algorithm. It then integrates the relative 3D poses es-
timated from semantic objects in order to jointly optimize all
the poses.

Parkhiya et al [9] Gives the semantic SLAM a monocular
approach. With the use of a deep network to learn features of
2D objects to later, match it with a 3D CAD model to estimate
the relative pose of the semantic object.

McCormac et al. [10] develops an object-level SLAM
system using RGB-D cameras, segmenting Truncated Signed
Distance Function (TSDF) representations of the object with
help of the Mask-RCNN object detector. This detected ob-
jects are used to complete the SLAM algorithm: tracking,
re-location and loop closure.

Murali et al. [11] presents an approach which integrates
semantic information into a visual SLAM system. The se-
mantic information is used for detecting the inliers/outliers of
the system in order to achieve robust performance in the pres-
ence of dynamic obstacles. A pre-trained deep learning based
object detector provides the semantic information of the ob-
jects.

Grinvald et al. [12] propose a semantic mapping sys-
tem based on a pose acquired from a geometric VIO sensor.
This method utilizes geometric planar segmentation of a point
cloud data and then uses semantic detections for the data as-
sociation step and to further refine the segmentation.

One of the most recent publications comes from Yang et
al. [13]. He proposed a unified SLAM framework includ-
ing high-level object detection and planes based on monoc-
ular information. Other innovative approaches have focused
on point-wise semantic labeling for 3D Lidar data within the
SLAM framework [14].

3 SYSTEM APPROACH

3.1 Sensor integration

The OAK-D camera has been used as the main sensor
for this approach. It integrates a color camera, which allows
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a maximum resolution of 12MP and a maximum frame rate
of 60. In addition, it incorporates stereo camera pair, with a
maximum resolution of 1MP each, at a maximum frequency
of 120 frames per second. It also integrates an inertial mea-
surement unit (IMU). It is capable of providing spatial infor-
mation using the three cameras in different ways. The first
one, making use of Monocular Neural Inference fused with
Stereo Depth, the neural network is run on a single camera
(left, right or color camera) and fused with disparity depth
information. The second one, using stereo neural inference,
the neural network is run in parallel on both the left and right
stereo cameras to produce 3D position data.

One of the main characteristics of the camera is that it
performs neural network inference. Using Intel’s OpenVino
compiler, pre-trained models can be loaded into it. As men-
tioned before, the camera obtains three-dimensional informa-
tion from objects, which allows the fusion of an object detec-
tor neural network with it, providing three-dimensional data
of the detected objects. The device not only can run neural
networks, but also allows its post-processing, which makes it
more flexible and interesting for integration with small robots
such as drones, which typically lack high computing power.

Regarding calibration, the OAK-D offers information on
the intrinsic and extrinsic parameters of each camera. How-
ever, the IMU intrinsic parameters calibration has been cal-
culated using the C++ version of Allan Variance Tool pack-
age [15], with which the gyroscope and accelerometer white
noise and bias instability are calculated. Thanks to this, we
can obtain the IMU covariance matrices needed for the VIO
algorithm.

3.2 Object detection

Object detection algorithms locate the presence of spe-
cific objects in an image with a bounding box. This will al-
low us later to extract the semantic information along with
the spatial coordinates of the detected item. Even though the
semantic object detection can be performed using any object
detector, it is preferred to be lightweight and fast in this case,
since the computing will be run directly on the camera. This
is why it makes sense to use OpenVINO [16] in combination
with OAK-D, which allows to load deep learning models into
a format that can run with high efficiency on Intel hardware.

A pre-trained MobileNetv2SSD [17] neural network has
been used, it has been chosen due to its good ratio between ef-
fectiveness and speed. After being compiled in OpenVINO,
it allows the camera to carry out both its inference and its
post-processing, thus obtaining the bounding box of the de-
tected object, together with its probability. This network has
been trained in COCO [18] , allowing the detection of 21
different labels corresponding to common objects (vehicles,
people, animals and domestic items). When the inference is
made on the color camera, the OAK-D provide the depth of
the object using the stereo pair. Furthermore, as will be ex-
plained later, inference has also been implemented directly
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on the stereo pair, achieving after post-processing the three-
dimensional position of the object.

3.3 Object position estimation

In order to improve the estimated pose of the robot com-
puted through odometry, information from the environment
needs to be extracted. We seek to detect common static ob-
jects in the robot’s surroundings, obtaining not only what type
of object it is, but also its position. Then, these data can be
used in semantic SLAM algorithms in order to achieve our
purpose.

In this paper, two different approaches are implemented
to address this issue. In the first one, OAK-D high resolution
color camera is used. As explained before, this method uses
the MobileNet object detector to identify different objects in
the RGB images. Once the item is localized, the depth map
provided by the device can be used to obtain the center spa-
tial coordinates of the bounding box, which ideally matches
with the center of the object. This solution has two major
problems. On the one hand, it is not capable of calculating
distances less than 0.7 m and, on the other hand, in objects
with holes, even if the detection works properly, the center
of the bounding box may coincide with one of these holes,
causing the depth estimation to fail, obtaining the depth of
the background and not of the detected object. In figure 1 an
example of a detected object using this configuration can be
seen.

Figure 1: RGB object position estimation approach.

The second approach takes advantage of the stereo pair
of the device. First, the images are rectified and, as ex-
posed before, objects are detected in both mono cameras at
the same time running two MobileNet neural networks in par-
allel. Once the bounding boxes of each object have been ob-
tained in each one of the images, the position of the object
is computed assuming that both detections are the same, i.e.,
the detector obtains the same result in both images, and do-
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ing a triangulation implementing the stereo pair 3D model.
This assumption can be made because the distance between
both cameras (baseline) is very small (75 mm), which implies
that one image is slightly displaced with respect to the other,
so they capture almost completely the same information and,
above all, since the cameras are contained within the same
plane, from the same perspective.

When same objects have been detected in both images,
their bounding boxes have to be matched in order to triangu-
late the top left and bottom right corners and compute their
spatial position, otherwise the process would fail. To avoid
false matches, the same objects must appear in both images,
so, in a first filter stage, all objects of one class are discarded
if they do not appear in equal quantity in the left and right
images. Since the images are rectified, determining which
bounding box in the left image corresponds to which bound-
ing box in the right image is not a simple task, since it is not
possible to directly compare their absolute coordinates with
respect to the principal point of the cameras. Depending on
the position of the detected object, the bounding boxes may
appear in very different coordinates in each image. In order
to resolve this problem at a low computational cost, all de-
tections are stored in two vectors (one for each image) and
sorted by their relative center’s X-coordinate. Thus, when we
start comparing all bounding boxes, although several of them
could be really similar, if the comparison starts in this order,
the chances of matching wrong bounding boxes are hugely
decreased.

In a last filter stage, bounding boxes in the first image are
compared to the bounding boxes in the second image by the
order specified above. To get a match between them, they are
filtered by class of object, area, aspect ratio and the center Y-
coordinate of the bounding box. Again, even though images
are rectified, since the stereo pair is at the same height, the
center of the bounding boxes in each image should be very
similar (ideally equal), which let us also use this as a reliable
filter. By having this amount of variables which can be com-
pared to make a trustworthy match, we can reduce the rigidity
of the filters, and so, make the system more robust to incon-
sistencies in the similarity of the bounding boxes extracted.

Once all bounding boxes are matched correctly, each one
of them is processed to obtain the disparity of two diagonal
corners by applying the aligned axis pair stereo 3D recon-
struction model, which we can be visualized in figure 2.

Disparity (xg — 1) is then used to calculate the depth of
the corners as shown in equation 1, where f is the focal length
and T is the baseline. Once again, in order to make the sys-
tem more robust, several reductions of the bounding box are
carried out to improve depth extraction consistency. Since the
final goal is to obtain the position of the object, its centroid
is calculated. The bounding box acts as a plane which cuts
the object vertically through its center so the Z-coordinate of
the centroid is calculated as the average of all corners’ depths
previously obtained. Once the spatial Z-coordinate of the ob-
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Figure 2: Stereo model triangulation.

ject’s centroid is estimated, X and Y spatial coordinates are
calculated as shown in equations 2 and 3. These are spatial
coordinates which are referred to one of the mono cameras
frame. Therefore, the coordinates are transformed to the de-
vice frame, making it easier to transform them to the world
frame later.

7= 1T (1)
TR — I
ZJ?L
X = 2
7 2
Zyr,
Y = — 3
7 3

In figure 3 an example of detection using this configura-
tion can be observed.

Figure 3: Stereo object position estimation approach.

Algorithms 1 and 2 show the complete process of the both
proposed algorithms for object position estimation.

NOVEMBER 17t" 10 19t 2021, PUEBLA, MEXICO

12" INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

Algorithm 1: Object position estimation using neu-
ral inference with RGB images from OAK-D.

Result: Spatial coordinates of the centers of the
detected bounding boxes.

1 Extract RBG image from color camera;

2 Reduce resolution to 300x300 px;

3 Apply MobileNet object detector to RGB image;

4 Compute bounding boxes in depth map;

5 Compute depth of the bounding boxes’ centers in
depth map;

6 Compute X and Y coordinates of the objects from
their depth;

Algorithm 2: Object position estimation using
stereo neural inference in OAK-D.
Result: Spatial coordinates of the centroid of the
detected objects.
Extract rectified images of the stereo pair;
Reduce resolution to 300x300 px;
Apply MobileNet object detector to both images;
Scale bounging box to original resolution;
Sort the detections by relative X-coordinate;
for i = 0 to num_right_detections do
ar = area(detections,;gn[t));
rr = aspect_ratio(detections,;gn[t]);
for j = 0 to num_left_detections do
ar, = area(detectionsesi[j]);
r1, = aspect_ratio(detectionsie i [j]);
ifar~ap &rr ~ry, & yg =~ yr, then
Compute Zcentroids
ComPUte Xcentroid;
Complne Y;entroid;
detectionse i [j].erase;
break;
end

end

end

The second algorithm solves the problem of hollow items,
if the object is accurately detected in both cameras, since the
extracted bounding box represents a plane cutting the cen-
ter of the object, the estimation will always be consistent, no
matter the shape or holes of the object. Also, this approach
allows to detect objects with very high resolution at very short
distances (below 0.7 m), which is a key factor when navigat-
ing in indoor environments and narrow spaces.

3.4 Robot pose estimation

Semantic SLAM algorithms focus on simustaneously lo-
cate the robot position in the environment and create a map
which represents its surroundings by using semantic informa-
tion of them. By analyzing and processing information about
the environment navigation tasks can be carried out more ef-
ficiently. This type of approaches have gained popularity not
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only because of its great performance but also for the low cost
of the sensors used.

Both object position estimation approaches allow seman-
tic SLAM algorithms to correct the estimated pose of the
robot given by odometry. Our goal is to use Visual Planar
Semantic SLAM algorithm proposed by Hriday Bavle [19],
which takes advantage of environments that have abundant
presence of high-level semantic information. This algorithm
uses RGB-D sensors which provide depth information of the
pixels of the image, with this data planar surfaces are ex-
tracted from the detected objects. From this calculated pla-
nar surfaces the centroid of the object and its normal vector
are calculated. Our focus is to simplify the system by remov-
ing the planar surface extraction since, as we described be-
fore, our object pose estimation algorithms running on OAK-
D camera can directly provide the centroid of the selected
object along with the semantic information. By erasing the
need of detecting objects with planar surfaces the algorithm
gains versatility and the ability to detect hollow objects.

3.5 Graph slam

As in most navigation algorithms, the pose estimates from
the odometry (in this case VO/VIO) which accumulates er-
ror, especially in absence of external references or features.
We find other source of error in the semantic detections, due
to insufficient lighting, occlusions or object detection failure.
With these uncertainties the traditional use of filtering tech-
niques such as the Extended Kalman Filter (EFK) SLAM can
lead to false results in the estimate of the robot as well as the
landmark poses. By using a graph slam approach we ensure
all previous robot states are considered. In order to fuse mea-
surements from VO/VIO and semantic extracted information,
graph slam based optimization is used.

As mentioned before, our goal is to implement into our
detections approaches semantic slam algorithm proposed by
Hriday Bavle [19]. The whole algorithm can be divided in 4
main steps.

The first one being the acquisition of odometry using
VO/VIO methods, in our case provided by the RealSense
T265 camera. The next stages of the algorithm which will
be explained in more detail are graph construction, data asso-
ciation and graph optimization.

In regards to graph construction; the robot state vector is
defined as x = [z, R,] which is propagated over keyframes
k.X, being the position estimates x,. = [z, y, z] with respect
to the world reference W and R, being the rotation matrix
with respect to the world frame . The starting state of the
robot x is assumed to be known.

Odometry provides the 3D pose estimate in the world
frame reference WW. This estimate of the robot state x, at
time ¢ is added to the graph as a keyframe node K. The con-
straint between adjacent keyframes K;_; and K} is added in
the form of an edge using the pose increment between them
u, (k). The pose increment obtained from the odometry poses
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at time ¢ — 1 and time ¢ can be derived as:

Uy, = Oz (k — 1) ® (k) “

Each keyframe K; is added to the factor graph depend-
ing on time as well as motion constrains of the robot. Each
detected semantic object D; can be either added as a new
landmark node or associated with the currently mapped se-
mantic landmark. Depending on the data association process,
a choice is made as to whether the landmark is new or must
be mapped to a previously detected landmark.

In the data association step the semantic and spatial infor-
mation of the detected objects is received as follows: D; =
{ds,;,d¢;,dp, }. Being D; the detected semantic object i, d.,
the centroid position, d., the class label of the object and d,
the probability of successful detection.

There is no need for the first semantic object to go through
the data association step so it is directly added to the graph as
a new landmark. It is stored and represented in the following
manner:

L= {lzm qu‘,7lUi} Q)

where [, is the landmark centroid, [., the class of the
landmark and /,;, the uncertainty of the estimated position and
reliability of the landmark, which is initialized at a high value
related to the successful detection probability.

After this process, the next detected objects have to go
through the data association phase, where first of all it is
checked if their class coincides with any of the already
mapped landmarks. If so, the relative spatial position of the
centroid is transformed from the camera frame to the world
frame using equation 6 to calculate the Mahalonobis distance
between the new detected object and the possible already
mapped landmarks. If this Mahalanobis distance is greater
than a certain threshold it means that the object does not
match any landmark and is mapped as a new one. In case
this distance is smaller than the threshold the current seman-
tic object is matched with the corresponding landmark.

Zz- =Ty D WRe - dzi (6)

i

In the last stage, which is the graph optimization, the land-
marks positions /., and their covariances /.., of all the mapped
semantic landmarks are optimized and updated. When a pre-
viously observed semantic object is seen again and correctly
associated to the corresponding landmark, a loop closure is
obtained after optimization, which allows the system to cor-
rect the robot pose. This graph optimization step can be
consulted for more detail in the original algorithm proposal
[19].

4 RESULTS

To validate our approach and test the feasibility of the
OAK-D camera for SLAM applications the same experiment
is carried out with each of the detection approaches. The main
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objective is to determine whether the camera could be feasi-
ble for use in improving odometry estimation in aerial vehi-
cles with low payload capacity. The second objective is to
determine which of the two approaches is the most suitable
for this task.

The experiment consists of navigating an indoor environ-
ment filled with common office objects such as chairs, ta-
bles, monitors and bottles in random positions, a picture of
the setup can be seen in figure 4. In this setup, an Intel Re-
alSense T265 (with loop-closure disabled) is used in conjunc-
tion with the OAK-D as a source of odometry. To compare
the odometry data with the semantic slam estimation, we use
a motion capture system as ground truth data.

Figure 4: Experiments setup.

To test and compare the results of both approaches, we
perform a similar trajectory in the prepared environment us-
ing in each case one type of detections, 3 loops are carried
out in a repetitive manner. The method proposed in [20] is
then used to compare the odometry and estimation trajecto-
ries with the ground truth trajectory. Figures 6a and 5a show
the performed trajectories and the ground truth data.

In table 1 Average Trajectory Error (ATE) with respect to
the ground truth data is presented for each approach and the
odometry obtained in the test. Note that the showed values
not only refer to the translation estimation but also to the rota-
tion. The measurements included are the Root Mean Square
Error (RMSE), the standard deviation and the median. Al-
though the median value is not the most used metric, in this
case has been included because of the high RMSE obtained in
the rotation estimations due to outliers which can be observed
in 5b and 6b.

As shown in table 1, the object position estimation us-
ing the RGB image approach is not capable of improving the
robot pose estimation, on the contrary, it makes the trajectory
differ from the ground truth even more than the VIO path. On
the other hand, the second object position detection approach
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Table 1: Absolute Trajectory Error (ATE) m comparisson
between detections approaches and the obtained odometry.

Trans [m] Rot [deg]
RMSE Std Median | RMSE Std Median
RGB approach 0.536  0.406  0.244 31.595 28349  9.011
Odometry 0.504 0.408  0.222 31.262 28.301 8.660
Stereo approach | 0.378  0.263 0.200 30.237  27.492 7.769
Odometry 0.540  0.371 0.304 9.860 1.739 9.491

is able to correct the trajectory, reducing the ATE by approx-
imately 0.16m. It demonstrates that this approach outper-
forms the former approach for semantic SLAM applications
in small environments and that it can effectively improve the
position estimation of a robot navigating autonomously.

5 CONCLUSIONS

In this paper, we present a semantic SLAM algorithm
with the aim of improving low payload aerial vehicles pose
estimation. For this purpose, we presented two pose estima-
tion methods for the new OpenCV RGB-D camera, the OAK-
D, that extract the centroid of the objects. The first method
has shown to be insufficient to accomplish such a task, how-
ever, OAK-D is still under development and software updates
can make the detections faster and more robust. The second
approach, which runs two object detection neural networks in
parallel in each of the cameras of the stereo pair, has proven
to be a better option for SLAM algorithms, especially when
navigating in narrow spaces.

As explained before the first method offers a better preci-
sion when detected objects are “’far” (around 1.5-2.5 m), how-
ever, the second method works best when objects are close
(around 0.2-1.5 m). Another important factor is the process
speed of each method, in the first case, since the whole dis-
parity map is calculated, fps drop significantly, reducing it’s
effectiveness when on board of an aerial vehicle (which can
move quite fast). On the other hand, although the second
method runs two neural networks in parallel, it has to pro-
cess the depth for a much smaller number of points, which
translates into a higher computational efficiency, allowing to
obtain a larger number of fps.
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(a)

(b)

Figure 5: (a) Ground truth, odometry, and SLAM top view
trajectories with stereo detections approach. (b) SLAM
rotation error.
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(a)

()

Figure 6: (a) Ground truth, odometry, and SLAM top view
trajectories with RGB detections approach. (b) SLAM

rotation error.
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