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Preface
It is our pleasure to present the proceedings of the 11th International Micro Air Vehicle Competition and Conference, which
was held in Madrid, Spain from September 29-04 till October 4, 2019. This event aims at stimulating and challenging the
research in the area of Micro Air Vehicles (MAVs) for real world applications, by both competing in realistic scenarios
(indoors and outdoors) and also by presenting the new proposed solutions in conference papers.

This year, the event has a special focus on the growing interest of using flying robots in the area of logistics. We are very
grateful that Correos is our platinum sponsor and could bring real-world elements to the competitions. Together with gold
sponsors Airbus, Parrot, AFOSR and Aura, and silver sponsor BitCraze, this enabled IMAV to contribute with innovative
answers to realistic industrial problems by using small flying robots.

These proceedings contain 28 peer-reviewed scientific papers presented at the IMAV-2019. The topics of these papers
contain a nice mix ranging from aerial vehicle design and energy sources to control, navigation and perception. Together,
the papers give an overview of the current state-of-the-art of the field of Micro Air Vehicles.

Finally, we want to express the hope that the specific nature of the IMAV event (a combination of a scientific conference
and a real-world competition) in combination with the open-access nature of the publications, will continue to advance the
state-of-the-art in the area of small flying robots for real world challenges.
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Guest Speakers

Urban Air Mobility, a vision by Airbus
Dr. Isabel Del Pozo de Poza Head of UTM – Urban Air Mobility AIRBUS

Isabel del Pozo de Poza has over 10 year experience in the ATM field. She started
working at Boeing Research & Technology Europe (BR&TE) participating in common
initiatives between NextGen and SESAR, supporting the trajectory based operation concept
on both ATM modernization programmes. Isabel holds a PhD addressing the “Assessment
of Fairness and Equity in Trajectory Based Air Traffic Management”. She joined Airbus
Helicopters in 2013 as an Expert and in the field of ATM and Civil Operations and Head of
Department for Mission Management. She is leading within Airbus the traffic management
initiative to support and enable new operations.

Autonomous Drone Racing
Prof. Davide Scaramuzza, Professor of Robotics and Perception at Dept of Informat-
ics at University of Zurich Dept. of Neuroinformatics at Univ. of Zurich and ETH
Zurich

Davide Scaramuzza does research at the intersection of robotics, computer vision, and
neuroscience. Specifically he investigates the use of standard and neuromorphic cameras to
enable autonomous, agile, navigation of micro drones in search-and-rescue scenarios. He
did his PhD in robotics and computer vision at ETH Zurich (with Roland Siegwart) and a
postdoc at the University of Pennsylvania (with Vijay Kumar and Kostas Daniilidis). From
2009 to 2012, he led the European project sFly, which introduced the PX4 autopilot and
pioneered visual-SLAM-based autonomous navigation of micro drones.

For his research contributions in vision-based navigation with standard and neuromor-
phic cameras, he was awarded the IEEE Robotics and Automation Society Early Career
Award, the SNSF-ERC Starting Grant, a Google Research Award, KUKA, Qualcomm, and
Intel awards, the European Young Research Award, the Misha Mahowald Neuromorphic
Engineering Award, and several conference paper awards. He coauthored the book “Intro-
duction to Autonomous Mobile Robots” (published by MIT Press; 10,000 copies sold) and
more than 100 papers on robotics and perception published in top-ranked journals (TRO,
PAMI, IJCV, IJRR) and conferences (RSS, ICRA, CVPR, ICCV).

In 2015, he cofounded a venture, called Zurich-Eye, dedicated to the commercialization of visual-inertial navigation
solutions for mobile robots, which later became Facebook-Oculus Switzerland and Oculus’ European research hub. He was
also the strategic advisor of Dacuda, an ETH spinoff dedicated to inside-out VR solutions, which later became Magic Leap
Zurich. Many aspects of his research have been prominently featured in the popular press, such as Discovery Channel,
BBC, IEEE Spectrum, MIT Technology Review Magazine.
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R&T supporting UAS development. The role of Research Organizations in UAS/RPAS innova-
tion chain
Francisco Muñoz Sanz Head of Department: Center of Aeronautical Innovation and
Systems Engineering Subdirectorate of Aeronautical Systems INTA, National Insti-
tute of Aerospace Technology. Spain

Aeronautical engineer. Polytechnic University of Madrid. 1980. He joined INTA in
1983, where he has played the following roles:

• 1983-1990 Flight Test Engineer

– Qualification and validation engineer of Aircraft Performance, Flying Qualities
and Flight Control in C101, C212, CN235, T26 programmes.

– Flying qualities and Flight Control engineer and delegate in the Group of Offi-
cial Test Centers (OTC) of the EF 2000 Eurofighter Programme. 1987 1993.

• In 1993 he was appointed responsible for the development and project manager of
the SIVA UAS. First RPAS development system at INTA and first national project in
that size and complexity category.

• Following the above, he has been the head of the workgroup (later Department) in
charge of all developments on unmanned systems that INTA has addressed:

– Surveillance systems: SIVA (300kg), ALO (50kg), MILANO (1000kg).

– Air target systems: ALBA (25kg), DIANA turbojet (160kg).

– Other studies and developments of related technologies. Nowadays, he conducts the Aeronautical Innovation
and Systems Engineering Center (Centro de Innovación Aeronáutica e Ingenierı́a de Sistemas) at Aeronautical
Systems Subdirectorate, which is coordinating all activities related to RPAS/UAS under development at INTA
by endorsing from Project Management up to the Final Integration and Flight Test duties..

The European Regulation Framework for UAS Operations
Juan José Sola Bañasco Head of Remotely Piloted Aircrafts Unit (RPAS/DDRONES)
at Agencia Estatal de Seguridad Aérea

Juan José Sola heads the Dept. of Remote Control Piloted Aircraft (RPAS) at AESA
State Air Security Agency. He is Aeronautical Engineer from Universidad Politécnica de
Madrid, belonging to the State Aeronautical Engineers Corps, and Master in Leadership
and Public Management from the Menéndez Pelayo International University. He has been
Project Manager for the multinational company SENER and afterwards he developed var-
ious activities related to Air Navigation for the ISDEFE consultancy. He has extensive
experience in aeronautical auditing with about a hundred inspections as Team Leader. He
is currently a member of the ICAO (International Civil Aviation Organization) and partic-
ipates in national and international working groups, such as the JARUS (Joint Authorities
for Rulemaking on Unmanned Systems) initiative. Finally, he has given numerous courses
and papers on regulations and supervision in the field of air traffic services and unmanned
aircraft.
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Forward flight tests of a quadcopter UAV with various
spherical body diameters

B. Theys∗, J. De Schutter
Robotics Research Group, KU Leuven & Core Lab ROB, Flanders Make

ABSTRACT

This paper presents experimental results on the
relation between forward airspeed, pitch angle
and power consumption of a quadcopter UAV.
The quadcopter consists out of an interchange-
able spherical body, four cylindrical arms and
small propellers mounted at 1m diagonal dis-
tance to minimize interference between body and
propellers. This simple geometry facilitates re-
sults reproduction and comparison with simula-
tion. Two different takeoff masses and four di-
ameters of spherical bodies are tested for their
steady-state speed and power for pitch angles up
to −45◦. The steady-state horizontal flight is
recorded with on-board sensors at the end of fly-
ing long straight lines at a constant pitch angle in
wind-still conditions. The best effective lift-to-
drag ratio increases for smaller bodies and occurs
at higher speeds for increasing mass. Results
show that the equivalent frontal surface stays
constant for pitch angles further than −5◦ up to
the maximum recorded −45◦ and increases lin-
early with the frontal surface of the body.

1 INTRODUCTION

Multicopter UAVs, or ‘drones’, have become a popular
platform for applications such as aerial imaging, mapping
and inspection. These applications usually do not require
high speeds or ranges but benefit of the vertical takeoff and
landing (VTOL) capabilities of the multicopters. Moreover,
in many countries, flying beyond visual line of sight (BV-
LOS) is not permitted yet. Therefore, most of today mul-
ticopter designs are optimized for maximum flight time and
payload capacity near the hover flight condition. New appli-
cations in which the drones will fly BVLOS such as drone
deliveries or offshore inspections, require long flight times,
high speeds and range. The majority of published research
on multicopters focuses on dynamics and control of the vehi-
cles such as Huang [1] and Hoffmann [2] who incorporate the
aerodynamics of multicopters by using helicopter theory to
improve control when deviating significantly from the hover
regime. Sufficient experimental data is required to develop
models that can accurately predict the performance and can

∗Email address: bart.theys@kuleuven.be

be used in improved control, design software or trajectory
planning. However, there is only little published data for the
flight performance of multicopters in forward flight. Schi-
ano [3] performed wind tunnel experiments on a quadcopter
to create data for a complete aerodynamic model. However,
the experiments were carried out without turning propellers.
Neumann et al. [4, 5] determined the relation between atti-
tude and the wind velocity by performing wind tunnel experi-
ments in hover and forward flight conditions to determine the
2D wind direction and speed when tracking hazardous gases.
Russell [6] performed wind tunnel tests on five commercially
available multicopters with varying geometries to determine
forces, moments and power as function of the wind speed,
rpm and attitude. Marino [7] performed wind tunnel tests to
map the relation between power and the wind velocity vector
to later use the multicopter as a flying wind sensor. Prud-
den [8] performed multiple experiments in wind tunnel con-
ditions to map forward flight behavior. The focus was on the
influence of frame geometry variations and the mutual inter-
ference between the rotors. For wind tunnel tests, creating a
free-floating steady-state regime requires tuning the individ-
ual motor rpm to create a zero net force and moment. Next to
that, vibrations created by the propulsion disturb these force
readings or damage the sensor and for larger of heavier drones
the propeller induced flow could significantly influence the
wind tunnel flow. Rather than simulating steady-state flight
conditions in a wind tunnel, this paper focuses on the forward
flight regime with a constant speed and altitude in real out-
door flight in wind-still conditions as presented in figure 1.

Fig. 1: Multicopter with 0.5m spherical body in hover in
wind-still conditions 10minutes before sunset.
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2 EXPERIMENT

2.1 Components, configurations, conditions

The geometry of the quadcopter consists out of an inter-
changeable sphere as body, four cylindrical arms with a di-
ameter 20mm and a diagonal distance between the propeller
shafts of 1m. The Graupner 9x5 propellers for which the
geometry is thoroughly described in [9], have a diameter of
0.23m which is small with respect to the distance between
them to minimize the mutual interference and the interference
with the body. Figure 2 illustrates these dimensions.

O
1000

O 228,6

O
50
0

O
40
0

O
300

O 250

20

Fig. 2: quadcopter dimensions in mm with four different
possible diameters of spherical body.

Figure 3 shows the multicopter fitted with a 40cm diam-
eter spherical body during mass check right before takeoff.

Fig. 3: Multicopter fitted with a 40cm spherical Styrofoam
body during mass check right before takeoff.

Table 1 lists an overview of the used components that
complete the quadcopter test setup.

component type specifications
motor T-motor 2216-11 900KV
ESC FVT LittleBee30A BLHeli Firmware

propeller Graupner e-prop 9x5
voltage sensor attopilot 45A 15.70105 V/V
current sensor attopilot 45A 27.3224 A/V

flight controller PixHawk ArduCopter
battery Zippy Li-Po 6s 5000mah, 30C

Tab. 1: Used components for the test setup.

The four different diameters of hollow Styrofoam spheres
can be fitted onto the body with cut-outs for the arms. Lead is
added along the inner surface of the sphere to bring them all
to the same mass. Table 2 presents an overview of the used
spherical bodies.

diameter [m] foam mass [kg] extra lead mass [kg]
0.25 0.072 0.248
0.30 0.094 0.226
0.40 0.213 0.107
0.50 0.320 0

Tab. 2: Styrofoam spheres with different diameters used for
the shape of the body, brought to a total mass of
0.320kg.

With all bodies at the same mass, an additional lead mass
can be added to achieve a total takeoff mass of 2.13kg and
2.50kg as presented in table 3.

component mass [kg]
multicopter w/o bat. & body 1.00

battery 0.81
body 0.32

additional mass 0 - 0.37
total takeoff mass 2.13 - 2.50

Tab. 3: Mass distribution of the quadcopter for two different
total masses.

Tests took place at two different days. Table 4 presents
the atmospheric conditions at the time of the tests.

data set T [◦C] p [hPa] Vwind[m/s] humidity
2.13 kg 23 1025 <1 65%
2.50 kg 28 1017 <1 45%

Tab. 4: Environmental conditions during the experiments.
All experiments with the same mass are recorded
consecutively without significant changes in condi-
tions.
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2.2 Test procedure and data processing

The goal of the test procedure is to record the power con-
sumption and resulting speed in steady-state level flight of the
quadcopter as a function of its pitch angle. Speed, endurance,
range and payload capacity are fully determined if this rela-
tion is known for different total masses [7].

Flights are performed flying up and down one path at con-
stant altitude. The pitch angle is gradually increased after
each run up to a maximum pitch angle of −45◦ and then de-
creased again for several consecutive runs up to 0◦. The re-
sults therefore contain measured cruise flight points in two
flight directions so that any small wind speed would have
minimum influence on overall accuracy of the result.

Figure 4 presents one run out of the recorded data dur-
ing a flight. After turning the nose 180◦ with respect to the
prior run, the multicopter is pitched −45◦ and accelerates to
a steady-state velocity of 20m/s.

Fig. 4: Illustration of one run out of the recorded data during
a flight. The multicopter accelerates to a steady-state
velocity of 20m/s for a constant pitch angle of−45◦.

Figure 5 presents the total power consumption and hori-
zontal velocity as a function of the pitch angle for all recorded
data during the test flight of the configuration with a total
mass of 2.13kg and a 40cm body. The recorded data points
during steady-state regimes at the end of each run are marked
in orange. The top graph shows that even in steady-state the
measured power fluctuates up to 25% around its mean value
presented by the black dots. These variations are due to con-
stant adjustments of the motor rpm for attitude and altitude
control. The bottom graph shows there is also some variation
of the resulting speed V for one run; there can be difference
up to 2m/s between two runs with the same pitch angle. This
can be explained by a wind speed of about 1m/s along the
trajectory during the up and down run. Because both direc-
tions are flown, the accuracy of the overall experiment will
not be influenced. For the further presentation of the results,
the mean values for speed and power during the steady-state

regimes are used.

Fig. 5: Total power consumption and horizontal velocity as a
function of the pitch angle for the configuration with
2.13kg and 40cm. Blue: all recorded data during the
test flight. Orange: recorded data during identified
steady-state regime. Black: average values for each
steady-state regime

This procedure is applied to all configurations resulting
in eight data sets of steady-state horizontal flight power and
speed as a function of the pitch angle that varies between
0◦ and −45◦. Table 5 presents the number of steady-state
horizontal flights that are identified per configuration and for
which the results are presented in the next section.

25cm 30cm 40cm 50cm
2.13kg 14 18 24 17
2.50kg 22 21 15 17
2.93kg 10 5 - -

Tab. 5: Zones of steady-state horizontal flight recorded per
configuration.

The initially planned total mass of 2.93kg was too heavy
for the used propulsion for flying at high speeds, therefore
only the hover data is used.
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3 RESULTS & DISCUSSION

3.1 Resulting speed for increasing pitch angles

Figure 6 shows the cruise speed at pitch angles from hover
to−45◦ for the four different body diameters for the two total
masses. Although the individual data points are not clearly
separated, clear trends are visible. As expected, the result-
ing speed increases for decreasing body diameters and higher
mass. For a higher total mass, the influence of the body di-
ameter on the speed becomes larger and is more clear on the
graph. For the 2.13kg experiments there is no noticeable dif-
ference in speed between the 25cm and 30cm sphere.

Fig. 6: Cruise speed at pitch angles from hover to −45◦ for
four different body diameters and two total masses.
Top: 2.13kg. Bottom: 2.50kg.

To visualize the influence of body diameter and mass on
the top speed, figure 7 shows the average top speed at −45◦
pitch as a function of the body diameter for the two total
masses. The top speed decreases for increasing body diame-
ters and increases for a higher total mass. The difference in
top speed for 2.13kg and 2.50kg of total mass is small for
high body diameters and increases for decreasing body diam-
eters. Although top speed for a given maximum pitch angle
increases with mass, this is only possible if the propulsion
system is capable of maintaining altitude at this high pitch
angle and mass.
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Fig. 7: Measured top speeds at −45◦ as a function of the
body diameter for two masses.

3.2 Power consumption in forward flight
Figure 8 shows the cruise power for pitch angles from

hover to −45◦ (left) or for speeds from hover to maximum
speed (right) for four different body diameters and the two to-
tal masses. The required power slightly decreases at increas-
ing speeds from hover which is in line with helicopter the-
ory [10]. After reaching a minimum, the power increases sig-
nificantly. The speeds at which minimum power is achieved
lie higher for 2.50kg than for 2.13kg and the decrease of
power with respect to hover is more pronounced for large
body diameters.

Fig. 8: Power as function of pitch θ and speed V for four
different body diameters and two total masses. Top:
2.13kg. Bottom: 2.50kg.

3.3 Effective lift-to-drag ratio
The efficiency with which aircraft can move through the

air can be expressed with the glide ratio, also known as the
aerodynamic efficiency:

L

D
=
mtot g

D
=
mtot g V

D V
[−], (1)
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in which D V [W ] presents the required power to fly. For
a glider, this power can be directly calculated as the loss of
potential energy. In other cases, an effective lift-to-drag ratio
can be used, defined as:

eL

D
= ηprop

L

D
=
mtot g V

P
[−] (2)

With P the required power from the energy source and ηprop
the total efficiency of the propulsion system. For a multi-
copter this is the combined efficiency of the ESCs, motors
and propellers.

Figure 9 shows the calculated effective lift-to-drag ratio
between hover and the maximum speed at −45◦ pitch for
four different body diameters and two total masses. The
maximum effective lift-to-drag ratios lie between 0.70 and
0.95. The speed at which the highest effective lift-to-drag
ratio is achieved is higher for the experiments with 2.50kg
compared to the experiments with 2.13kg. The 2.50kg
data set shows a trend of increasing maximum effective
lift-to-drag ratios and the speeds at which they occur for
decreasing body diameters. For the 2.13kg data set, this
trend is less visible and between 12 to 13m/s the 40cm and
50cm bodies even seem to have a small advantage. This
means the multicopter configurations with larger bodies
consumed less power flying at this speed compared to the
smaller diameters. This can be caused because less power
is required from the propulsion system due to a decrease
in drag, additional production of lift or an increase in
efficiency of the propulsion system in this flight regime.
Because spherical bodies of increasing diameter are used,
the latter is the most likely explanation. As presented in
figure 6 the pitch angle of the 25cm and 30cm body is
approximately −17◦ pitch for both and for the larger 40cm
and 50cm body diameter approximately −22◦ and −25◦
pitch respectively which suggests that the propulsion sys-
tem used in this paper is more efficient in these flight regimes.

3.4 Equivalent frontal surface

As it is common practice in helicopter performance iden-
tification [10], the drag of the body can be represented with
an equivalent frontal surface area Aeq with CD = 1:

D =
1

2
V 2 ρ Afront CD =

1

2
V 2 ρ Aeq [N ] (3)

With V the speed and ρ the air density. For a multicopter
without lifting surfaces and flying at a constant low speed,
the forces that apply are the weight, drag and the force of the
propellers. The latter one assumed to be along the shaft Fx.
These forces are schematically presented in Figure 10.
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Fig. 9: Calculated effective lift-to-drag ratio at pitch angles
from hover to −45◦ for four different body diameters
and two total masses. Top: 2.13kg. Bottom: 2.50kg.
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Fig. 10: Forces on a VTOL UAV without lifting surfaces at
constant speed and altitude.

For this case, we can write the equivalent frontal surface
as:

Aeq =
2mtot g tan(−θ)

ρ V 2
[m2] (4)

Figure 11 shows the equivalent frontal surface at pitch
angles from hover to −45◦ for four different body diame-
ters and two total masses. The equivalent frontal surfaces
for data points between hover and −5◦ pitch are not calcu-
lated because of the low value for speed in the denominator
of equation 4. Although the data are scattered, different body
diameters are clearly distinguishable in the data with a higher
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body diameter resulting in a higher equivalent frontal surface.
Between −5◦ and −15◦ the equivalent frontal surface shows
a decreasing trend. Between −15◦ and −45◦ no clear trend
is visible and the equivalent frontal surface could be approx-
imated by a constant equal to the mean calculated value, pre-
sented by the horizontal lines.

Fig. 11: Calculated equivalent frontal surface at pitch angles
from hover to −45◦ for four different body diam-
eters and two total masses. The horizontal lines
present the mean value for pitch angles from −15◦
to −45◦.

Figure 12 shows these mean equivalent frontal surface for
angles between −5◦ and −45◦ as a function of the frontal
surface of the spherical bodies for comparison.

Fig. 12: Average calculated equivalent frontal surface for
pitch angles between −5◦ and −45◦ for four dif-
ferent frontal surfaces of the spherical body and two
total masses.

For the 2.13kg and 2.50kg data, a linear fit with slope
0.29 and 0.33 is found respectively. This lies within the ex-
pected drag coefficient of spherical bodies which, depending
on the Reynolds number and surface quality lie between 0.1
and 0.5 [11]. Since the drag of the multicopter is not only
due to the spherical body, there is an offset which takes into
account the drag of the arms and motors with propellers. This
offset is respectively 0.063m2 and 0.044m2 which would be
the theoretical equivalent frontal surface of only the arms and
propellers at −45 pitch.

3.5 Hover efficiency

As an example on how these data can be used for model
validation, for the unique case of hover, the momentum the-
ory as described by Rankine - Froude [12] and also known as
the Actuator Disk Theory, can be used to predict the power as
a function of the total mass mtot and the total disk area cov-
ered by the propellers Adisk. The power required from the
battery Pbatt can be calculated with this basic model as:

Pbatt =
(mtot g)

1.5

√
2 ρ Adisk

1

ηesc ηmot ηplr
[W ] (5)

With ρ the density of the air, g the gravity constant and
ηesc ηmot ηplr the efficiency of the ESC, motor and propeller
respectively. The efficiency of the propeller is also referred to
as the Figure of Merit [10].

Figure 13 shows the average of the measured hover power
for three different masses. Next to 2.13kg and 2.50kg for the
forward flight tests, a higher total mass of 2.93kg is tested in
hover and added to this graph. A combined total efficiency
ηtot of 44.3% for ηesc ηmot ηplr resulted in a good fit.

Fig. 13: Hover power and fit based on momentum theory
with the assumption of a constant efficiency from
battery power to kinetic energy of the accelerated
air.
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4 CONCLUSION AND FUTURE WORK

Steady-state horizontal velocity and power of a quad-
copter with a basic geometry and four interchangeable bodies
of different diameters was tested at two total masses and pitch
angles from 0◦ to −45◦. Although experiments took place in
wind-still conditions, there is significant variation in the mea-
sured data. However, clears trends were visible and the influ-
ence of different masses and shapes could be clearly identi-
fied. Results show that for a constant pitch angle, increased
mass or smaller body diameter resulted in an increased speed.
A maximum speed of approximately 27m/swas achieved for
a 2.50kg total mass and 25cm body diameter at −45◦ pitch.
For every configuration, the minimum power did not occur
during hover. A decrease in power is observed from hover to
forward flight. The speed for minimum power increased for a
higher mass. The difference between hover power and mini-
mum power was more pronounced for increasing body diam-
eters. The maximum effective lift-to-drag ratios for all con-
figurations ranged between 0.70 and 0.95. The latter occurred
at the heaviest configuration with the smallest body diameter.
The equivalent frontal surface showed to be rather constant
for each configuration for pitch angles between −15◦ and
−45◦. With momentum theory clearly matching the results
for hover, a total hover efficiency of 44.3% was found for the
quadcopter in these experiments.

The data set obtained during the tests for this paper can
be used as a reference for modeling the flight behavior of
multicopter UAVs in forward flight. Trends are observed in
the data but for further validation, more test data of differ-
ent multicopters is required. Additional sensors can be added
to monitor the individual states of each propulsion unit and
measure rpm, voltage, current to allow also model validation
of the propulsion system.
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ABSTRACT

The problem of optimal flight altitude for the
small airplane with the electrical powerplant and
solar cells in the long-time flight is investigated
for the task of maximization of accumulator en-
ergy at the end of the flight. Atmosphere density
models and solar radiation models as functions
of altitude and day time are formed and inves-
tigated. Optimal altitude for the fixed-altitude
mission and altitude as function of time for non-
fixed altitude mission are obtained. Sensitivity of
the optimized function to the deviation of flight
parameters from the optimal ones is investigated.
The influence of airplane parameters on the re-
sults is analyzed.

1 INTRODUCTION

By this time a set of ”heavy” solar-powered (SP) airplanes
was designed and built (such as ”Pathfinder”, ”Centurion”,
”Helios”, ”Solar Impuls”, ”SoLong”, ”Zephyr” and others).
Also, information about a set of small-sized solar planes can
be found (some of them [1]–[5] You can see in Figures 1–5).

Figure 1: Aircraft [1]

∗Email address: serokhvostov@phystech.edu

Figure 2: Aircraft [2]

Figure 3: Aircraft [3]

But for the present state of the art the design of the SP air-
plane for the long-endurance mission is still a serious problem
because of the moderate value of the solar radiation intensity,
rather low efficiency and rather high density of the solar cells,
insufficient energy density of the onboard energy storage and
some other factors.

Some questions concerning the optimal multi-day flight
were investigated in [6, 7, 8]. First of all, the optimal altitude
for the flight at constant altitude of the ”heavy” airplane at
high altitudes was found. But in these investigations rather
simple model of solar radiation was used and the analysis was
restricted by the altitudes higher than 11 km.

In the present research all the altitudes from 0 km to
20 km for the small airplane and more precise density and
radiation models are investigated.
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Figure 4: Aircraft [4]

Figure 5: Aircraft [5]

2 OPTIMAL FLIGHT ALTITUDE. PROBLEM
STATEMENT

Suppose that the airplane must fly at constant altitude
(that can be chosen) with constant velocity V for all its long-
time mission with the minimum value of the total energy E
consumed from accumulator. For this case the equations of
motion are

Wη − (CD0 +AC2
L)ρ

V 3

2
S = 0 (1)

CLρ
V 2

2
S −mg = 0 (2)

Ė =W −WPV (3)

where m is an aircraft mass, W — power consumed by the
engine, η — powerplant efficiency (assumed to be constant),
CD0 — drag coefficient at zero lift, A = 1/(πλ), λ — aspect
ratio of the wing, CL — lift coefficient, ρ = ρ(h) — air
density depending on flight altitude h, S — wing area, g —
acceleration of gravity, WPV — power of solar cells. For

this problem all these characteristics except WPV and E are
assumed to be constant during the flight.

Power WPV depends on the flight altitude, day time, air-
craft orientation and the sun location. But for the first step
of our investigations we can assume that WPV is mean value
and depends only on altitude:

WPV = I(h)Sβ

where I is a part of solar radiation intensity normal to the
solar panel, β is the ratio of the solar cells area to the wing
area. So, from the mathematical point of view, we can find
the minimum of (W − I(h)Sβ) (3) at conditions (1)–(2).

The solution of this problem for the common case gives





CL =
√

3CD0

A

V = −
√

3
ACD0

ηρ

2mg ∂ρ∂h

∂I
∂hSβ

CD0V
3S ∂ρ∂h = − ∂I

∂hηSβ

(4)

One can see that for the solution one needs to know the atmo-
sphere properties — the dependence of air density and solar
radiation intensity as functions of altitude and day time.

3 ATMOSPHERE MODEL

For the atmosphere density it is worth using International
Standard Atmosphere (ISA) model. Within this model, the at-
mosphere’s temperature decreases linearly with altitude from
0 km to about 10 km altitude, then from about 11 km to 20 km
the atmosphere is isothermal. So, according to these data, the
expression for atmosphere density for 0–10 km can be derived
and written as

ρ = ρ0

(
1− αh

T0

)µg/(αR)−1

where ρ0 — density at sea level (1.225 kg/m3), α ≈ 6.5 ·
10−3 K/m), T0 — tempreture at sea level (288 km), µ — mo-
lar mass of the air (0.029 kg/mole),R = 8.31 Joule/(mole·K).
For these data

ρ = ρ0

(
1− αh

T0

)4.38

For the isothermal part of the atmosphere the formula for air
density can be written as

ρ0 = ρ01 exp(−(h− 11 000)/h0)

where h0 = 6 374 m, ρ01 is the air density at 11 000 m alti-
tude.

Analysis [9] shows that the intensity of the solar radiation
can be expressed as the multiplication of two functions one of
them depends only on the altitude and another depends only
on the day time.

As for the dependency of solar intensity on the altitude,
let’s make some assumptions. First of all, assume that the
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composition of atmosphere (percentage of the gases) is the
same at all altitudes. Second, assume that there is no pol-
lutions that can absorb the solar light. So, one can use the
Bouguer’s law written in the form

dI

dh
= Bρ(h)I (5)

where B — coefficient of proportionality that depends on
the atmosphere composition. Assume that the composition
is constant at all the altitudes, so B is constant. The analysis
of the data from [9] proves this assumption at least for the al-
titudes of 11–20 km. The value of B found by authors on the
basis of [9] is B = 5.7 · 10−5 m2/kg.

For low atmosphere, the above formula becomes

dI

dh
= IBρ0

(
1− αh

T0

)4.38

which gives

I = I0 exp

(
Bρ0T0
5.38α

[
1−

(
1− αh

T0

)5.38
])

This formula can be used for the numerical investigation but
rather difficult for the analytical ones.

To simplify the formula it is useful to analyze the experi-
mental data for the dependency of solar radiation on the alti-
tude. It is known that above the atmosphere the solar intensity
is ∼ 1.3 kW/m2, and at the sea level it is about 1 kW/m2. On
the other hand, the air density at sea level and at the altitude
of 10 km differs by nearly 3 times. So, the main effect of
different absorption at different altitudes is due to the air den-
sity. The idea is to assume that the intensity does not differ
significantly, and

dI

dh
= Bρ0I0

(
1− αh

T0

)4.38

So

I = I0

(
Bρ0T0
5.38α

[
1−

(
1− αh

T0

)5.38
]
+ 1

)
(6)

The ability to use all above mentioned assumptions must be
proved by the comparison of precise solution with the approx-
imate one.

For the isothermal part of the atmosphere

dI

dh
= Bρ01 exp

(
− h

h0

)
I

and

I = I01 exp

[
h0Bρ01

(
1− exp

(
− h

h0

))]

where I01 is the solar intensity at 11 km.

The simplification gives

dI

dh
= Bρ(h)I01

and

I = I01

(
1 + h0Bρ01(1− exp

(
− h

h0

)
)

)
(7)

The dependency of solar intensity on the day time at fixed
altitude for the first steps of analysis (assuming that day is
12 hours and the night is 12 hours) can be expressed [6] as
constant zero function for the night time and the sine function
with the zero moment at the start of sunrise with the period of
24 hours for the day time.

4 OPTIMAL ALTITUDE PROBLEM. SOLUTION AND
ANALYSIS

System (4) under assumption (5) can be resolved for the
variable h in the common case as

(ρ(h))5(I(h))2
(
∂ρ(h)
∂h

)2 B2 =

(
2mg

S

)3
1

(ηβ)2

√
A3CD0

27
(8)

For the low atmosphere it gives

(
1− αh

T0

)(
I0 exp

(
Bρ0T0
5.38α

[
1−

(
1− αh

T0

)5.38
]))2

=

=

(
2mg

Sρ0

)3
1

(ηβB)2

√
A3CD0

27

(
4.38

α

T0

)2

(9)

For the isothermal part of atmosphere

exp

(
−3h

h0

)(
I01 exp

[
h0Bρ01

(
1− exp

(
− h

h0

))])2

=

=

(
2mg

Sρ0

)3
1

(ηβBh0)2

√
A3CD0

27
(10)

Equations (9), (10) can’t be solved analytically.
To solve the problem numerically some data about air-

craft are required. Let’s use the data as for ”Cirrus” glider
upgraded with solar cells by authors (see Fig. 6). Assume
that the maximum value of solar radiation at the zero altitude
is 825 W/m2.

The main data for the airplane are m = 2 kg, CD0 =
0.02, aspect ratio λ = 15, S = 0.72 m2, area covered by
cells is S/2 (i.e. β = 0.5), powplant efficiency — 50%, solar
cell efficiency — 20%.

The flight altitude as function of solar intensity is given in
the Fig. 7.

One can see that the graphs for the low atmosphere and
isothermal models do not cross at the altitudes of 10–11 km
as can be expected. This can be explained by the fact that
at the altitudes between 10 km and 11 km the atmosphere
changes the properties, the graph for low atmosphere is valid

SEPTEMBER 29th TO OCTOBER 4th 2019, MADRID, SPAIN 21



IMAV2019-2 11th INTERNATIONAL MICRO AIR VEHICLE COMPETITION AND CONFERENCE

Figure 6: Glider ”Cirrus” with solar panels.

for h < 10 km, graph for isothermal atmosphere is valid for
h > 11 km, and from 10 to 11 km these graphs must be
interpolated by continuous and smooth line from one graph
to another.

To solve the problem of optimal altitude for 24h mission
one must find the ”mean” value of I for 24 hours. Using the
sine dependency of intensity on the day time, one can find
that

Imean = Imax · 0.318
For these data the flight altitude calculated using the for-

mula for low atmosphere gives the value of 9 812 m, the cal-
culation with the formula for the isothermal atmosphere gives
8 907m. But it should be mentioned that these formulas are
for the equator conditions. For the 45◦ latitude (for example,
Torino conditions) the low atmosphere formula gives 7854 m,
isothermal formula gives 7107 m. The both cases give the re-
sult corresponding to the low atmosphere for the both models,
the conclusion is that the low atmosphere model must be used
for the precise results.

Now let’s estimate the disadvantage for the flight at not-
optimal altitude. Figure 8 shows the mean electrical power
incoming to the accumulator as function of altitude for the
case of 45◦ latitude conditions for the airplane analyzed.

One can see that the disadvantage at the altitude differ-
ence of 1 km with respect to the optimal one is about 0.2%
of the accumulator incoming power and practically the same
value of 0.2% with respect to the power consumed by the
motor. This means that it is not necessary to maintain the
flight altitude precisely for the best value of accumulator in-
coming power. Also, if necessary, the model of isothermal
atmosphere can be used in low altitudes as the maximal dif-
ference between these two graphs at h < 10 km is less than
1 km.

Now let’s investigate the accuracy of the simplified for-
mula (6). Figure 9 shows the results of calculations.

The deviations does not exceed 1 km, so the more simple
formula can be used.

As for the accuracy of formula (7), the calculations show
that the results with use of formula (7) practically coincide
with precise ones.

Figure 7: Altitude as function of solar intensity. Blue line —
low atmosphere model (9), red line — isothermal model (10).

Figure 8: Accumulator incoming power as function of alti-
tude near the maximum.

Some words should be told about the formula (8) itself.
One can see that left part of this formula deals only with ”at-
mospheric variables” and the right part deals only with air-
craft parameters. For any shape of density and intensity func-
tions it is possible to analyze the sensitivity of the result to
the aircraft characteristics.

First of all, one can see that the main influence gives the
wing loading (mg/S), as it is in the third power. Also the
powerplant efficiency and cells area to wing area ratio can
influence significantly. As for the drag coefficient at zero lift
CD0, its influence is small enough.

5 FLIGHT PATH OPTIMIZATION

For a set of flight tasks the flight altitude can be variable.
In this case the aircraft can change the altitude during the day
to gather the maximum of the energy available. The back-
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Figure 9: Results of calculation for various models. Red —
precise, blue — model (6).

ground of this effect is that at lower altitudes the power con-
sumption by the powerplant is lower and at higher altitudes
the solar radiation is higher. So, at the day time it is better to
fly higher, at the night time it is better to fly lower. This task
in general case was analyzed previously in [6]. So, it is better
to shortly repeat the problem statement and the result in com-
mon case and implement them to the problem investigated
here.

The problem solved is as follows: the airplane with solar
panels can fly at non-fixed altitude. There are no restrictions
on accumulator power (charging and discharging) and capac-
ity, vertical velocity of the plane, maximal accelerations along
all the axes. There is minimal altitude restriction (Earth’s sur-
face or some others). Only the motion in vertical plane is
analyzed. The goal is to have maximal available energy in
the accumulators at the end of the flight. For this problem the
possible parts of the trajectory are available

1. Maximal power mode.

2. Minimal power mode.

3. Flight along the restriction(s).

4. Cruise mode.

The main part of flight is cruise mode. The solution shows
that the altitude, velocity and lift coefficient are defined by the
same formulas as for the task of optimal altitude, but for the
solar intensity value, not the mean but the values of intensity
at the each moment of time must be used. As an example,
the altitude as the function of time for the above mentioned
airplane and equator conditions for the day time is shown in
Fig. 10.

Minimal and maximal power modes are used at the be-
ginning (to reach cruise mode from initial conditions) and at
the end of flight (to reach final conditions).

One can see that the altitude difference during the day
time is high enough in both models and is about 14 km. The

Figure 10: Altitude as function of time for the airplane
and conditions investigated. Blue line — low atmosphere
model (9), red line — isothermal model (10), purple — in-
terpolation between the models.

most intensive altitude change (and, consequently, vertical
velocity) is at the time near sunrise and sunset. These parts re-
quire more thorough investigation (it is planned in the future
work).

Also, as in the previous chapter, the sensitivity of the de-
viations is low enough, so the altitude error of 1 km from the
optimal one does not give valuable disadvantage. So, for the
preliminary analysis one can use only one model in all the
range of altitudes.

At the end it is worth saying that all the results obtained
can be implemented not only to the flight in the atmosphere
of the Earth, but also for the flight in the atmosphere of any
planet which atmospere model can be described by the model
mentioned above.

6 CONCLUSION

1. The problem of optimal altitude for the small solar-
powered airplane was stated and analyzed. It was
shown that the mathematical models of the air density
and solar radiation as function of time are necessary for
this task.

2. Models of density and solar radiation were proposed.
Some simplifications in the expressions were proposed
and analyzed for the applicability and accuracy.

3. Formula for the defining the optimal flight altitude was
obtained in the common case. Formulas for the cases
of low atmosphere and isothermal atmosphere were de-
rived.

4. The optimal fixed altitudes were obtained for some test
airplane.
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5. For the case of non-fixed altitude the optimal flight al-
titude as a function of time was found numerically for
the test airplane.

6. The influence of airplane parameters on the optimal al-
titude was investigated. It was shown that the main in-
fluence gives the wing loading and the smallest influ-
ence gives drag coefficient at zero lift.

7. Sensitivity of optimized functions to the altitude devi-
ations was investigated. It was shown that the altitude
deviation from optimum up to 1 km gives practically
no disadvantage.
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ABSTRACT

Recently, the concept of Incremental Nonlinear
Dynamic Inversion (INDI) has seen an increas-
ing adoption as an attitude control method for a
variety of aircraft configurations. The reasons
for this are good stability and robustness prop-
erties, moderate computation requirements and
low requirements on modeling fidelity. While
previous work [1] investigated the robust stability
properties of INDI, the actual closed-loop perfor-
mance may degrade severely in the face of model
uncertainty. We address this issue by first analyz-
ing the effects of modelling errors on the closed-
loop performance by observing the movement of
the system poles. Based on this, we analyze the
neccessary modeling fidelity and propose simple
modeling methods for the usual actuators found
on small-scale electric aircraft. Finally, we ana-
lyze the actuator models using (flight) test data
where possible.

1 INTRODUCTION

Incremental Nonlinear Dynamic Inversion (INDI) has been
applied to a variety of aicraft including quadrotors, hybrid
aircraft (tailsitter, tiltwing) and conventional airplanes [2, 3, 4,
5]. The method was first introduced by NASA [6] and then
further developed at TU Delft [2, 3]. At the core of INDI a
simple control law given by

δu = M−1
u · J · (ν − Ω̇) (1)

is used, where ν is the commanded angular acceleration, J is
the aircrafts inertia and Mu describes the actuator effectivity.
This paper concentrates on the last term Mu and the associated
neccessary dynamic actuator models. We summarize modeling
approaches which have been successfully applied in practice
for quadrotors [3], tiltwing [7] or tailsitter [4, 8] aircraft. Since
the problem of oscillations frequently arises when applying
INDI, we try to gain some insight into this issue by observing
the closed-loop system poles. A similar analysis was already
done in previous work [1], but concentrates on the stability
properties of the closed loop.

∗Email address: binz@fsd.rwth-aachen.de

2 EFFECTS OF MODELING UNCERTAINTY

The goal of Nonlinear Dynamic Inversion (NDI) is to
invert the plant dynamics, so that the resulting closed-loop
dynamics are a series of integrators. In principle, the INDI
formulation in [3] shares this goal. However, due to the way in
which state-derivatives (i. e. angular accelerations) are calcu-
lated, the resulting closed-loop dynamics from the commanded
anguluar accelerations ν to the actual angular accelerations
Ω̇ are the actuator dynamics A(z) in the nominal case. Thus,
the design of outer controllers (e.g. angular rate and attitude
controllers) is influenced by these actuator dyanmics A(z).
One major motivation in using NDI (or INDI), is to simplify
the design of outer loop controllers. We thus want to develop
an understanding of how well the actuator dynamics and effec-
tivity needs to be known, to still achieve an appropriate outer
loop performance.

To analyze this, we assume an INDI-based angular rate
controller, as shown in figure 1. For simplicity, we only ana-
lyze the single-input single-output case, but expect the results
to be transferable in principle to the multiple-input multiple-
output case aswell. The parameters of the system consist of the
plant parameters – namely the control effectivity Mη , actuator
time constant T and actuator delay τ – and the corresponding
controller parameters M̂u, T̂ , τ̂ . The actuator dynamics are
modelled as first-order lags with an optional delay:

A(s) =
1

1 + Ts
e−τs (2)

In the nominal case M̂u = Mu, T̂ = T and τ̂ = τ . To develop
an understanding of how uncertainty in the parameters affects
the closed loop system, we analyze movement of the system
poles when parameters are changed.

M̂u
TSz
z−1

ν δu

Hz−1 Â

b A

uf

uuc Mu
Ω̇ Ω

Hz−1z−1
TSz

b

−

Figure 1: Controller structure

2.1 Poles of the INDI controller
In the nominal case, the closed loop transfer function from

the commanded angular accelerations ν to the actual angular

1
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accelerations Ω̇ is equal to the actuator dynamics A. In the
non-nominal case additional dynamics appear, because the
system poles and zeros don’t cancel each other. Since the
analytical expression for the closed-loop transfer function in
the non-nominal case is somewhat convoluted, we graphically
analyze the behaviour of the poles instead. While INDI is
an inherently discrete-time control algorithm, we choose to
display the poles (and zeros) in the continous-time domain
because we are more familiar with this setting.

Figure 2 shows the movement of the poles of the INDI
loop, when the control effectivity Mu is incorrect. In the
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Figure 2: Effect of uncertainty in control effectivity on signifi-
cant poles of INDI loop, 0.2 < M̂u/Mu < 4

nominal case (left), the poles of the filter H are completely
cancelled and thus don’t influence the closed-loop dynamics.
Only the poles of the actuator dynamicsA remain. We selected
the filter parameters of H as follows:

H(s) =
ω2
0

s2 + 2ζω0s+ ω2
0

ω0 = 50 rad s−1

ζ = 0.55

(3)

For M̂u 6= Mu the cancellation of the filter poles does not
occur. For M̂u < Mu, the poles of the filter H become
less damped and start to show as oscillations in the time-
domain. The frequency of this oscillation roughly equals the
natural frequency ω0 of the filter H . For M̂u > Mu the
system dynamics basically slows down, because the poles of
the assumed actuator dynamics Â move to the right. For the
chosen filter parameters (see (3)), the closed-loop becomes
unstable for M̂u

Mu
< 0.2, though clearly visible oscillations

start to appear at around M̂u

Mu
< 0.5. Note, that these margins

change when chosing different filter parameters H . In general,
a larger damping ratio ζ and a larger natural frequency ω0

lead to more robustness w.r.t. uncertainty in Mu. At the

same time, these filter parameters influence the amount of
noise introduced when calculating Ω̇ as well as the disturbance
rejection performance [3]. Thus, the filter parameters will be
a trade-off between robustness w.r.t. to Mu, performance of
disturbance rejection and noise.

Figure 3 shows a similar analysis as before, this time
changing the assumed actuator dynamics T̂ . Here, for T̂ <
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Figure 3: Effect of uncertainty in actuator dynamics on signif-
icant poles of INDI loop, T = 0.07, 0.01 < T̂ < 0.14

T the poles associated with the actuator dynamics become
underdamped and move towards lower damping while the
frequency stays roughly the same. Again, the more benign
direction is an overastimation of the actuator time constant
T̂ , since in this case the most significant pole merely moves
towards lower frequencies while still being fully damped.

Finally, figure 4 shows a similar analysis for the effect of
uncertainty in the time delay τ̂ . As was already discussed in
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Figure 4: Effect of uncertainty in actuator delay on significant
poles of INDI loop (sample time Ts = 0.001 sec), τ/Ts =
40, 0 < τ̂/Ts < 80
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the literature [1], a lack of assumed time delay τ̂ can lead to
oscillations in the closed-loop. In case of underestimating the
delay τ̂ , the significant poles first tend towards faster dynam-
ics, while still being fully damped. Once a critical error in
the estimated delay τ̂ is reached, the dynamics become under-
damped. The more benign case is again an overestimation of
the delay τ̂ , which leads to slower system dynamics. How-
ever, with an increasing overestimation of τ̂ , the poles of the
filter H become less damped and lead to visible oscillations
in the time-domain response. Unfortunately, an error in the
estimated delay leads to a behaviour, which is similar to the
behaviour in case of an error in either the control effectivity
Mu or the actuator time constant T . Determination of the
delay τ can however be quite easily accomplished by either
analyzing flight test data or performing dedicated testing of
the actuators.

In summary, this analysis gives some insight into the be-
haviour of INDI in case of uncertainty. In our experience, a
common problem when implementing INDI for a new aircraft
are oscillations. Based on the discussion above, observing
the frequency of the oscillations can give a hint as to what
the source of the oscillations is. Appropriate mitigations can
either be to adapt the assumed model (M̂u, T̂ , τ̂ ) accordingly
or the parameters (ω0, ζ) of the filter H . Additionally, overes-
timation of the control effectivity Mu and the actuator time
constant T generally leads to slower dynamics and thus might
serve as a good starting point for new controller designs. In
section 4 we show how the performance of an INDI controller
can easily be assesed and tuned in real-time, enabling rapid
controller development.

3 ACTUATOR MODELS

Small electric aircraft typically feature two kinds of actua-
tors: rudders and electric motors with propellers to produce
thrust. Depending on the configuration, the rudders might addi-
tionally be positioned in the slip-stream of the propellers. This
configuration is often used to create rudder effectivity even
when there is no aerodynamic velocity (e. g. flying-wings,
tiltwing aircraft).

To model the effectivity of these actuators, we propose a
two-step approach: First, we calculate the thrust, slip-stream
velocity and effectivity of the motors. Second, we calculate
the effectivity of the rudders, taking into acount slip-stream
velocities if neccessary.

In addition to these static acutator model properties, we
also model the dynamic behaviour of the actuators. This is of
course only strictly necessary, when the actuator positions are
not measured. Still, for designing the outer rate and attitude
controllers, an estimate of the actuator dynamics is beneficial.

For both, the static and dynamic properties we rely as much
as possible on properties which are either easily measurable
or specified by the manufacturers. In Section 4 we analyze
how well these actuator models actually perform and how this
compares to the requirements on modeling fidelity derived in

Section 2.

3.1 Static Actuator Effectivity Models
Within the scope of attitude control, the actuator effectivity

describes the change in moments due to changes in actuator
position (i. e. rudder deflection or throttle). For many applica-
tions it is sufficient to look at the force induced by an actuator
and use the corresponding lever to calculate the induced mo-
ment. We thus get expressions of the form

Mu =
∂M

∂u
= r× ∂F

∂u
(4)

where Mu describes the actuator effectivity of an actuator u
in the body-fixed coordinate frame given by the cross-product
of the actuator position r and the induced change in force F.
In the following section we will mostly focus on determining
the term ∂F/∂u.

3.1.1 Motors

The most common type of electric motor used in electric
aircraft is the synchronous AC motor. It needs to be driven by
a specialized electronic component called an Electronic Speed
Controller (ESC), see Figure 5. An ESC is controlled via a
throttle value δ, which can typically be normalized to ranges
from 0 to 1 (or −1 to 1, if the ESC supports driving the motor
in reverse). The ESC generates the appropriate voltages to
drive the motor, resulting in an angular velocity measured as
Revolutions Per Minute (RPM) n. Depending on the propeller
and inflow conditions, these angular velocities then result in a
thrust F . This description makes the simplifying assumption

ESC BLDC
Fδ

U
Prop.

ω

Va

Figure 5: Motor model

that the angular velocity is independent of the inflow. It thus
enables using a simpler model at the cost of modeling fidelity.

The motor model we propose consists of two parts: a
mapping from the throttle δ and the supply voltage U of the
ESC to the RPM n and a mapping from n combined with the
inflow Va to the thrust F .

ESC/BLDC model When the motor RPMs are not mea-
sured, we use the following model based on the supply voltage
U , the motor speed constant KV and the throttle setting δ

n = U ·KV · δ (5)

This model basically assumes that the motor is in a no-load
condition, which is a very crude approximation. The advan-
tage is however, that only the parameter KV needs to be
known, which is usually specified by the motor manufacturer.
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Propeller Model For small electric aircraft a database of
measured propeller performance exists [9]. Also some man-
ufacturers provide additional performance preditictions [10]
based on analytical methods. To model the propeller thrust we
first calculate the static thrust produced at zero inflow speed
and then correct this value using an estimate of the current
inflow speed. We model the static thrust as

T1 = K1n
2 (6)

The value of K1 can either be derived using one of the previ-
ously mentioned propeller databases, from simple test setups
or from previously acquired flight data.

To correct for the inflow velocity, we add a correction term,
resulting in

T = K1n
2 +K2V n (7)

where V represents the axial inflow speed. The actuator effec-
tivity according to (4) thus becomes

Tn =
∂T

∂n
= 2K1n+K2V (8)

This choice of correction term is informed by the propeller
data displayed in Figure 6. Figure 6 shows the thrust produced
by a propeller1 at different axial velocities and at different
RPMs. For the relevant inflow speeds (< 20 m s−1) and the
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Figure 6: Thrust over axial velocity

region of relevant RPMs an affine function approximates the
data well. Given these data,K1 andK2 can be found by fitting
the propeller model (7) to the data. If propeller data are not
available K2 can be calculated using analytical approaches
like blade element momentum theory [11].

As a first approximation, K2 can also be interpolated
from available propeller performance data. The performance

1APC 10x3.8 Slow Fly

database published in [10] was calculated using blade element
momentum theory. While here the parameter K1 is consis-
tently overestimated, the parameter K2 matches the measured
data published in [9] well. The data suggest that K2 can be
approximated as a function of the propeller diameter D and
the propeller pitch S:

K2 = p11D
2 + p10D + p20S + p0 (9)

Fitting this function over the available data results in the fol-
lowing model parameters (all units in inch, if applicable):

Database p11 p10 p20 p0

UIUC [9] -1.79e-06 1.70e-05 2.30e-06 -6.75e-05
APC [10] -1.75e-06 1.70e-05 8.51e-06 -9.28e-05

Since the UIUC database [9] features a wide range of dif-
ferent propeller types and manufacturers, we expect that the
corresponding model will extrapolate well to new propellers.

3.1.2 Rudders

We approximate rudders as thin plates, where the rudder effec-
tivity is given by

Fδ =
∂F

∂δ
= 2π · ρ

2
V 2S · Λ

Λ + 2
(10)

with the air density ρ, inflow speed V , rudder aera S and
aspect ratio Λ. If a rudder is partly in the slip stream of a
propeller, the rudder is split accordingly into separate parts.
In this case, the aspect ratio Λ still represents the aspect ratio
of the whole rudder. The inflow speed V is either the free
stream speed or the slip stream speed. In the latter case, we
apply momentum theory and assume that the slip stream is
fully developed. [5] shows a more detailed example of this
approach. Using the propeller model (7) to calculate the thrust
T produced by the corresponding propeller, this gives the slip
stream velocity as

V =

√
T

S

2

ρ
+ V 2

A (11)

where VA is the inflow speed of the propeller, usually the
measured airspeed.

3.2 Dynamic Actuator Models
For dynamic actuator models we use first-order lags with

time-delay and optional rate-limit, which is a common ap-
proach found in the literature [3, 4]. Figure 7 shows the cor-
responding block diagram. The actuator time constant T and
the rate limit (denoted as θ̇max) can either be measured or ap-
proximated using the manufacturers specifications. Typically,
we only model servo motors with a rate limit.
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Figure 7: Actuator Model

4 ANALYSIS

In this section we analyze the accuracy of the previously
described models. Where possible, we validate the models
using measured data from flight tests or other test setups. We
already presented the rudder model presented here in previous
work [5]. Determining the fidelity of the model would require
dedicated wind-tunnel testing which was beyond the scope of
this work. We thus don’t discuss the rudder effectivity model
further in the following analysis.

4.1 Motor model
The motor model consists of two parts: the ESC/BLDC

model and the propeller model. To validate the ESC/BLDC
model, we analyzed flight test data of a tiltwing aircraft, where
the RPM were measured. Figure 8 shows a comparison of the
predicted RPM and the measured RPM. As mentioned pre-

650 700 750 800 850 900 950
2000

4000

6000

8000

10000

12000

Measured
Model

Figure 8: BLDC/ESC model

viously, the ESC/BLDC model assumes a no-load condition,
which naturally does not reflect the actual flight conditions.
Thus, using the KV value specified by the manuafacturer will
always result in an overestimation of the RPM. The relative
error between the expected RPM n̂ and the measured RPM n
is about 20 %. We found similar accuracies when analyzing
wind-tunnel measurement data. The model can be signifi-
cantly improved by adjusting (i. e. lowering) the KV value
to account for the additional load-conditions. However, im-
plementing such an adjustment requires measuring the actual
RPM, in which case the ESC/BLDC model is not needed
anyways. Thus, we recommend using the manufacturers KV

value, if RPM measurements are not available. Note, that this
model fails to represent fast decelerations, because in this case
the propellers are in a windmilling state and are accelerated
by the inflow, which is not represented in the model.

The propeller model (8) consists of two constants K1 and
K2. We assume thatK1 can be accurately determined from the
static motor model (6). K2 however has to be either measured
in wind-tunnel tests or determined using analytical methods.
The approximation of K2 as a function of the propeller di-
ameter and propeller pitch given in (9) can be used as a first
approximation if no other data are available. It is however not
clear if over- or underestimation occurs. In our experience,
K2 only becomes significant at high airspeeds, at which point
the rudder effectivity usually is high enough for the rudders to
act as the primary control surface.

In summary, we expect the motor model to be sufficiently
accurate with a tendency to overestimate the propeller effec-
tivity. Thus, reffering to Figure 2, this should result in fully
damped system dynamics.

4.2 Dynamic actuator model

The rate-limited first-order lag model used to model servo
motors has three parameters: the rate limit θ̇max, the time
constant T and the delay τ . Typically, servo manufacturers
only specify a “servo speed” given as the time needed to travel
a certain angular distance. Unfortunately it is not clear how
exactly this speed specification relates to the servo parameters
given above. Directly using the servo speed as the rate limit
does certainly not result in an accurate model. To find the
model parameters, dedicated tests have to be conducted, for
example by probing the internal potentiometer output of the
servo motor as suggested in [4]. As an alternative, we built a
servo testbench, which also permits us to study the frequency-
dependent behaviour of a servo motor. Figure 9 shows the
commanded angle and the measured servo angle over time. As
is clearly visible, the servo motor cannot reach the commanded
amplitude at this frequency. The rate-limit thus leads to an
attenuation of the input signal. There is also a phase delay
between the commanded and the actual signal. The attenuation
and the phase delay give rise to a Bode plot, where we define
the phase shift as the value which provides the best-fit between
input and output signal.
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Figure 9: Servo dynamics at high frequencies
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Figure 10 shows an example Bode plot obtained by run-
ning the test displayed in Figure 9 for many different frequen-
cies. It is clear, that a low-order linear servo model cannot
capture the magnitude and phase behaviour of the nonlinear
servo model. The sharp edge in the magnitude plot is related
to the nonlinear effects of the rate limit. The time constant T
of the servo actually has little impact on the overall modeling
accuracy. How and if this actuator model should influence the
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Figure 10: Bode plot of servo dynamics

design of outer loop controllers still needs to be investigated.
As a comparison, Figure 10 also shows an approximation of
the nonlinear servo model using a first-order lag, where the
time constant is chosen such that it matches the edge frequency
of the nonlinear servo model. In terms of designing outer loop
controllers, such an approximation might serve as a useful
abstraction of the nonlinear dynamic model to still allow the
application of linear control methods.

In summary, the actuator models presented here are able
to capture the dynamic behaviour of the real actuators well.
In case of electric motors, simple linear models seem to suf-
ficiently capture the relevant dynamics. In the case of servo
motors, the model parameters are hard to derive based on
the typical manufacturer specifications. To apply the analysis
summarized in Figure 3 suitable alternative (linear) actuator
models need to be derived.

5 CONCLUSION

This paper presented our approach to modeling actuators
for use in the framework of INDI. First, by studying the effects
of modeling uncertainty on the poles of the closed-loop system,
the robustness properties of INDI controllers were analyzed.
We confirmed the known stability properties of INDI, but
found that the uncertainty bounds of acceptable closed-loop
performance are (of course) much tighter. With that in mind,
we then considered the typical actuator elements found in
small electric aircraft, namely electric motors with propellers
and rudders actuated by servo motors. We derived suitable

models for these elements, trying to rely as much as possible
and easily obtainable information.

In the following analysis we assessed the resulting model
fidelity using real flight data or measurements where possi-
ble. Special consideration was given to typical servo models,
which feature a nonlinear rate-limit element. We discussed
some effects of this nonlinearity, though further works needs
to investigate how and if these nonlinearities should be consid-
ered in the design of outer loop controllers.
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ABSTRACT

In this paper we present and compare two air-
craft model identification techniques that are
easy to implement and suitable for various air-
plane models, gliders comprised. One of them
relies on flight data, while the second one uses a
virtual model of the plane. To obtain the flight
data, we propose a flight protocol that is simple
to follow. Our analysis show that the methods
find resembling results for similar airspeeds.

1 INTRODUCTION

Autonomous flight of aircraft is a subject that has drawn
attention of both academia and companies since many years
[1]. Several laboratories in this field, such as ETH Zurich’s
Autonomous Systems Lab, the Drone Lab in Hohschule
Rhein-Wall, and the Uninhabited Aerial Vehicle Lab in the
University of Minnesota, as well as companies, such as Par-
rot, DJI and Xiaomi, are investing in research and devel-
opment of new models as this market is promising for the
years to come. As a matter of fact, estimatives of commercial
drone revenues indicate a growth from US$1 billion in 2018
to around US$12.6 billion in 20251. The range of applica-
tions in logistics, surveillance, security and entertainment is
vast and promising, stimulating the development of solutions
both in hardware and in software.

In order to autonomously control an Unmanned Aerial
Vehicle (UAV), it is useful to design a dynamic model that
reproduces its input-output behavior. Such a model might en-
able the realization of a stability analysis and, later, the imple-
mentation of a model-based control strategy. The choice of a
dynamical model takes into account the trade-off between the
simplicity of the model and its precision over the entirety of
the operation point envelope. We seek a model that represents
the real aircraft as close as possible into the operation condi-
tions with affordable complexity. Research of the numerical
coefficients of the dynamical model that will lead to a reason-
able representation of reality is named as model identification.
It can be done with in-flight and off-flight data [2, 3], and may
count on CAD-type softwares (XFLR5, CREO, StarCCM+).

∗Email address: ac.dossantos@unistra.fr
1https://www.tractica.com/newsroom/press-releases/

commercial-drone-hardware-and-services-revenue-to-reach-
12-6-billion-by-2025/

To the best of the authors’ knowledge, in the myriad of
works about aircraft model identification available, surveys
on different flight protocols for identification are not prolific,
so that the beginners in the field have little information on
which are the suitable signals to excite the dynamical sys-
tem. Besides, in the universe of modeling and control of air-
craft, few comparisons between different identification meth-
ods are performed for fixed wing. Among the found tech-
niques, some require expensive setup or firmware modifica-
tions [4, 5]. Therefore, the contributions we aim to provide
through this paper are the following: first, an overview on
the different identification techniques found in the literature
is provided; second, two different strategies for the identi-
fication of the dynamic model of an aircraft are proposed;
and third, a simple flight protocol that provides relevant data
for in-flight identification is established. The aforementioned
identification strategies are convenient for various types of
aircrafts: one of them uses in-flight data that is processed
with well-known system identification numerical tools, and
the other uses a numerical model for the aerodynamic coef-
ficients’ computation. We show that, for the identification
of the relationship between aileron deflection and roll angle,
both techniques lead to models that are close to each other
when subject to the same airspeed.

The present article has the given structure: section 2 de-
scribes the setup used in our study, section 3 details the pro-
posed identification techniques and conveys the numerical re-
sults found, and in section 4, we conclude this manuscript and
evoke some perspectives on future work.

2 TEST SETUP

In this study, the choice was made to use a commercially
available remote-controlled aircraft, i.e. an Epsilon glider2,
with a standard aircraft geometry. This airplane has many ad-
vantages: it is easy to handle, allows gliding and is inexpen-
sive. It has two ailerons, two flaps, one elevator, one rudder
and a thruster. Its dimensions make it easy to implement a
flight controller in order to transform this aircraft into a drone
and recover all flight data. The relative speed of the aircraft
is a fundamental information for model characterization, be-
ing used in aicraft standard control laws. For these reasons, a
Pitot probe was installed on the plane. This probe is the only

2https://www.absolu-modelisme.com/epsilon-competition-
v3-pnp.html
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addition to the original structure of the Epsilon glider. Some
data from our glider in flight can be found in Table 1.

Wingspan 3.5 m Chord 20.4 cm

Mass 3098 g Aspect ratio 20.47

Length 1.5 m Speed 10-25 m/s

Airfoil MH32 Battery LiPo 4S 1400 mAh

Table 1: Glider specifications.

To control our Epsilon glider, we use a Pixhawk board.
It is an independent open-hardware project which supports
multiple open source flight stacks such as PX4 and ArduPi-
lot. The Pixhawk board has several advantages: its accessi-
bility, its low cost and its very active community (scientific
and industrial). In the case of this study we chose to work
with PX4 because its code allows a great adaptability of the
geometries. Through a mixer file, it is possible to develop a
custom firmware that associates each actuator with a move-
ment (roll, pitch and yaw)3. The Epsilon glider uses 7 of the
14 PWM outputs available on the Pixhawk board to operate
the entire drone. A more detailed explanation of the positive
and negative aspects of using PX4 and several other types of
firmware has been done in [6].

3 AIRCRAFT MODEL IDENTIFICATION

In the first part of our study, we are interested in mod-
eling the input-output relationship of our aircraft through a
linear dynamic model. We take as control inputs the con-
trol surfaces: aileron, elevator and rudder; and as outputs, the
plane attitude angles: roll, pitch and yaw. The relations be-
tween control surface inputs and plane angular displacements
in each axis is modeled by transfer functions, and we assume
that the dynamics for each axis are decoupled. This means
that control surfaces aileron, elevator and rudder influence re-
spectively roll, pitch and yaw angles. However, in practice,
the use of one control surface has an influence over other axes
so that, for example, the ailerons produce a yawing moment
in addition to a rolling moment when they are deflected [7].
As a matter of fact, vertical and horizontal stabilizers on the
tail of the plane and differential mixers on flaps tend to reduce
this effect.

3.1 Model structure
The mathematical modeling of an aircraft has been de-

tailed in several sources [1, 2, 3, 8, 9, 10] and can be obtained
through Newton’s law applied to translational and rotational
movements. Here, we present the nonlinear model of a fixed
wing plane that will be linearized around an operation point
to obtain the aileron-roll transfer function. The mathemati-
cal notations summarized in Table 2 and represented in the
aircraft body frame in Figure 1, are borrowed from [8].

3https://dev.px4.io/en/

pn, pe, pd positions north, east, down in inertial frame
u, v, w velocities north, east, down in body frame
φ, θ, ψ roll, pitch and yaw angles
p, q, r roll, pitch and yaw rate angles in inertial frame
M airplane mass
g gravitational acceleration
S wing area
b wingspan
c wing main chord
ρ air density
fx, fy, fz forces north, east, down in body frame
l, m, n roll, pitch and yaw moments in body frame
Jx, Jz moments of inertia
Jxz product of inertia
F bg gravitational forces in body frame
V ba airspeed in body frame
uw, vw, ww windspeeds in body frame
CL, CD, CY ,
Cl, Cm, Cn

nondimensional aerodynamic coefficients

Clδa , Cnδa ,
Cnp , Clp

aerodynamic coefficients

α, β angle of attack and sideslip
δa, δe, δr aileron, elevator and rudder angles

Table 2: Nomenclature table.

3.1.1 Kinematics

The expressions of the state variables relative to the ground
with respect to the ones relative to the body of the plane are
expressed in equations (1) and (2), where cθ and sθ stand for
cos θ and sin θ respectively.



ṗn

ṗe

ṗd


 =



cφcθ cφsθsψ − sφcψ cφsθcψ + sφsψ

sφcθ sφsθsψ + cφcψ sψsθcφ − cφsψ
sθ −cθsψ −cθcψ






u

v

w




(1)


φ̇

θ̇

ψ̇


 =




1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ






p

q

r


 (2)

3.1.2 Dynamic motion

By applying the second Newton’s law, the translational and
rotational dynamic motions can be expressed as in (3) and (4)
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Figure 1: Aircraft with body axes north (roll axis), east (pitch axis)
and down (yaw axis).

respectively:



u̇

v̇

ẇ


 =



rv − qw
pw − ru
qu− pv


+

1

M



fx

fy

fz


 (3)



ṗ

q̇

ṙ


 =




Γ1pq − Γ2qr + Γ3l + Γ4n

Γ5pr − Γ6

(
p2 − r2

)
+ Γ7m

Γ8pq − Γ1qr + Γ4l + Γ9n


 (4)

with 



l =
1

2
ρV 2

a SbCl(β, p, r, δa, δr)

m =
1

2
ρV 2

a ScCm(α, q, δe)

n =
1

2
ρV 2

a SbCn(β, p, r, δa, δr)

(5)

and




Γ1 =
Jxz (Jx − Jy + Jz)

Γ
Γ6 =

Jxz

Jy

Γ2 =
Jz (Jz − Jy) + J2

xz

Γ
Γ7 =

1

Jy

Γ3 =
Jz

Γ
Γ8 =

(Jx − Jy) Jx + J2
xz

Γ

Γ4 =
Jxz

Γ
Γ9 =

Jx

Γ

Γ5 =
Jz − Jx

Jy
Γ =JxJz − J2

xz

V ba =



u− uw

v − vw,

w − ww


 Va =||V ba ||

3.1.3 External forces and moments

The external forces can be divided in three main factors,
namely gravitational, aerodynamic and propeller forces. The

gravitational force is expressed in the body frame as in (6).

F bg =



−Mg sin θ

Mg cos θ sinφ

Mg cos θ cosφ


 (6)

The aerodynamic forces are expressed as a function of the
airspeed relative to the plane (Va defined above) and several
aerodynamic coefficients which depend on the shape of the
foils as well as the attitude of the body with respect to the air
flow. These forces act on the three directions of the aircraft
frame: they oppose the forward movement towards north with
Fdrag, they hold the plane up on the sky with Flift and they
displace the plane laterally with Fy . Usually, the aerody-
namic forces and moments are decomposed in two groups:
the longitudinal one with pitch moment (m in (5)) and its
mechanical efforts expressed in (7), and the lateral one with
its roll and yaw moments (l and n in (5)) and its effort in (8).

Flift =
1

2
ρV 2

a SCL(α, q, δe)

Fdrag =
1

2
ρV 2

a SCD(α, q, δe)

(7)

Fy =
1

2
ρV 2

a SCY (β, p, r, δa, δr) (8)

Finally, the thrust force produced by the propeller depends on
the motor used and the speed of the plane through the air. It
is not detailed here as the aircraft is only used in glider mode
throughout the experiments.

The linearized relationship between aileron displacement
δa and roll angle φ is obtained in the following. Develop-
ing (2), we find that φ̇ = p + q sinφ tan θ + r cosφ tan θ.
Considering

Cl = Cl0 +Clββ+Clp
b

2Va
p+Clr

b

2Va
r+Clδa δa+Clδr δr,

Cn = Cn0
+Cnββ+Cnp

b

2Va
p+Cnr

b

2Va
r+Cnδa δa+Cnδr δr,

θ ≈ 0 and the effects of pitch and yaw rates (q, r) to be
negligible over φ̇, we derive this equation with respect to time
and substitute the expression of ṗ given in (4). Because of
the moments l and n, the aileron deflection δa appears. The
coefficients Cl0 and Cn0

are null for symmetric aircrafts and
the sideslip angle is taken as β ≈ 0 to obtain the following
transfer function:

φ(s)

δa(s)
=

aφ2

s(s+ aφ1
)

(9)

where s is the Laplace operator, aφ2
= 1/2ρV 2

a SbCpδa ,
aφ1

= 1/4ρVaSb
2Cpp , Cpδa = Γ3Clδa + Γ4Cnδa and

Cpp = Γ3Clp + Γ4Cnp .
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3.2 Model identification procedure
3.2.1 State of the art

Flying tests are a cheap way to evaluate the aerodynamics of
a plane. The classical method used for the determination of
aerodynamic coefficients, or aerodynamic derivatives, is the
testing in wind tunnels [11, 4]. It has been used to design the
airfoil of the plane and so, to determine aerodynamic coef-
ficients with satisfactory results. However, this approach re-
quires a wind tunnel big enough to at least a plane wing to fit
in the best case scenario. Other solutions are to use some sim-
ulation tools to deduce the aerodynamic coefficients. Some of
them are freely available, such as XFoil and XFLR54. It can
be a good start to create a model of the plane, evaluate stabil-
ity properties and obtain aerodynamic coefficients.

Other works have dealt with the determination of the aero-
dynamic coefficients through flight tests, such as [12, 13, 14,
15]. Many articles do not have or do not detail a proper flight
protocol to obtain the sought aerodynamic coefficients, but
some of them do. We find, for instance, methods that extract
information from the phugoid mode [4], as well as from the
dutch-roll mode5. Some other works generate a specific input
excitation signal to the control surfaces in order to identify the
plane model. The works [5, 16] propose the use of frequency
sweep with a rich enough range of frequencies to obtain good
estimates of the aerodynamic derivatives.

Furthermore, in order to get a good evaluation of the aero-
dynamic coefficients as a function of the angle of attack, a
proposed method is to let the plane descend with a constant
speed and several different slopes to get the aerodynamic co-
efficients for different angles of attack, either gliding or with
activated thrusters. Paper [17] proposes positive and negative
slopes for the test. Likewise, [18] presents an identification
technique with data obtained from a straight and level path at
a constant throttle setting over a large distance. Particularly
for our plane, it was not possible to measure the airspeed and
activate the thruster at the same time due to the location of the
Pitot probe in the wake of the propeller. Therefore, we per-
formed experiments in glide configuration because the activa-
tion of the thruster creates a perturbation flow which distorts
the sensor’s measurements.

Finally, other methods for determining aerodynamic
derivatives can be based on neural networks, like in [19].
However, a massive amount of training data is required for
a precise identification and a re-initialization for every new
type of aircraft model must be performed as well.

In the sequel, we propose two new (in-flight and out-
flight) aircraft model identification techniques.

4https://sourceforge.net/projects/xflr5/
5http://www.xflr5.tech/docs/XFLR5_Mode_Measurements.

pdf

3.2.2 In-flight data identification

For the in-flight data identification procedure, data is col-
lected during the flight and used for identifying a transfer
function. This strategy has been chosen in several different
papers, some of them employing circular and ascending or
descending trajectories [20, 17] and others, producing a sinu-
soidal input of varying frequency [16, 5]. On the one hand,
the use of circular and ascending or descending trajectories
may have poor frequency content. On the other hand, the use
of frequency-varying sinusoidal inputs requires either chang-
ing the radio controller firmware6 or modifying the autopilot
firmware. Concerning the autopilot firmware modification, a
more user-friendly approach is to use the Matlab Embedded
Coder Support Package for PX4 Autopilots7. Summarizing,
the so-far presented options can be either financially or tech-
nically costly, depending on the user. We have chosen to ex-
plore an approach where the pilot maneuvers the plane in an
arbitrary design that fairly excites the different modes of the
airplane.

The analysis here introduced consists in the characteriza-
tion of the dynamic relationship between aileron deflection
and roll movement by means of a transfer function, but the
technique can be transposed for the identification of other re-
lations, eg. elevator deflection to pitch angle and rudder de-
flection to yaw angle.

Note that, because of the mathematical development that
leads to (9), we seek a transfer function of degree 2. Fur-
thermore, through the current method we are interested in
identifying the unknown parameters aφ1 and aφ2. These pa-
rameters are dependent upon aerodynamic coefficients, air-
speed, air density, coefficients of inertia and aircraft dimen-
sions, therefore the knowledge of aφ1 and aφ2 can lead to the
identification of the unknown aerodynamic coefficients. This
latter identification was not performed in the scope of this
work, but would certainly be a pertinent investigation.

Figure 2: Identification of the transfer function (manual aileron
inputs to roll angle). Image modified from [21].

Figure 2 presents how an aileron input affects the roll an-
gle. The relationship between aileron deflection and aileron
manual inputs (i.e. H1) is characterized off-flight, by measur-
ing with an incidence meter the aileron displacements asso-
ciated to various manual aileron inputs (cf. Figure 3). This
procedure disregards any existing dynamics between manual
aileron inputs and aileron displacements under the hypothesis
that the aileron dynamics is much faster than the aircraft dy-

6https://www.open-tx.org/lua-instructions.html
7https://fr.mathworks.com/matlabcentral/fileexchange/

70016-embedded-coder-support-package-for-px4-autopilots
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namics. From Figure 3, we find that the block H1 can be ap-
proximated by a constant gain of value 0.0466. Once H1 has
been determined, the transfer function H2·H3 is yet to be ob-
tained. This is done with flight tests, from which H1 ·H2·H3
can be identified. Furthermore, from the transfer function (9),
we know that the block H3 consists of an integrator.

In the flight test, we bring the airplane up to a certain alti-
tude and, then, we excite the ailerons arbitrarily in amplitude
and frequency while the airplane is in glider mode, having its
throttle input at zero. Such an aileron input signal is conve-
nient for being easily produced and for allowing rich excita-
tion due to the fast variations of the joystick. To illustrate it,
two realizations of aileron manual input signals are shown in
Figure 4.

Figure 3: Characterization of the relation (manual aileron inputs to
roll angle) through linear regression over the measurements. Image
modified from [21].

Once the experiment is performed, a file of format .ulg
containing several recorded measurements is produced. Two
visualization tools available for interpreting these files are
Flight Review8 and pyulog9. Particularly with the latter one,
it is possible to obtain .csv files that can be read by general-
purpose applications, such as Matlab and Octave. There also
exists a parser, named plotulog10 that uses pyulog and Octave
to display the measurements contained in a .ulg file. In a .ulg
file, one can find information about the plane’s altitude, atti-
tude, airspeed, manual control inputs, actuator outputs, GPS
position, battery voltage, and more. For our study, we use
altitude, thruster, roll and aileron manual inputs to select the
experiment windows and to identify transfer functions.

Experiments were performed in glider configuration,
meaning that the throttle input was null over the test inter-
val. This is particularly important for our case because of the
Pitot probe placement in the wake of the propeller, cf. Fig-
ure 5. The test datasets were, therefore, taken from the time
intervals in which the altitude had an overall decreasing slope
and throttle was deactivated, as shown in Figure 6. In this par-
ticular dataset, the experiments done by exciting the aileron
manual inputs are given by the second, third and fifth grey
areas.

8https://docs.px4.io/en/log/flight_review.html
9https://github.com/PX4/pyulog

10https://github.com/kyuhyong/plotulog

Figure 4: Realizations of arbitrary aileron manual input signals.

Manual inputs, as well as other data, may contain biases.
For our experiments, we must observe whether the aileron
manual input data contains a bias and, if so, remove it, so that
the system identification algorithms can work properly. Fur-
thermore, we know that the transfer function between aileron
displacement and roll angle is of second order and that one of
its poles is an integrator. Because the integrator is an unstable
pole, in the first moment, we identify the transfer function be-
tween the aileron manual input and the time derivative of the
roll angle. The roll angle is a discrete vector, and its discrete
derivative was computed using backward differences divided
by the sampling time.

Once the data intervals are selected, system identifica-
tion can be performed. In our case, we used the Matlab sys-
tem identification toolbox while calling the functions data =
iddata(OutputVector,InputVector,SamplingTime,’Tstart’,0) to
define input-output data objects from excerpts of the flight
data; tf_data = tfest(data,1,0)11 to estimate a transfer func-
tion from data containing 1 pole and no zeros; and fit = com-
pare(data,tf_data) to ascertain how good the estimated trans-

11The function tfest initializes the sought parameters with the Instrument
Variable method and obtains its estimation by the minimization the weighted
prediction error norm.
Source: https://fr.mathworks.com/help/ident/ref/tfest.html
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Figure 5: Plane with highlighted propeller and Pitot probe.

Figure 6: Selection of time intervals for the time experiments indi-
cated by grey areas.

fer function is to reproduce the input-output behavior stored
in the object data. The quantity fit is the "normalized root
mean square (NRMSE) measure of the goodness of the fit be-
tween simulated response and measurement data"12.

Besides the Matlab toolbox, there are several other open
source alternatives to perform system identification, such as
Mataveid13, Octave system identification toolbox14, SIPPY15

or Contsid16.
For approximate airspeeds, each experiment can be used

as training dataset for a transfer function and can be validated
using all the datasets. In this sense, for n datasets, n transfer
functions can be produced, and we can calculate n values of
fit for each transfer function. Among the n identified transfer
functions, we must choose the most suitable to represent the
system dynamics in the time derivative of the roll. For that,
we perform a weighted average of the fit values produced by
each transfer function. Given that the manual aileron inputs
in the radio controller are arbitrary, we can imagine that some
sequences have better quality than others, being able to pro-

12https://fr.mathworks.com/help/ident/ref/compare.html
13https://github.com/DanielMartensson/Mataveid
14https://octave.sourceforge.io/control/overview.html
15https://github.com/CPCLAB-UNIPI/SIPPY/blob/master/

user_guide.pdf
16http://www.contsid.cran.univ-lorraine.fr/

duce a transfer function that better represents the overall be-
havior of the aircraft on the roll axis. These "good quality ex-
periments" have better fit coefficients for most of the transfer
functions, so we can consider that they might give more re-
liable information on the identification process. We consider
an experiment to be of acceptable quality if the sum of its n
fits is positive. Therefore, we can expect that q experiments
are of acceptable quality, q ≤ n. For example, in Table 3
n = q = 3, while in Table 7, n = 10 and q = 9.

tf
ex

1 2 3

1 79.9296 74.7091 82.3494
2 78.7124 75.8576 82.0165
3 79.6587 75.3255 82.6885

sum 238.3008 225.8921 247.0544

Table 3: Values of fit for each transfer function and each experiment
(aileron displacement to time derivative of roll angle).

Therefore, the calculation of a general fit for a transfer
function obtained from a given dataset is given as:

Fd,i,q =

q∑

j=1

fd,i,j

n∑

k=1

fd,k,j

n∑

l=1

q∑

m=1

fd,l,m

(10)

where Fd,i,q stands for the general fit of the i-th transfer func-
tion from the dataset d and fd,i,j is the fit of i-th transfer func-
tion using j-th experiment as validation data. The general fit
values obtained from the time derivative of the roll angle are
indicated as Fφ̇,i,q, with i = 1, . . . ,n, see Table 4.

tf 1 2 3
51.48
s+17.05

58.04
s+18.35

53.2
s+16.32

Fφ̇,i,3 79.1121 78.9534 79.3349

Table 4: General fit values obtained from the derivative of the roll
angle.

Afterwards, we add an integrator to the found transfer
functions and proceed with the fit calculation on roll angle
data. We expect that, out of the n data intervals, r are of ac-
ceptable quality, r ≤ n. Likewise, we can come up with a
weighted average of the fit values produced by each transfer
function and calculate a general fit as in (10), that we identify
with d = φ. These general fit values are, therefore, repre-
sented as Fφ,i,r, with i = 1, . . . ,n. At this point, we have two
general fit values associated to each transfer function: one re-
lated to the roll angle, and the other to its time derivative.
To choose the best transfer function candidate, we perform a
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weighted average given by:

Fi =(
n∑

l=1

q∑

m=1

fφ̇,l,m

)
· Fφ̇,i,q +

(
n∑

l=1

r∑

m=1

fφ,l,m

)
· Fφ,i,r

(
n∑

l=1

q∑

m=1

fφ̇,l,m

)
+

(
n∑

l=1

r∑

m=1

fφ,l,m

)
(11)

Finally, the function with highest value Fi is the best
suitable transfer function to represent the relation between
aileron deflection and roll angle. Recalling Figure 3, to obtain
the transfer function from aileron displacement to roll angle,
we must multiply each transfer function by 1/H1. For this ex-
periment, results are found in Table 5. A comparison between
the expected input-output behavior and the outcome from the
identified transfer functions can be found in Figure 7. Some
of the reasons that contribute to the disparity between the ex-
pected validation curve and the transfer functions’ outcomes
are the numerous simplifications that convert the full airplane
nonlinear system into a linear one, the disregard of wind in-
flow and inter-axes couplings, and the consideration that ev-
ery experiment was performed under constant airspeed.

tf 1 2 3
51.48

s2+17.05s
58.04

s2+18.35s
53.2

s2+16.32s

Fi 77.62 79.53 78.73

airspeed (m/s) 22.22 26.67 31.17

Table 5: Aileron displacement to roll angle identified transfer func-
tions.

To confirm the aforementioned findings, results for data
of a second flight, similar to the previous one and containing
10 experiments, can be found in Appendix A.

3.2.3 Out-flight data identification

XFLR5 is an open-source program that performs foil analysis
and 3D analysis for aircraft using a combination of inviscid
vortex-lattice method and viscous analysis. With this appli-
cation, we can import and modify foils, create a plane model,
generate polar curves for different Reynolds numbers, eval-
uate efforts for different angles of attack, compute stability
properties and aerodynamic derivatives, visualize the move-
ment caused by airplane dynamic modes, and so on. In this
section, we use the software XFLR5 to calculate the aero-
dynamic coefficients of the aircraft. We do so by building a
model of the airplane in XFLR5 (cf. Figure 8) and equipping
it with ailerons.

We ascertain whether the plane is pitching moment inher-
ently stable by performing a Plane analysis and verifying that
the pitching moment (Cm) is a negative-slope function of the
angle of attack. Then, we perform a stability analysis with

17https://youtu.be/U7saOcozpi8

Figure 7: Comparison between the expected input-output behavior
(Validation data) and the outcome from the identified transfer func-
tions (tf1, tf2, tf3).

actuated ailerons. The analysis is recorded in a log file that
provides various information about inertia coefficients, lateral
and longitudinal modes, and aerodynamic coefficients. We
can use this data to either complete a full nonlinear model of
the plane, or to compose an already linearized dyamic model
to compute a transfer function. In the first case, in [8] it is
suggested to use Matlab and Simulink for building the nonlin-
ear model, numerically "trimming" it to a specific trajectory
and computing the associated transfer functions. In the sec-
ond case, one can use open source tools, such as Octave18 or
Python language19, to define a transfer function and evaluate
its properties.

Va 11.46m/s S 0.637m2

b 3.18m Jx 0.869kg/m2

Jz 1.093kg/m2 Jxz -0.003446kg/m2

Clδa
0.3381 Cnδa

0.00005847

Clp -0.6440 Cnp -0.07775

Table 6: XFLR5 stability analysis coefficients for our plane model
and ρ = 1.225kg/m3.

The transfer function associated to the aileron deflection

18https://octave.sourceforge.io/control/function/tf.
html

19https://python-control.readthedocs.io/en/latest/
classes.html
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Figure 8: XFLR5 plane model. Note that the model does not con-
tain the body of the plane. This is a recommended practice to avoid
numerical issues17.

and roll angle is given in (9). Among the terms that compose
this transfer function, ρ is given by the user, and Va, S, b,
Jx, Jz , Jxz , Clδa , Cnδa , Clp and Cnp are calculated by the
XFLR5 stability analysis. The airspeed Va given by the anal-
ysis is the speed that balances the airplane weight. From the
stability analysis ran in the airplane model, we obtain the co-
efficients in Table 6, leading to the resulting transfer function:

φ(s)

δa(s)XFLR5

=
63.40

s(s+ 16.75)
. (12)

We notice that this transfer function presents a gain and
poles that are close to the ones found for in-flight experi-
ments with approximate airspeed (cf. Appendix A, Table 11,
tf9). As a matter of fact, for a difference of airspeeds of
|∆Va| = 0, 41365m/s, we observe a difference between the
gains of 1.2801, or 2% with respect to tf9 gain, and a dif-
ference between the poles of 1.8482, or 10% with respect to
the tf9 non-null pole. However, note that the same does not
happen for different airspeeds. For instance, for an airspeed

Va = 22.2235m/s, we obtain
φ(s)

δa(s)XFLR5

=
238.49

s(s+ 32.49)
,

a very different result from what was obtained in Table 5.

3.2.4 Comparison of in-flight and out-flight identifica-
tion methods

We stress the fact that both in-flight and off-flight identifi-
cation techniques are subject to different types of approx-
imations and have advantages and pitfalls. In the in-flight
case, we can perform relatively simple experiments and use
largely known identification techniques to compute a trans-
fer function. These functions are obtained with the simpli-
fying hypotheses that inter-axes couplings and influences of
the wind are negligible, and that the airspeed is constant. On

the other hand, the current out-flight identification technique
does not even require flight data and can be done by directly
calculating the coefficients of (9). However, this technique is
also subject to simplifications associated to neglecting inter-
axes couplings and the airplane body in the aerodynamic co-
efficients’ calculations. Furthermore, the author of XFLR5
warns that "XFLR5 postulates that the viscous and inviscid
contributions to aerodynamic forces are linearly independent"
and that "the independence hypothesis is not supported by a
theoretical model" [22].

4 CONCLUSIONS AND PERSPECTIVES

In this article we present two different methodologies for
airplane model identification that rely on opensource solu-
tions, we propose a flight protocol of simple execution and we
bring together some of the state of the art techniques in air-
plane model identification. Experiments are performed in or-
der to characterize the relationship between aileron deflection
and roll angle. One of the air plane model identification meth-
ods requires in-flight data and uses the suggested flight pro-
tocol. The other utilizes aerodynamic coefficients obtained
from a virtual plane model. For the same airspeeds, both tech-
niques convey results in the same order of magnitude. This
work aimed to determine a standard protocol for parameter
identification through a set of procedures, preferably simple,
that leads to an accurate modeling of aircraft input-output be-
havior. The use of two independent techniques, in-flight and
off-flight, endorse the accuracy of the found transfer func-
tions.

As future work, we will evaluate these identification tech-
niques with other planes, one of them being a flying wing, and
proceed with the identification with other control surfaces.
Knowledge about the dynamical behavior of different aircraft
will integrate a Matlab model along with the PX4 PI-FF con-
trol structure, so that we will be able to simulate and tune the
controller gains for each plane.
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APPENDIX A DATA FROM A SECOND IN-FLIGHT
EXPERIMENT

tf
ex

1 2 3 4 5

1 66.77 25.51 12.88 -50.26 70.11
2 41.59 35.92 16.82 -41.26 57.58
3 45.08 35.34 16.96 -42.93 60.12
4 -9.62 -29.46 5.71 3.93 -9.54
5 63.36 24.29 13.64 -51.84 73.80
6 64.67 22.90 12.62 -52.16 72.69
7 63.91 27.96 14.85 -49.84 73.09
8 58.15 30.96 16.00 -47.91 69.13
9 63.77 24.43 13.62 -51.73 73.77

10 61.15 20.94 12.47 -53.47 73.33

sum 518.82 218.79 135.57 -437.46 614.08

tf
ex

6 7 8 9 10

1 46.51 70.66 59.93 73.43 74.07
2 38.86 60.44 59.17 58.79 57.14
3 40.01 63.23 62.20 61.82 60.49
4 -0.97 -3.10 -6.44 -4.66 -2.18
5 46.59 72.28 62.32 75.70 77.31
6 46.96 71.17 59.79 75.15 76.94
7 46.22 73.05 64.61 74.99 75.42
8 44.14 70.96 66.49 71.27 71.07
9 46.68 72.31 62.21 75.71 77.25

10 46.53 70.60 59.67 75.15 77.81

sum 401.54 621.58 549.95 637.36 645.32

Table 7: Values of fit for each transfer function and each experiment
(aileron displacement - time derivative of roll angle). The columns
in black color contain experiments of acceptable quality.
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tf 1 2 3 4
23.68
s+161.9

1.598
s+15.61

1.269
s+11.41

−0.03452
s+6.141e−05

Fφ̇,i,9 63.3592 52.2972 54.8808 -6.1620

tf 5 6 7 8
2.732
s+17.55

4.439
s+28.35

2.517
s+17.25

1.552
s+11.37

Fφ̇,i,9 64.7947 64.1104 64.9631 62.4581

tf 9 10
2.885
s+18.6

2.93
s+17.91

Fφ̇,i,9 64.8382 63.6704

Table 8: General fit values obtained from the derivative of the roll
angle.

tf
ex

1 2 3 4 5

1 95.54 -112.19 -167.79 -56.05 -127.79
2 64.80 -40.21 -103.34 -37.89 -60.41
3 68.47 -51.15 -115.93 -40.59 -73.29
4 65.90 -70.51 34.93 86.89 -344.35
5 93.52 -123.80 -181.93 -58.53 -142.94
6 95.20 -126.98 -183.58 -59.50 -144.37
7 89.73 -107.92 -167.18 -54.75 -127.24
8 81.93 -90.33 -152.85 -50.23 -112.27
9 93.69 -123.06 -181.04 -58.39 -141.94
10 93.49 -136.76 -193.92 -61.59 -155.73

sum 842.3 -982.9 -1412.6 -390.6 -1430.4

tf
ex

6 7 8 9 10

1 4.88 -34.98 61.23 -32.70 5.90
2 8.97 -11.55 63.55 2.01 20.14
3 8.52 -15.59 67.16 -4.13 17.92
4 29.45 -43.87 -3.58 -78.06 -39.60
5 3.34 -40.45 61.43 -41.43 1.38
6 3.18 -41.17 59.62 -42.21 1.03
7 4.86 -34.48 65.01 -32.49 5.96
8 6.13 -28.88 68.84 -24.30 9.63
9 3.44 -40.09 61.48 -40.84 1.71
10 1.97 -45.44 57.81 -48.84 -2.59

sum 74.7 -336.5 562.6 -343.0 21.5

Table 9: Values of fit for each transfer function and each experi-
ment (aileron displacement - roll angle). The columns in black color
contain experiments of acceptable quality.

tf 1 2 3 4
23.68

s(s+161.9)
1.598

s(s+15.61)
1.269

s(s+11.41)
−0.03452

s(s+6.141e−05)

Fφ,i, 4 76.8858 60.9124 64.2674 36.5376

tf 5 6 7 8
2.732

s(s+17.55)
4.439

s(s+28.35)
2.517

s(s+17.25)
1.552

s(s+11.37)

Fφ,i, 4 75.6831 75.9327 75.0408 72.2169

tf 9 10
2.885

s(s+18.6)
2.93

s(s+17.91)

Fφ,i, 4 75.8080 74.1839

Table 10: General fit values obtained from the roll angle.

tf 1 2 3 4
530.9

s(s+161.9)
35.83

s(s+15.61)
28.45

s(s+11.41)
−0.7739

s(s+6.141e−05)

Fi 66.8336 54.5100 57.2918 4.8055

Va (m/s) 11.1412 8.7697 13.2818 13.7666

tf 5 6 7 8
61.25

s(s+17.55)
99.52

s(s+28.35)
56.44

s(s+17.25)
34.79

s(s+11.37)

Fi 67.5914 67.1470 67.5516 64.9647

Va (m/s) 11.1168 11.5762 10.7339 9.7307

tf 9 10
64.68

s(s+18.6)
65.69

s(s+17.91)

Fi 67.6558 66.3708

Va (m/s) 11.0446 12.0568

Table 11: Aileron displacement - roll angle identified transfer func-
tions.
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Control and Guidance of an Autonomous Quadrotor
Landing Phase on a Moving Platform

M. S. Ale. Isaac∗, A. Naghash, and S. H. Mirtajedini
Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran

ABSTRACT

This summary describes an application of a
vision-based implementation of three control al-
gorithms to a rather light quadrotor to land on
a moving platform with a random path and un-
known velocity. Comparing sliding mode (SM),
PID, and model reference adaptive (MRAC) con-
trollers in both MATLAB SimScape synthetic
space and real-world, we proved the superiority
of the former one. The guidance method is an on-
line tracking which uses a linear regression to es-
timate the landing point. We used a state-of-the-
art visual odometry algorithm, SVO, augmented
by IMU to correct the path angle. No prior infor-
mation about the quadrotor or the landing plat-
form is required.

1 INTRODUCTION

Quadrotor landing phase has been a salient research chal-
lenge in recent years. The challenge will arise when the land-
ing platform is a moving object which constantly changes its
course on a randomly generated path. By enabling a quadro-
tor to land on such a platform in a robust and smooth manner,
this will be more prepared to be deployed by moving ma-
chines, such as next generation of autonomous cars, boats an
even planes. Besides, This ability has various benefits, in-
clude, faster charging for more flight endurance, mapping,
search, rescue, and assistance mobile objects [1, 2, 3]; explic-
itly, this has been used in robotic challenges like IMAV com-
petitions. The bottlenecks contain, first, detecting the plat-
form and find its position, as well as estimating a reliable spot
to be considered as a goal for our robot to touch the moving
platform; second, implementing a control algorithm which is
able to track the platform and in the meantime, immune to
disturbances that, in practice, are imposed to the plant during
the landing.

1.1 Related Work
There are a few thrived projects in the same submission,

Lee et al. ponder a line of sight (LOS) algorithm for the guid-
ance section, compounding with a conventional controller
(e.g. PID) will flourish [4]; however, following in this situa-
tion requires a fairly large camera with a wide field of view,

∗The authors are with the Micro Air Vehicle Group, Amirkabir University
of Technology––http://autmav.com Email address(es): sadegh al@aut.ac.ir,
naghash@aut.ac.ir, sehomi@aut.ac.ir

in order not to miss the moving platform, and consequently,
is not operational easily. Falanga et al. worked on a cas-
cade controller (compounding of two PID controllers with the
feedback of states, velocities, and accelerations), compiled
on an onboard computer, equipping with state estimation and
path planning [1], but lacking random target estimation.

1.2 Contribution
In this paper we propose a quadrotor system which de-

tects, follows, and lands on a moving platform just using an
onboard computer. The merit of our work is summarized in
measuring the platform’s random positions online and then,
fitting a convenient curve on previous points. By calculating
the polynomial coefficient on the curve, it will produce the
new point, based on the time step and estimated velocity of
the platform. No prior information about neither velocity nor
position and not even the path of the moving platform or the
quadrotor is needed. Every point under the quadrotor will be
covered and mapped, then the localization process will start.

2 SYSTEM OVERVIEW

Here, we will describe following items:

• Control and guidance;

• Position estimation;

• Landing platform detection;

• Virtual platform;

• Experimental platform.

2.1 Control and Guidance
This subsection is devided into 4 segments:

• Sliding Mode algorithm;

• PID algorithm;

• MRAC algorithm;

• Navigation.

Comparing aforementioned controllers, we investigate which
ones fulfill the following requirements: stability in both de-
scending and landing phase, resistance to the probable noises,
either internal or external, faster response to a sudden and
random path deviation, and ability to thrust again right after
landing. Consequently, we put our attention into considering
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all nonlinear terms of the system, not just in controllers nor
the main dynamic model of the system, except the PID con-
troller, which has a linear base and so conducive to linearizing
the system. Worthwhile, the main strategy for compounding
each controller with the navigation algorithm is based on im-
mediate reaction of the plant to fly over the moving platform
and keep lock its sight on until landing. Besides, the con-
trollers are divided into inner and outer loops [5]; the refer-
ence values are xref , yref , zref , and ψref which are deter-
mined by the guidance law and computing the angle of plant
trajectory, using tangent inverse. Moreover, state variables, x
and y are controlled in the outer loop and in counterpart φ,
θ, and ψ are controlled in the outer loop, and z is controlled
separately, but not in this division. Thereby, the slow dynamic
equations could be considered [3, 6] as:

{
ẍ = Fz

m (cosφ sin θ cosψ + sinφ sinψ)

ÿ = Fz
m (cosφ sin θ sinψ + sinφ cosψ)

(1)

Solving equations (1), we have:
{

φdes = m
Fz

(ẍ sinψ − ÿ cosψ)

θdes = m
Fz

(ẍ cosψ + ÿ sinψ)
(2)

Equations (2) state that the outer controller loop could be non-
linear and the desired attitudes depend on the thrust force,
longitudinal and lateral accelerations, and yaw angle; if so,
using a PD controller instead all above will satisfy our cri-
teria; however, using PID, MRAC or SM methods have la-
tency because of their integral components and is so against
our goal to be fast responding in transient phase. For fast
dynamic [3] we have:





z̈ = U1

m (cosφ cos θ)

φ̈ = θ̇ψ̇ Iy−IzIx + Jr
Ix
θ̇Ωr + l

Ix
U2

θ̈ = φ̇ψ̇ Iz−IxIy + Jr
Iy
φ̇Ωr + l

Iy
U3

ψ̈ = φ̇θ̇ Ix−IyIx + 1
Iz
U4

(3)

U1 is the total thrust force which equals Fz and other
U2, U3, andU4 are the roll moment, pitch moment, and yaw
moment respectively. Meanwhile, Jr is the rotor gyroscopic
inertia and Ωr is the rotor angular velocity.

2.1.1 Sliding Mode Algorithm

To compute the switiching surface for any system with the
degree of n, we have:

x(n) + f(x) = u→ S (x, t) =

(
d

dt
+ λ

)n−1

e (4)

The quadrotor is a second order system, consequently, all the
nonlinearities which refer to the f(x) equal zero [7]. Com-
puting the equal energy for reaching the switching surface

ueq , and determining total energy u we have:




ueq : Ṡ = 0→ x(n−1) − x(n−1)
d + λė = 0

→ ueq = x(n−1)
d − λė

u = ueq −Ktanh (S)→ u = x(n−1)
d − λė−K tanh(S)

(5)
K value refers to a discontinuous component against system
noises, which is calculated from try and error, means if it
more than a determined magnitude, the system will be sta-
ble. This is derived from the fact that how far negative is
the Lyapunov function derivative, it will converge to a value
more negative and so will be stable faster. In addition, instead
of sign, we use tanh function to make the chatterings of the
switching surface more smooth, so nor requires integration of
swithcing surface. Totally, the controller will be designed as
hereunder:





ẍd = −λėx −K tanh (Sx)

ÿd = −λėy −K tanh (Sy)

U1 = m (z̈d − λėz)−K tanh (Sz)

U2 = Ix
l (φ̈d − λėφ)−K tanh (Sφ)

U3 =
Iy
l (θ̈d − λėθ)−K tanh (Sθ)

U4 = Iz(ψ̈d − λėψ)−K tanh (Sψ)

(6)

λ values are computed in the simulation and then corrected
by implementation results.

2.1.2 PID Algorithm

Using a PD as outer loop and PID for inner one, we have:




ẍd = Kdx ėx +Kpxex

ÿd = Kdy ėy +Kpycy

U1 = Kdz ėz +Kpzez +Kiz

∫
ez

U2 = Kdφ ėφ +Kpφeφ +Kiφ

∫
eφ

U3 = Kdθ ėθ +Kpθeθ +Kiθ

∫
eθ

U4 = Kdψ ėψ +Kpψeψ +Kiψ

∫
eψ

(7)

The two former equations are related to the outer controller
loop which helps us computing the desired longitudinal and
lateral accelerations.

2.1.3 MRAC Algorithm

The adaptation law is based on the trajectory following. We
introduce a second order system which must adapt the model
to the reference model [7, 6]. The chosen model, reference
model, and the adaptation law are, respectively:

G(s) =
1

s(s+ a)
(8)
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Gm(s) = w2

s2+2ξωs+ω2

→ ẍm + 2ξω︸︷︷︸
a1

xm + ω2
︸︷︷︸
a2

xm = ω2
︸︷︷︸
b

uc (9)

u = θ1uc − θ2ẋ− θ3x (10)

a is the estimation parameter to adapt our model to the ref-
erence model. ξ and ω are damping ration and system fre-
quency, and θis are values we compute to update the adapta-
tion law. Differencing equations (5) and (6), adding a1ẋ+a2x
term to both sides of the equation, and simplifying, we have:

e =
1

s2 + 2ξωs+ ω2



[
ẋ −x uc

]


θ̃2

θ̃3

θ̃1





 (11)

The system is not strictly positive real (SPR); therefore, we
cannot use Kalman Yakubovich Lemma [5] and use state
space equations to solve the system. Hence:

A =

[
O6×6 I6×6

−a2 −a1

]
=

[
O6×6 I6×6

−w2
i −2ξiωi

]
(12)

ξi and ωi magnitudes are exploited by various tests. To cal-
culate errors in state space form, we have:

[
ė
ë

]
= A

[
e
ė

]
+B

[
−ẋ −x uc

]
︸ ︷︷ ︸

Φ̄



θ̃2

θ̃3

θ̃1


 (13)




˙̃
θ2

˙̃
θ3

˙̃
θ1


 = −ΓΦ̄TBTP

[
ė
ë

]
(14)

Γ and P are symmetric positive-definite matrixes which
defined to satisfy ATP + PA = −Q, and Q is the same as
P . The Lyapunov candidate function proof of stability comes
in the Appendix.

2.1.4 Navigation in cases of visible platform and temporar-
ily lost platform

We use a simple method for both tracking and landing on
moving platform. Explicitly, because of unknown velocity or
path pattern of the object, we consider a minuscule compo-
nent of the time, in order to reduce computation, especially
in implementation. For sake of estimating the touch down
spot (the estimated landing point), a second order regression
is implemented, which takes a buffer of last 15 positions of
the platform trajectory into account, and as a result, the coor-
dinates on the fitted curve at a certain number of time-steps
(in our case, 5) after the current platform position is consid-
ered as the estimated landing point. In other words, it is ex-
pected that the quadrotor and the moving platform will meet,
on this calculated position. Calculating such a point seems

to be an obligation due to the fact that in vision-based, pre-
cise landing, scenarios such as the present work, the platform
will get out of sight as soon as the camera gets closer than a
threshold (in our case, it is 0.3 m). From this point onward,
the robot needs to blindly reach the estimated landing point
and the reliability of this estimation as well as the accuracy
of both, robot estimated position and platform detected posi-
tion comes into play, which will be explained in proceeding
sections.

2.2 Position Estimation
A very necessary objective of our drone is to maintain

its stability even in case of losing its landing target so posi-
tion control is still active and the procedure of testing will be
less hazardous. The prerequisite of a great position control is
to have position feedback. Many common sensors used for
having position feedback are GPS, IMUs, Infrared Markers,
Radio Beacons and motion capture systems (MOCAP). For
a quadrotor to be truly autonomous, all computations of po-
sition estimation must be onboard and since we are planning
for the precise landing on a moving platform, the position
feedback also needs to be both precise and enough accurate.
Here we implement one of the most absolute methods of po-
sition and attitude estimation, close to ground or rather fea-
tureful environments, referred to as visual inertial odometry
(VIO) methods. A comparison between state-of-the-art VIO
approaches could be found in [1].
Here we chose the Semi-Direct Visual Odometry (SVO) [8]
algorithm for position estimation of our quadrotor. This al-
gorithm is compiled on an Odroid XU4 companion computer
and a forward-looking camera. The reason for the forward-
looking camera setup is to prevent any position estimation
error when the drone is close to the landing platform because
in down-looking setup most of the camera field of view will
be filled with the platform itself.
We have tested the precision of the system with two configu-
rations in a scenario close to our objective, to test the limits of
the estimation algorithm for our specific setup. The scenario
is moving the camera on a sine-like path close to the ground
with changing the camera heading so that the camera view is
being changed constantly.

• First configuartion: the algorithm runs in monocu-
lar configuration and the trajectory in the XY plane is
shown in ”Figure 3”. The trajectory is compared to
a ground truth waypoint path and the result is show-
ing that there is a huge difference between two tra-
jectories. The SVO trajectory is scaling down as the
camera is moving further which could result in any un-
predictable behavior of the control system. Similar is-
sues have been reported for implementations of the al-
gorithm with different camera models, especially for
non-global shutter cameras. This could be explained
by the blurriness occurring in images when the non-
global shutter cameras are rotating and changing the
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view and the algorithm is unable to estimate the cam-
era rotations properly. Generally, the visual odometry
(VO) has problems in ”Pure Rotation” movements. A
discussion about it can be found in [9, 10].

• Second configuartion: one way to work around the
errors due to camera rotations and changes in camera
view (especially in non-global shutter cameras) is the
integration of an IMU system as the SVO has its own
extended Kalman filter (EKF) [8] running at 200 Hz.
So in this configuration, an IMU data at 150 Hz is pro-
vided to the filters and with the same dataset, the results
are shown in Figures 4, 5. Note that the trajectory of
SVO is more close to the ground truth waypoint path
and its scale is not decreasing as the camera moves fur-
ther. Only the trajectory is slightly getting away from
the Ground Thruth but still, this position feedback is
good enough for controlling the quadrotor positions in
landing phase because the quadrotor target is to follow
the landing platform and because of that, even small
drifts in position will not make our precise landing fail.

2.3 Landing Platform Detection
For the purpose of detecting the Moving Platform, a

down-looking camera is mounted on the quadrotor capturing
images at a rate of 10 Hz. The target on the moving platform
must be a standard and easy to detect marker, so we have
used an Augmented Reality markers board (AR), which is
shown in fig 4, and the ArUco module of OpenCV library[5]
to detect both the position and orientation of the landing plat-
form in the down-looking Camera frame {Cd} By perform-
ing a homogeneous transformation from down-looking cam-
era frame {Cd} to the forward-looking camera {Cf} (the
camera which is used for SVO) and then using another homo-
geneous transformation from forward-looking camera {Cf}
to the world frame {W}, obtained from position estimations
of SVO, we will have the landing platform position in the
world frame.

2.4 Virtual Platform
We built a complete process of our mission in the power-

ful MATLAB SimScape simulator. All the three controllers,
moving platform, and cameras are simulated to compare their
performance and achieve a precise implementation [11, 12].
Meanwhile, most of the controllers’ gains are set in the sim-
ulator and then, corrected in real-world. Besides of the pros
of MATLAB simulator, such can be easily done, friction and
noise included, model-based dynamics and so forth, there are
a few defects, like weak and difficult collision avoidance sim-
ulation, no detection probability. Considering all merits and
demerits we suppose optimum detection of the downward
camera and make the dynamic model of the quadcopter in
the platform. No dynamic equation is needed to build the
model, just by exporting from CATIA or SolidWorks, either
a .xml or .STL file, to the MATLAB software. Based on

our knowledge, the sliding mode then, PID, and finally the
MRAC controllers keep the plant more stable, respectively.
Specifically, when the stochastic noises grow or the object
velocity increases, or even when the standard deviation of the
random path (σ) moves upright, comparison result will be
more observable that the sliding mode controller works really
spectacular. Some of the best virtual results are shown in Ta-
ble 1, and Figure 1 shows the the drones which are based on
three controller methods in the simulator; besides, the results
of Simulink with 2.5m/s are shown in Figures 6, 7:

A (m/s) Controller B (cm) C (cm)

0.5
SM
PID

MRAC

8
10
15

2
3

13

1.5
SM
PID

MRAC

10
15
26

8
12
15

2.5
SM
PID

MRAC

11
14
66

13
17
82

Table 1: Results of the virtual test. Note that A refers to the
moving platform velocity, B mentions the longitudinal devia-
tion with the platform center, and C refers to the lateral devi-
ation with the platform center.

Figure 1: Comparison among virtual drones with three con-
trollers in MATLAB Simscape dynamic space. The red drone
refers to PID, the green one to SLD, and blue drone to MRAC
controller.
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2.5 Experimental Platform

In this submission, we put all our attempts into finding
the best practical controller; regardless of any experimental
result, the PID works perfect because of fewer coefficients
we must tune and thanks to the proper sensors giving feed-
back of position, velocity, and accelerations. The most chal-
lenging section of implementation we faced, could be sum-
marized in localization of the drone and if so very well, we
will be able to do various missions. Therefore, we could not
test very random cases because a rectangular or a circular ran-
dom, supposedly, are difficult for our algorithms so we lim-
ited deviations. Moreover, when the trajectory of the object
is random, its velocity impacts a lot on detection because it
might conducive to losing the platform and causing miscal-
culation even in the landing process of the drone, so we did
not test with more than 1.5m/s velocity. Some of the best
results are shown in Table 2 and Figures 8, 9, 10, 11; also, the
landing platform pattern is shown in Figure 2.

A (m/s) Controller B (cm) C (cm)

0.5
PID
SM

MRAC

7
10
25

5
5

16

1.5
PID
SM

MRAC

12
21
30

10
12
42

Table 2: Results of the practical test in real-world. A refers
to the moving platform velocity, B refers the longitudinal de-
viation with the platform center, and C refers to the lateral
deviation with the platform center.

3 CONCLUSION

In this paper, we introduced a fully autonomous quadrotor
landing on a moving platform even if it moves on a random
path. During the work, three control algorithms are compared
to find the best one. To the best of our knowledge, compound-
ing of a PD controller (for inner loop) and SM (for outer one)
does better in the simulation, but a little lax in the implemen-
tation because of its inordinate coefficients those cannot be
tunned practically wholly. Notwithstanding, the fair perfor-
mance of the SM and MRAC, PID is hardly deniable; this
works perfectly in both virtual and real-world.
To continue, we compiled a fantastic visual odometry algo-
rithm (SVO) on the plant for mapping, detecting the ARCode
installed on the surface of the moving platform, and tracking.
There is no need for any prior information about platform ve-
locity, quadrotor location, and even the path line. No need to a
special strategy, when missing the object; just using a simple
2D regeression based on last considerations and estimating a
new point as landing target.

Figure 2: The ARCode icon sheet which is installed on the
moving platform to be detected
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APPENDIX A: DATA

The proof of Lyapunov statbility comes hereupon, we
prove that with the chosen P · D· candiadate function, its
derivative will be negetive. The Lyaponov candidtae is simi-
lar to one used in [3].

V̇ = ėTPe+ eTP ė+ tr
(

˙̃
θTΓ−1θ̃ + θ̃TΓ−1 ˙̃

θ
)

(15)

tr in equation (14) refers to the trace function, means the
summation of main diagonal terms of the matrix.

→ V̇ = (ẋ− ẋm)
T
Pe+

eTP (ẋ− ẋm) +
Γ−1θ̃T d(θ̃+θ̃)

dt

(16)

→ V̇ =




Ame︷ ︸︸ ︷
Amx−Amxm +

αθ̃︷︸︸︷. . .



T

Pe+

eTP
(
Ame+ αθ̃

)
+ 2Γ−1θ̃T dθ̃dt

(17)

→ V̇ = eTATmPe+ θ̃TαTPe+

eTPAme+ eTPαθ̃ + 2Γ−1θ̃T dθ̃dt

(18)

→ V̇ = eT

−Q︷ ︸︸ ︷(
ATmPe+ PAme

)
+θ̃TαTPe+

(
θ̃TαTPe

)T
︷ ︸︸ ︷
eTPαθ̃ +2Γ−1θ̃T dθ̃dt

(19)

→ V̇ = −eTQ︸ ︷︷ ︸
N ·D·

+ 2θ̃T

(
ΓαTPe+

dθ̃

dt

)

︸ ︷︷ ︸
=0

(20)

To prove strictly negetiveness of the equation (19),
2θ̃T

(
ΓαTPe+ dθ̃

dt

)
must equals zero. The first term is

N ·D· clearly because we have supposed the negetiveness of

the Q matrix, before. Hence, either θ̃T = 0 or ˙̃
θ = −ΓαTPe

is true. The former phrase cannot be true so the latter is cor-
rect.
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Figure 3: The trajectory of camera vs. the ground thruth path
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Figure 4: The trajectory of camera + IMU vs. the ground
thruth path
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Figure 5: 3D trajectory of camera vs. the ground thruth path

Figure 6: The 3D comparison of three controllers with
2.5m/s velocity in MATLAB Simscape

Figure 7: The XY comparison of three controllers to the land-
ing platform with 2.5m/s velocity in MATLAB Simscape

Figure 8: The XY errors of the quadrotor center with the mov-
ing platform center with 0.5m/s velocity with PID controller

Figure 9: The XY errors of the quadrotor center with the mov-
ing platform center in with 0.5m/s velocity with sliding con-
troller

Figure 10: The XY errors of the quadrotor center with the
moving platform center with 1.5m/s velocity with PID con-
troller

Figure 11: The XY errors of the quadrotor center with the
moving platform center with 1.5m/s velocity with sliding
controller
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Design and Testing of a Vertical take-off and Landing
UAV optimized for carrying a Hydrogen Fuel-cell with

Pressure Tank.
Christophe De Wagter, Bart Remes, Rick Ruisink, Freek van Tienen and Erik van der Horst∗

Micro Air Vehicle Lab, Delft University of Technology, Kluyverweg 1, 2629HS Delft, the Netherlands

ABSTRACT

Flight endurance is still a bottleneck for many
types of UAV applications. While battery tech-
nology improves over the years, for flights that
last an entire day, batteries are still simply in-
sufficient. Hydrogen powered fuel-cells offer
an interesting alternative but pose stringent re-
quirements on the platform. The required cruise
power must be sufficiently low and flying with
a pressurized tank poses new safety and shape
constraints. This paper proposes a hybrid tran-
sitioning unmanned air vehicle that is optimized
towards carrying a hydrogen tank and fuel cell.
Hover is achieved using twelve redundant pro-
pellers connected to a dual CAN network and
dual power supply. Forward flight is achieved
using a tandem wing configuration. The tan-
dem wing not only minimizes the required wing
span to minimise perturbations from gusts dur-
ing hover, but it also handles the very large pitch
inertia of the inline pressure tank and fuel cell
very well. During forward flight, eight of the
twelve propellers are folded while the tip pro-
pellers counteract the tip vortexes. The propul-
sion is tested on a force balance and the selected
fuel-cell is tested in the lab. Finally a testing pro-
totype is built and tested in-flight. Stable hover,
good transitioning properties and stable forward
flight were demonstrated.

1 INTRODUCTION

The advent of Unmanned Air Vehicles (UAV) offers many
great new opportunities for surveying and inspection tasks.
Many tasks however are requiring flight times of several
hours, as well as vertical take-off and landing [1, 2, 3, 4]. To
achieve very efficient forward flight, fixed wings have clearly
shown to be the most efficient way of flying [5]. But the re-
quirement for a runway or launch and recovery system limits
their applicability [6].

Several hybrid concepts have been proposed to merge the
advantages of hovering aircraft with efficient fixed wing air-

∗Email address(es): c.dewagter@tudelft.nl

Figure 1: NederDrone2 with 12 propellers of which 8 are
fold-able and stop during forward flight. The 4 tip propellers
remain active during forward flight and have a higher pitch
for efficient fast flight. The large fuselage can accommodate
a 9 liter pressure tank and a fuel-cell.

craft [7, 8, 9]. The DelftaCopter [7] has proposed a con-
ventional helicopter rotor combined with delta-wings. While
good efficiency was obtained, the concept had a high center of
gravity and many single points of failures, which is not ideal
when more dangerous fuels are used. [10] has proposed to
use coaxial rotors to simplify control and remove the need for
tip propellers, but does not solve the issues of the previous
concept. Several researchers have proposed tilt-wing UAV
[9, 11]. These concepts are great but have difficult control
properties and require a complex wing actuation mechanism.

Many tandem tailsitter concepts have been proposed for
a long time already [12, 13]. [14] presents the design of a
tandem tailsitter and its control. [15] also describes the design
and control of tailsitter tandem wing UAV. While the tandem
configuration offers good properties for the installation of all
hydrogen systems, the fact that it sits upright and can fall over
is seen as a problem for a fuel-cell VTOL long endurance
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aircraft, especially when operating on moving ships.
The current paper presents the NederDrone concept. It

consists of an angled tandem wing with 12 propellers for the
hover, 8 of which are fold-able during forward flight. The
concept was named NederDrone and is shown in Figure 1.

Section 2 explains the design choices behind the concept.
Section 3 investigates the required propulsion. Given the de-
sign specifications, the selected fuel-cell will be tested in Sec-
tion 4. Finally Section 5 presents flight test results of the
concept using battery power. Conclusions are presented in
Section 6.

2 CONCEPT OPTIMIZATION

While the typical application requirements for marine op-
erations are very long flight and vertical take-off and landing,
the fuel-cell poses several extra design requirements. Safety
is amongst the top requirements. The fuel-cell being fuelled
by a 300 Bar carbon pressure tank, avoiding crashes is pri-
mordial. This leads to a requirement of redundancy in all
flight controls. No single electronic point of failure was al-
lowed is the design.

Hovering is achieved using 12 independent propellers.
This allows the failure of at least 2 propellers without en-
dangering the flight. If more propellers are to fail, then the
concept can still fly in forward flight, given sufficient alti-
tude at the time of failure. To overcome electrical failures in
hover, every Brush-less Electronics Speed Controller (ESC)
of every motor receives power from the 2 power busses and
can fly with a single power bus. The command cables are
also doubled. On top of that, monitoring of all ESC was re-
quired. This quickly amounted to an overwhelming amount
of control cables. Therefore a dual Controller Area Network
(CAN) control bus was designed through the airframe. To
convert the commands to normal ESC pulses, special elec-
tronics was designed that accepts commands from any CAN
bus and sends status information back for health monitoring.
The PCB design is shown in Figure 2. The motor controllers
are housed inside 3D printed motor mounts made from ABS
plastic, which blend nicely into the wing and let the propellers
fold nicely over the controller housing (See Figure 11).

Figure 2: Dual power bus and dual CAN control network
brushless electronic speed controller.

Also during forward flight, the heavy, bulky and long hy-
drogen pressure tank places a lot of constraints on the air-

frame. The fuel-cell itself also made the fuselage longer. The
very large moment of inertia of the fuselage in the pitch di-
rection that results from this spread of mass requires a very
large horizontal stabilizer. In hover, the wings can catch tur-
bulence and complicate the hover. To reduce this effect to the
minimum, shorter wings are better and create smaller perturb-
ing torques. Both previous constraints lead to the choice of a
tandem wing configuration with equal wing span. This max-
imizes longitudinal stability, minimizes the grip gusts have
on the airframe during hover and it yields optimal structural
properties.

Finally, to allow a stable passive attitude after the landing,
the tailsitter concept was discarded .The long pressure tank
would make the risk of tipping over too high. Instead, after
landing the fuselage sits stable and flat on the ground. To nev-
ertheless allow autonomous take-off without the need for ex-
tra support, the wings were pitched up, hereby slightly point-
ing the propellers up while on the ground. This makes sure
the propeller tips have sufficient clearance from the ground.

Table 1 shows the final design specifications of the Ned-
erDrone2. A schematic view is shown in the Appendix Fig-
ure 11.

Table 1: Specifications of the Nederdrone2.

Precision Recall
Wingspan 2.24 m
Length 1.32 m
Airspeed 17 m/s nominal
MTOM 8 kg
c.g. 32 cm from leading edge

3 PROPULSION OPTIMIZATION
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Figure 3: Thrust in function of power for a selected combina-
tion of propellers.
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One important aspect of the forward flight is that 8 pro-
pellers are folded while the 4 tip propellers provide the re-
quired thrust. The tip propellers are placed such that they
counteract the tip vortexes. But since the choice of fold-
able propellers is limited, an own folding mechanism was
designed. To validate that the selected propeller and motor
combination was sufficient for flight, static balance testing
was performed.

0 50 100 150 200 250
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8

9

10

Figure 4: Thrust efficiency in function of power for a selected
combination of propellers.

A Hacker A20-38L motor was designed to fit the selected
propellers. Figure 3 presents the results of thrust measure-
ments on a static test setup. Figure 4 shows the efficiency
estimates associated with it. The selected propeller is the DJI
propeller with a custom folding mechanism. The results show
it performs almost as well as the best rigid propellers. The
total available thrust with 12 motors was shown to be 12 kilo-
grams. This leaves a factor of 50% given the design weight
of 8 kg.

4 FUEL CELL TESTING

With the airframe and propulsion design figures, a suit-
able fuel-cell was searched. The Intelligent Energy 800 Watt
cell was selected for availability, price and specification rea-
sons. To verify the data-sheet specifications, a laboratory test
setup was created in which the power output could be evalu-
ated. Figure 6 shows the test setup with the fuel cell. Specifi-
cations of the cell are given in Table 2.

The fuel-cell was found to deliver the 800 Watt reliably.
However, when more power than 1100 Watt was used, the
total fuel-cell system would shut down. It is therefore crucial
to limit the current drawn from the system.

While fuel cells can provide power for a very long time,
they provide only little power at a time. To provide sufficient
power during the power hungry take-off, landing and hover

Table 2: Specifications of the Fuel-Cell.

Precision Recall
Max Cont Power 800 Watt
Max Peak Power 1400 Watt
Mass 880 gram
Output voltage 19.6 to 25.2 Volt
Size 196 x 100 x 140 mm

Figure 5: Testing of the fuel-cell in the lab and measuring the
current and voltage output under different loads.
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Figure 6: Testing of the fuel-cell in the lab and measuring the
output power. When more than 800 Watt is required, the aux-
iliary battery starts (yellow) to deliver power as well. Every
time the power required became larger than 1100 Watt, the
system would shut down.
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phases, an extra battery is added to the total system. This
Lithium-Polymer battery is sized to allow 5 minutes of hov-
ering and is recharged during low power cruise flight when
the fuel cell has spare power.

Besides the selection of the fuel-cell, the selection of the
tank is a crucial design component. A CTS Composite Tech-
nical Systems 6.8 Liter 300 bar tank was selected. The weight
of the tank is 3.3 kg. At 300 bar it contains 140.7 gram of hy-
drogen. This results in a system with an efficiency 1415.5
Wh/kg and 4.25 wt%/h2. With a total energy content of 4671
Wh and an estimated 55% fuel-cell efficiency this results in
2569 Wh usable. At the 25V output this results in a 103Ah
6-cell LiPo equivalent.

5 TEST FLIGHT
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Figure 7: Ground track from a flight from a ship on the North
Sea. Stable hover above the moving ship was possible and
very stable and smooth forward flight was shown in figures
of eight following the moving ship.

The UAV was equipped with a Pixhawk 4 autopilot run-
ning Paparazzi-UAV software [16, 17]. The motor controllers
equipped with CAN drivers were programmed with an im-
plementation of UAV-CAN with own messages. The datalink
consists of a Herelink 2.4GHz + 433MHz (backup), capable
of transmitting both video and telemetry. The radio control is
a TBS Crossfire Diversity 868MHz.

Before more dangerous test flights are attempted with
fuel-cells onboard, the NederDrone was equipped with
Lithium-Ion batteries for testing. The hover controller was
first tuned in an indoor flight test facility of the TUDelft.
Once the hover loop was tuned, the NederDrone was tested
outdoors. The hover gains were also good for slow forward
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Figure 8: Height and ground speed of a test-flight from a ship.

Figure 9: NederDrone2 in-flight.

flight, and for faster flight the forward gains were reduced
until stable flight was achieved. Figure 9 shows the Neder-
Drone2 in-flight.

6 CONCLUSIONS

A new transitioning tandem wing UAV concept was pro-
posed which is in between a quad-plane and a tailsitter. The
tandem wings give it excellent stability despite the huge mo-
ment of inertia in the pitch direction due the the long pres-
sure tank and fuel-cell. The orientation of the wing allows
very good passive stability when laying on the ground and
eliminates the risks of tipping over that are associated with
tailsitters. At the same time the NederDrone2 can take-off
vertically. The 12 hover propellers give it excellent redun-
dancy and the forward flight capability further increases the
resilience to failures in flight. The same propellers can be
used during forward flight, where 8 of the 12 propellers fold
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back.

7 RECOMMENDATIONS

While the concept was shown to fly very successfully, it
has not flown using hydrogen power yet. Many other aspects
remain to be investigated in more detail. Test flights with a
missing propeller were already performed but a detailed anal-
ysis is still needed how many props may fail. Recovering
from hover to forward flight is also a maneuver that requires
more investigation. Finally, working with hydrogen is a sig-
nificant operational challenge requiring a lot of research and
development.
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Figure 10: A composite photo from a NederDrone 1 prototype in hover and subsequently in forward flight, operated from a
ship on the North Sea.

Figure 11: NederDrone2 top, side, back and isometric views. The hydrogen tank forms the main part of the fuselage while the
tandem wings are placed at an angle to combine high passive stability on the ground with the possibility of automatic vertical
take-off. The span is 2m24 while the length is 1m31.
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2Instituto Argentino de Matemática “Alberto Calderón” (IAM)

3Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Argentina
4Instituto Tecnologico de Buenos Aires, Argentina

ABSTRACT

Lately, a novel multirotor aerial vehicle capable
of handling single rotor failures was presented.
When a rotor fails, physically reconfiguring one
of the remaining rotors of an hexarotor allows
to compensate for maneuverability limitations.
In this work, experimental results show the per-
formance of the vehicle in a trajectory-following
task in both nominal and fault conditions.

1 INTRODUCTION

Multirotor aerial vehicles have become very popular in
recent years, due to the fact that the electronic systems
needed to fly them have increased their availability and use-
fulness, decreasing their cost and weight. Simplicity and
cost-effectiveness have turned out to be very appealing and,
as a consequence, an increasing number of applications have
risen in many fields, such as agriculture, surveillance, and
photography, among others. Fault tolerance has been ad-
dressed in the literature as a matter of high importance, in par-
ticular for multirotor vehicles, see for instance [1, 2, 3, 4, 5, 6]
and references therein.

In particular, in [7] is studied the capability of compen-
sating for a rotor failure without losing the ability to exert
torques in all directions, and therefore keeping full attitude
control in case of failure. For this, at least six rotors are
needed, and have to be tilted with respect to the vertical axis
of the vehicle. The proposed solution in [7], was tilting the
rotor (or arms) of the hexarotor inwards. Experimental re-
sults for the proposed solution can be found in [8], where
the vehicle takes off, performs different maneuvers and lands
successfully with one motor in total failure, maintaining full
attitude and altitude control. While the system proved to work
correctly, there was a direction that, when exerted torque in,
performed noticeably worse with respect to the rest.

To overcome this limitation, in [9] a slight modification
was proposed for the vehicle, where, besides tilting the rotors
inwards, servomotors were added in two of them to recon-
figure their position in case of a failure. Simple experiments

∗Email address: cldpose@fi.uba.ar

were performed with the vehicles in cases with and without
failure, in a hovering state and with simple maneuvers, and
it was concluded that the new fault tolerant design performed
much better than the one proposed and evaluated in [7, 8].

This work presents a more extensive performance evalua-
tion to compare the maneuverability of the vehicle proposed
in [9] in cases with and without failure, by means of a trajec-
tory following experiment in an indoor environment.

The manuscript is organized as follows. First, a short
description of the proposed vehicle is presented. Then, the
characteristics of the vehicle used as a platform for the ex-
periments are described, as well as the setup of the indoor
environment where the flights were carried out. Finally, the
results obtained are shown and compared for the flights of the
vehicle with and without a total failure in one rotor.

2 PROPOSED FAULT-TOLERANT HEXAROTOR

When dealing with total rotor failures in hexarotors, it has
been proved that a standard hexarotor configuration (one with
the rotors spaced evenly in a plane, pointing upwards, with al-
ternated spinning direction, as in Fig. 1) is not fault tolerant in
the event of a failure of this type, in the sense of maintaining
control over its four degrees of freedom (rotation around its
three axis, and vertical speed). One degree of freedom will
be lost, being generally the yaw axis the one chosen to be
lost control of, as it allows the possibility to land the vehicle
safely. From this point on, fault tolerance will be meant in the
sense that the system maintains complete altitude and attitude
control.

Suppose a standard hexarotor configuration with γ = 90o

(see Fig. 2), which, with the vehicle in hovering mode, suf-
fers a total loss of rotor number 3 (M3), a counter-clockwise
(CCW) rotating motor. Then, this rotor no longer generates
thrust to produce torque on the x-axis, and neither does it
generate torque on the z-axis due to the spinning propeller.
Then, turning off the opposite rotor (M6), which generates
exactly the opposite torque, is an adequate solution. In this
case, the system is not fault tolerant, as there will exist a
torque qw = (Mx,My,Mz) (worst case direction torque)
that will require a negative speed from M6 (see [7]), which
cannot be achieved. The solution using the inward-tilted ro-
tors with γ > 90o, allows M6 to hold the hovering state with a
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Figure 1: Top view of the proposed vehicle.

Figure 2: Side view of the proposed vehicle. γ denotes the
inward/outward tilt and δ the side tilt.

small positive speed, which in turn allows the vehicle to exert
torque in the direction qw. However, the maximum achiev-
able magnitude of this torque is small, as the maneuver is
limited by the saturation of M6. Rotation in the yaw axis
is the most stressful maneuver, as they require higher speed
variations from the motors with respect to similar maneuvers
in pitch or roll.

The work done in [9] proposed to add servomotors in two
of the vehicle’s arms, in order to tilt the rotors at an angle
δ 6= 0 (see Fig. 2), in case of a failure of one of the rotors.
By doing this, part of the vertical thrust produced by the rotor
is used to generate torque in yaw, allowing to compensate the
low maneuverability in that axis. Which rotor will be tilted,
and the magnitude and direction of the tilt angle will depend
in which of the six rotors is under failure.

3 EXPERIMENTAL SETUP

To provide a comparison of flight performance between
the hexa-rotor in a nominal and a failure state, two identical
experiments were carried out. An identical fixed trajectory to
follow is given both for the case of the vehicle without failure,
and for a case where rotor 3 is under total failure.

The vehicle used for the experiments is based on a com-
mercial model. The frame is the DJI-F550, with a distance
between rotors of 550mm. The actuators installed on this
frame are T-Motor 2212-920KV motors, with 9545 plastic
self-tightening propellers, driven by 20A electronic speed
controllers (ESC). The battery used is a 4S 5000mAh 20C

LiPo that allows approximately 15 minutes of hovering flight
(without failures). The flight computer used is a custom-
designed board [10] developed by the GPSIC Lab [11] to
support experiments that are usually carried out on this kind
of vehicles. It is based on the LPC-1769 microcontroller, an
ARM Cortex M3 that runs at 120MHz, and several sensors
such as the MPU-6000 IMU, the HMC5883L digital com-
pass and the BMP180 barometer, sending flight information
to MATLAB (for data analysis) through a 57600bps XBee
wireless connection. The control loop runs at 200Hz, where
the pitch, roll, and yaw angles are estimated and a PID con-
trol algorithm calculates the torque for vehicle stabilization.
Then, the allocation algorithm gives the force of each motor
in order to achieve the desired torque, and a simple function
converts this value into the PWM signals commanded to the
ESC. Two additional PID control loops are used for position
control in the XY plane, where the input is the error in po-
sition, and the output actuates over the pitch and roll com-
mands. One last PID control loop is used for height control,
actuating directly on the vertical thrust command.

To switch between the different configuration of the rotors
for the nominal and failure case, a servomotor is added in
rotor 1, that tilts it over the arm’s axis at δ1 = 0o for the
vehicle without failures, and at δ1 = 10o in the case of a
failure in rotor 3, as shown in Figure 3.

Figure 3: Servomotor in rotor 1 in the case without failure
(left) and in the case of a failure in rotor 3 (right).

In order to provide position information, an ultrasonic-
based indoor navigation system from Marvelmind was used.
This system consists of a network of stationary ultrasonic
beacons interconnected via radio interface, one mobile bea-
con installed on the vehicle to be tracked, and one central mo-
dem that calculates the position of the mobile beacon. For the
experiments, four stationary beacons were placed in a square
with a side length of 8m, 40cm above the floor, as shown in
Fig. 4.
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Figure 4: Environment setup for the experiments. The sta-
tionary beacons are placed on chairs at a height of 40cm, in a
square of 8x8m.

Figure 5: Time between consecutive position estimations
from the indoor positioning system, during one of the flights.
(Inset) Histogram of the time plot, using 10ms intervals.

The system was configured to provide position estima-
tion at a 12Hz rate, but may not provide data (or provide data
with low accuracy) in cases where the line of sight between
the mobile beacon and the stationary beacons is obstructed.
In Figure 5, the time between consecutive samples of posi-
tion information (accurate or not) is shown, during one of the
flights of the experiments. The data rate of the positioning

system is mostly stable at 85ms (around 12Hz), but it can be
observed that there are several occasions where this time is
doubled, corresponding to a failure to obtain position infor-
mation. An inset of axis shows the histogram of the same
experiment, where around 90% of the samples correspond to
a time interval of 85ms±10ms.

The chosen path for the experiments was the Gerono tra-
jectory (or ”infinity” trajectory) in the XY plane. The yaw
direction was fixed at zero during the entirety of the experi-
ments, so that a maneuver in pitch moves the vehicle along
the X axis, and a maneuver in roll moves it in the Y axis. The
vertical thrust remained manually controlled by the pilot for
safety reasons. The vehicle takes off from the ground, is po-
sitioned around the center of the flight area, and the position
control is activated. In the moment of activation, the current
position is taken as the center of the Gerono trajectory.

4 RESULTS

The flight trajectory for the vehicle without failures is
shown in Figure 6. The vehicle takes off at t = 0s, and the
position control is activated at t = 33s, where the current po-
sition is taken as reference. The vehicle performs three and
a half full Gerono trajectories, before the position control is
deactivated at t = 190s, where it lands safely. It can be ob-
served that there are several outliers in the measured position
at t = 72s, t = 109s, t = 126s and t = 184s, that corre-
spond to errors in the position calculation of the Marvelmind
tracking system, to which the vehicle reacts accordingly, but
recovers quickly and remains on path.

In Figure 7, the PWM values commanded to the six ro-
tors are shown. As expected for a nominal case of a hexarotor
in a near-hovering situation, all the PWM values are almost
equal, driving the rotors at around 50% of their maximum
speed, which provides a wide margin for performing maneu-
vers without saturating any rotor.

The flight trajectory for the vehicle with a failure in rotor
3 is shown in Figure 8. The failure is activated before take-
off, and is present during the full flight. The vehicle takes off
at t = 0s, and the position control is activated at t = 18s,
where the current position is, again, taken as reference. The
vehicle again performs three and a half full Gerono trajecto-
ries, before the position control is deactivated at t = 176s,
and is returned to the take-off point to land. In this test, there
were no occurrences of glitches in the position estimation.

It can be noticed that in the Y-axis sinusoidal trajectory,
there is some overshoot in the positive direction, while there
is no significant overshoot in the negative direction. This is
because the rotor in failure state is positioned over the Y axis
of the vehicle, and the roll maneuver in one direction seems
to be less responsive than in the other.

In Figure 9, the PWM values commanded to the six rotors
are presented for the case with failure. While the PWM value
for rotor 3 is zero during the flight, the commands to the rest
of the rotors do not significantly differ for the previous case.
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Figure 6: Gerono trajectory for an hexarotor without failure.

Figure 7: PWM values during the flight without failure

Rotors 2 and 4 increase its speed (and thus its thrust), to
compensate for the lack of thrust of the motor located be-
tween them. All the maneuvers performed during the trajec-
tory do not require a great variation of speed (the PWM val-
ues for all the rotors only vary around ±5%). This suggests
that the vehicle with failure also is able to perform aggressive
maneuvers without saturating the rotors.

Figure 8: Gerono trajectory for an hexarotor with a failure in
rotor 3.

Figure 9: PWM values during the flight with a failure in rotor
3.

Both cases performed satisfactorily, as the trajectory was
correctly followed. Moreover, during manual take off, land-
ing, and the diverse maneuvers made to position the vehicle
for the experiments, it was not noticeable any difference in
maneuverability between both cases, even while performing
very aggressive movements to test the system. A video of the
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preliminar test of the fault tolerant vehicle can be sen in [12],
and another of one of the experiments is attached to this work.

5 CONCLUSION

The proposed hexarotor vehicle was able to follow with
good performance a given trajectory, both in a nominal case,
and with a total failure in one rotor. Moreover, there is no
appreciable difference in the behaviour between both cases,
as all the rotors operate at a speed pretty far away from their
saturation limits, giving plenty of margin for different maneu-
vers.

Still, the failure case shows slight asymmetries in the tra-
jectory, indicating that there are some maneuvers that are per-
formed better than others. This may be caused either by the
rotors working at different average speeds, or by the maneu-
ver requiring different speed variations from each rotor.
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ABSTRACT

In the field of robotics, a major challenge is

achieving high levels of autonomy with small ve-

hicles that have limited mass and power budgets.

The main motivation for designing such small

vehicles is that, compared to their larger coun-

terparts, they have the potential to be safer, and

hence be available and work together in large

numbers. One of the key components in micro

robotics is efficient software design to optimally

utilize the computing power available. This pa-

per describes the computer vision and control al-

gorithms used to achieve autonomous flight with

the ∼30-gram tailless flapping wing robot, used

to participate in the IMAV 2018 indoor micro air

vehicle competition. Several tasks are discussed:

line following, and circular gate detection and

fly-through. The emphasis throughout this pa-

per is on augmenting traditional techniques with

the goal to make these methods work with lim-

ited computing power while obtaining robust be-

haviour.

1 INTRODUCTION

Recently, there has been a growing interest in developing

autonomous micro aerial vehicles (MAVs) due to their agility

and inherent safety. However, limited on-board processing

and sensory information still pose a challenge for the real-

time robot operations in a complex environment.

A primary role in the attitude and position determina-

tion of MAVs is played by accelerometers, gyroscopes, iner-

tial measurement units (IMU) and global positioning system

(GPS). Unfortunately, the mentioned sensors tend to be noisy

and drift with time. In indoor environments position infor-

mation can be also obtained from motion tracking systems

like Vicon or OptiTrack. Although these systems are highly

accurate, they are not feasible for larger spectrum of applica-

tions. As an alternative, an on-board camera can be utilized

to complement state estimation.

In many applications, stereo vision system is preferred

due to depth measurements that do not suffer from scaling

ambiguity. However, a single camera is lighter and requires

∗D.A.Olejnik@tudelft.nl
†b.p.duisterhof@student.tudelft.nl

less power than two cameras. Especially, when it comes to

MAVs, lightweight and power efficient solutions are the most

desirable.

Monocular visual servoing has a great potential that is

currently exploited by many researchers [1, 2, 3, 4]. In [5],

desired heading of a drone flying indoors is established based

on longitudinal lines. In a similar fashion [6] makes use of

line correspondence using images of a corridor and window

to calculate the position and heading of a MAV. The paper

[7] applies visual servoing to power lines inspection, where

guidance of drone relies on extracted information from im-

ages with linear features. Alternatively, [2] discusses posi-

tion control for MAVs using circular landmark. Here, camera

pose estimation is based on a geometric approach and derived

from an epileptic appearance of a circle in a perspective pro-

jection.

In this paper, we present a monocular vision based ap-

proach for visual servoing tasks such as line following and

precise flight through a set of increasingly small hoops. We

propose simple algorithms to perform these flight elements

that reduce computational effort and enhance robustness. Our

main contribution is an implementation of those strategies on

a flapping wing MAV with limited on-board processing and

sensory information. Finally, we demonstrate autonomous

flight capabilities of the MAV in the indoor competition of

the International Micro Air Vehicle Conference and Compe-

tition (IMAV2018).

2 SYSTEM OVERVIEW

2.1 The DelFly Nimble

The vehicle used in the competition was the DelFly Nim-

ble [8], the latest flapping wing MAV developed within the

DelFly project [9]. Compared to its predecessors, which were

stabilized and controlled by a tail with conventional control

surfaces [10, 11], the Nimble is a tail-less design. The flap-

ping wings are thus not only used to generate sufficient lift

and thrust. The vehicle is, similar to insects, controlled by

adjustments of the motion of the individual wings.

The tailless concept has many advantages over tailed

designs. It allows for fully controlled hovering flight as

well as flight in any direction: up/down, left/right or for-

ward/backward. This opens up new possibilities in au-

tonomous flight of FWMAVs. Unlike the tailed autonomous

DelFly versions [12, 13], the vehicle can fly sideways e.g. to

align itself with the center of a window before flying through

it. It can also stop and turn around, when reaching a dead end,
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which was not possible before as the tailed vehicles needed

to maintain a minimal forward velocity to stay airborne.

For the competition, we equipped the Delfly Nimble with

the VL53L0X range sensor and a custom built mono-camera

system, which uses the same hardware as the stereo vision

system of the Delfly Explorer [11]. The VL53L0X is a

Time-of-Flight (ToF) laser-ranging module providing abso-

lute distance measurement up to 2m. The sensor weighs

only 0.54 gram. The custom-made camera module with

STM32F405 processor for onboard vision processing weighs

2g and reaches a clock-speed of 168 MHz with 192 kb of

RAM 1. Together both lightweight sensors allowed us to carry

out flight tests with height estimation and shape recognition.

Finally, an ESP8266 ESP09 WiFi module was installed to

provide a bi-directional datalink. This was invaluable during

the testing, as it provided live telemetry and allowed online

tuning of the various control parameters.

Figure 1: DelFly Nimble tailless flapping wing MAV config-

ured for the IMAV 2019 competition.

The final vehicle configuration, with a total weight of

29.92 g, is in Figure 1. The camera system was mounted

via a thin metal strip, which allowed to manually adjust the

camera angle according to the task needs. For the line follow-

ing task, the camera angle was chosen in a trade-off between

more information about the future or close to the vehicle. If

we point the camera more up, we can look further into the

future, but the area close to the DelFly is not visible anymore.

For the circle detection task, the camera is placed such that it

is looking straight forward. This, in effect, is dependent on

the speed at which we fly, as the pitch angle changes with ve-

locity. Because the vehicle was most of the time operated at

slow forward flight, the laser range sensor, placed at the bot-

tom of the vehicle, was oriented to point down and slightly

forward (∼ 15 degrees) with respect to the vertical body axis.

1https://www.st.com/en/microcontrollers-microprocessors/stm32f4-

series.html

2.2 Control of a flapping-wing MAV

2.2.1 Attitude stabilization

Tailless flapping wing MAVs are, like multicopters, in-

herently unstable and require active attitude stabilization.

For this, the vehicle was equipped with an open-source

STM32F4-based Lisa/MXS autopilot2 running the open-

source Paparazzi UAV autopilot system3. The autopilot board

was mounted on a soft-mount consisting of PU foam blocks

in order to prevent saturation of the on-board 6DOF IMU

(MPU 6000) signals. The attitude was stabilized by a stan-

dard PD controller with additional low pass filtering, more

details can be found in reference [8]. Although no magne-

tometer was present, the drift of the estimated heading was

relatively slow and would typically be just a few degrees over

the time needed to complete the competition task. More-

over, in the tasks like line following, the vehicle controls its

heading relative to the line direction and an accurate absolute

heading was thus not needed.

2.2.2 Height control

Although the autopilot board is equipped with a barometric

pressure sensor, this sensor alone proved to be insufficient for

precise height control. Even in ideal indoor conditions, the

vehicle did oscillate more than +/- 0.5 m from the set point.

Thus, for height estimation we have fused the pressure read-

ing with the laser ranger reading using a complementary fil-

ter. Nominally, the absolute laser ranger reading was given

a high weight. This weight was lowered when very high

climb/descend rates were seen by the laser, typically when

flying over an obstacle. In such situation, more trust was

given to the pressure sensor. Finally, only low-pass filtered

pressure based estimate was used when no valid laser mea-

surements were available, e.g. when the floor reflection was

insufficient, or when the vehicle got out of the laser sensor

range.

The laser ranger worked reliably up to 1.5 m on the multi-

ple floor surfaces where we were testing prior to leaving to the

competition in Australia. Unfortunately, as we have noticed

at the competition site, the sensor does not work in direct sun-

light (high IR light content). And, it also does not work well

on tarmac (an unexpected floor material of the indoor com-

petition), which does not reflect enough light back. Thus, we

were forced to use wind shades to limit the amount of sunlight

and covered the floor with blankets that would reflect the IR

light.

In order to maintain a leveled flight we are using a PI con-

trol to minimize the error between the desired and measured

height. Furthermore, because the demand for throttle level

increases as the battery discharges, the altitude controller in-

cluded also a battery-level dependent feed-forward control

2https://wiki.paparazziuav.org/wiki/Lisa/MXS v1.0
3http://wiki.paparazziuav.org/
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based on measurements in Figure 2.
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Figure 2: Throttle level at near hover against battery voltage;

experiment (blue) and linear fit (red).
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Figure 3: Throttle level against body pitch when flying in

the wind tunnel with increasing wind speed and maintaining

approximately levelled flight; experiment (blue) and cubic fit

(red); the robot’s body posture is shown from top view.

Near hover, tail-less flapping wing MAVs are compara-

ble to quadrotors. The vehicle stays airborne thanks to the

thrust generated due to flapping motion. Higher thrust, and

thus climbing, can be achieved by higher flapping frequency.

Flying forward and sideways is achieved by titling the entire

MAV, and thus by titling the thrust vector, forward and side-

ways, respectively.

In forward flight, flapping wing MAVs generate addi-

tional lift due to a change in body posture and the oncom-

ing airflow, where the wing surface acts as an airfoil. Thus,

higher pitch angles require less throttle in order to achieve the

same lift force. These flapping-wing-specific coupling effects

were characterized while flying in a wind tunnel [14] (Figure

3) and were accounted for in the feed-forward controller in

the form of a cubic fit.

2.3 Competition Tasks

The competitions were focused around topics like aircraft

efficiency and innovative designs, light and small MAVs, au-

tonomy and image processing. The indoor mission accom-

modated a flight through windows, hoops, and following a

predetermined flight path. The detailed map of the indoor

competition is shown in Figure 4.

Figure 4: Indoor competition map.4

In this paper we will focus on two tasks: line following

and precise flight through a set of increasingly small hoops.

To complete the first task the MAV had to follow the rope all

the way to the end and navigate around obstacles. The rope

used during the challenge had high contrast against the floor.

The obstacles were represented as green poles fixed in dark

blue buckets. The second task was performed in the wind

tunnel test section. Five hoops of different sizes, starting with

largest, and getting smaller were placed in equal distances.

Points were awarded for each hoop flown through. The mis-

sion could have been carried out in various wind conditions.

Due to limited gust rejection capabilities of our platform the

decision was made to fly without wind. The final setup of the

indoor competition is shown in Figure 5.

3 LINE FOLLOWING

The goal of this task is to follow a line in an unknown

environment. The line can have any shape or curvature which

makes accurate line following essential. A test setup was cre-

ated in TU Delft’s Cyberzoo, depicted in Figure 6.

4imav2018.org

SEPTEMBER 29th TO OCTOBER 4th 2019, MADRID, SPAIN 62



IMAV2019-8 11th INTERNATIONAL MICRO AIR VEHICLE COMPETITION AND CONFERENCE

Figure 5: A screenshot from a video stream of the IMAV’s In-

door Competition which shows the DelFly Nimble perform-

ing the task of precise flight through a set of increasingly

small hoops.

Figure 6: Line Following test setup.

3.1 Perception

This was a best case scenario, as the ’line’ is of uniform

colour and much thicker than what is expected in the compe-

tition.

3.1.1 Segmentation

The fact that the colour of the line is known can be used to

our advantage. The least computationally expensive method

to determine line position is to do straightforward per-pixel

segmentation. However, segmentation of the entire image

would be too heavy for the on-board processor and would

result in low frame rates [15]. Sub-sampling is used to re-

duce the computational effort, resulting in a set of pixels that

lie on the line. This set of pixels is the starting point for the

algorithms considered.

3.1.2 Centroid

As the DelFly Nimble had never been flown autonomously

before, the team started off by implementing a straight-

forward strategy. One of the most straightforward ways

to perform the task utilizes the centroid of the line. The

coordinates of this centroid in the image frame can then be

used as an input for the control system.

Various subsampling methods have been considered,

being 1) selecting an upper or lower fraction of the image,

2) selecting evenly spaced or randomly selected rows along

the image and 3) using randomly selected pixels over the

entire image. All lead to similar results, but the third strategy

seems to be the best approach, as every pixel gets the

same chance to land in the subset. That is, in theory, the

resulting set of points is most representative of the real world.

Even though this algorithm is relatively simple, it already

led to promising results. The DelFly Nimble was able to fol-

low the circle fully autonomously. The main shortcoming

here was that even though the DelFly would follow the cir-

cle, tight corners would cause the system to stop tracking the

line. The reason for this is that once a large portion of a turn

enters the camera’s field of view (FOV), the position of the

centroid becomes a less ideal control input. Figure 7 shows a

curve in the line as an example, where the vehicle is tempted

to steer into the curve due to the c.g. position. This will result

in this corner to be ’cut’, that is, the vehicle will stop flying

directly over the line. Considering the obstacles surrounding

the line, accurately following of the line will be essential.

C.G.

Control
Input

Line

Figure 7: C.G. of the line would trigger the control system to

start rotating left, which would cause the corner to be ’cut’.

More precise following of the line is required.

3.1.3 Line fit

The centroid-based approach was demonstrated to be a first

functional algorithm, while a more accurate algorithm was

desired. Until now we have been looking at the centroid

only, while more information of the line would be beneficial.

Ideally, we would want to know the position and orientation

of the line directly beneath the vehicle and translate that to

yaw and roll commands. In that way, the vehicle is flying
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h

do

FOV

yo

Image centerline

θ

(a) Side view of DelFly in flight showing the projected

image on the ground.

(0,0)

xl

Θ
yo

(b) Sample resultant second order line fit in the image

plane

Figure 8: Graphical depiction of error terms used for line fol-

lowing control.

above the line at all times and not cutting corners.

Using the points (pixels) generated before, a second order

line fit can be done. As the FOVs, attitude and altitude of

the camera are known, it is possible to extrapolate the line fit

outside of the image.

After having implemented this strategy, it turned out

that it was impractical to perform extrapolation. The fitted

line would quickly diverge from the line in the real world

and an unusable detection was the result. Because of this

reason, it was chosen to compute the position and orientation

of the line at some point in the lower half of the image. In

other words, for a chosen value along the vertical y-axis

of the image, we compute the position and orientation

of the line. Depending on speed and camera orientation,

this point can be moved along the vertical y-axis of the image.

One final improvement is that, for every pixel that is

found on the line, the algorithm will search in all 4 directions

to find more pixels that meet the colour filter. In this way,

more pixels will be found at low cost. This is the strategy that

was finally used in the IMAV 2018 indoor competition.

3.2 Control

Figure 8 shows a sample resultant second order line fit as

described in the previous section. This figure depicts a DelFly

flying at height h and body pitch angle θ. With this, we can

define the parameter y0 as the angular vertical offset from

the center of the image plane which, when projected onto the

ground will coincide with a target distance d0 away from the

vehicle. Note that a potential camera offset can be added to

this computation.

yo = θ − tan−1

(

h

do

)

(1)

From this we can compute our lateral offset xl from the

line at some point ahead of the vehicle which we can track.

xl = ay2o + byo + c (2)

This angular attitude error can be projected onto the

ground plane to determine the metric lateral offset from the

line. This lateral error can then be minimized with a simple

PID controller coupled to the vehicle roll angle φsp.

Additionally, we extract the gradient of the line fit (Θ) at

this target offset to determine our alignment error.

Θ =

{

2ayo + b, if 2ayo + b ≤ 2

2, otherwise
(3)

With this we can then set our desired heading as

ψsp = ψ + Θ̃ (4)

4 FLIGHT THROUGH AND DETECTION OF CIRCULAR

GATES

Algorithms described in this section allow the MAV to

perform precise flight through a set of increasingly small

hoops. A test setup was created in TU Delft’s Cyberzoo, de-

picted in Figure 9.

Figure 9: Flight through hoops - test setup.

4.1 Perception

To detect the gates, we find circles in the image using a

probabilistic Hough transform based on the bisector between

pixel pairs. The Hough transform provides robustness against

segmentation errors (for instance by uneven lighting) and

against errors in the shape of the gates, while the probabilistic

sampling keeps the method computationally lightweight.

Pixels are randomly sampled from the image; YUV color

thresholding is then used to test whether these pixels belong
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to the gate or the background. Only pixels belonging to the

gate are considered for further processing. The thresholds

were tuned conservatively, as only a small number of inliers

is required to locate the gate in the image while false positives

are likely to degrade the result.

We use the bisector between pixel pairs to find the mid-

point of the gate. For all pairs of pixels lying on a circular

gate, their bisector should intersect the gate’s midpoint. This

is used as follows: each time a new gate pixel is found, it is

paired with all previously found pixels. For each new pair

of pixels, the bisector is constructed and all accumulator bins

along this line are incremented (Figure 10). This procedure is

repeated until a fixed number of pixels is sampled; we sam-

ple 20 pixels, leading to a total of 190 bisectors. Once enough

pixel pairs have been evaluated, the bin with the highest inlier

count is selected as the gate’s midpoint (xg , yg).

Figure 10: Circular gate detection using the probabilistic

Hough transform. Top: input image with the sampled pix-

els highlighted in red and the detected gate shown in white.

An example bisector between two sampled pixels is shown

in yellow. Bottom: the accumulator belonging to this im-

age. Brighter pixels indicate a higher likelihood of the gate’s

midpoint lying at that position; the bin highlighted in red has

the highest inlier count and is selected as the gate’s midpoint.

The example bisector is also overlaid on the accumulator and

is shown to intersect the gate’s midpoint.

Estimation of the gate’s radius was deliberately left out

of the Hough transform to reduce the size of the accumula-

tor. The accumulator was also made four times smaller than

the input image to further reduce memory consumption and

processing time. Instead of estimating the radius during the

Hough transform, we perform this in a later stage where the

median distance between the estimated midpoint and a small

number (11) of inlier pixels is used to measure the gate’s ap-

parent radius or aperture βg .

4.2 Control

We run a very simple iterative algorithm to localize our

position along the tunnel (p) using the predefined location

(Dg) and width (wg) of the gates. When we start the flight

attempt, we reinitialize the localization algorithm at an as-

sumed start distance from the first gate. We use two estimates

to update our estimated position, the first based on odometry

and the second on the perceived location of the gates.

The odometry estimate is obtained using the estimated ve-

hicle air speed generated by a linear transform (c) from the

vehicle pitch angle vest = cθ. c was identified as -0.049 by

performing a simple line fit through the measured pitch and

speed using a motion tracking system as ground truth. Due

to the relatively large profile drag of the DelFly at small pitch

angles, this linear transform is generally quite accurate. If we

assume no external drafts, we can equate the vehicle air speed

and its ground speed.

The identified angular aperture of the gate obtained from

the perception algorithm described earlier, is used to generate

a relative position estimate to the gates. There is, however,

an ambiguity as to which gate was identified. To address this,

we compute the estimated metric distance to each gate given

the size of each gate and the identified angular size. Given our

current estimate of the position computed using our odometry

estimate (p̃(t) = p(t− 1) + cδt) and the gate positions from

our map, we extract the gate index which result in the smallest

estimation error.

i = argmin(D−wgtan
βg

2
− p̃) (5)

Now that we know which gate we are looking at, we use

the estimation error to update our position estimate with a

filter using a discount factor α = 0.25.

p(t) = p̃(t) + (D(i)−wg(i)tan
βg

2
− p̃(t)) ∗ α (6)

We then set our desired lateral and vertical position for

the control system which drive the vehicle roll and thrust re-

spectively. The body pitch is kept constant to have constant

forward airspeed.

Latsp = wg(i)tan
βg

2
xg (7)

The height set-point is computed as:

hsp = h+wg(i)tan
βg

2
yg (8)

SEPTEMBER 29th TO OCTOBER 4th 2019, MADRID, SPAIN 65



IMAV2019-8 11th INTERNATIONAL MICRO AIR VEHICLE COMPETITION AND CONFERENCE

5 CONCLUSION

In this paper we have presented augmented versions of

traditional computer vision and control algorithms. With

these, we participated in the 2018 International Micro Air Ve-

hicle (IMAV) competition with the DelFly Nimble. First of

all, robust flight of the platform was assured, by implement-

ing attitude stabilization and battery level dependent height

control. Then, we demonstrated how a second order line fit

was performed using a sub-sampling method, which was then

used to control roll and yaw. Finally, flight through and detec-

tion of circular gates in a tunnel was discussed. A probabilis-

tic Hough transform in conjunction with a position estimate

was used to control the vehicle.

With these algorithms we could now, for the first time, run

several non-trivial perception tasks on the DelFly Nimble.

In a further iteration of the algorithms, increased robustness

should be the main focus, to allow for application in more

challenging environments. For example, the control algo-

rithms can be altered to work better in outdoor environments

and a higher dynamic range in the camera would be desirable.

Even though novel algorithms could further improve mis-

sion capabilities, we believe that more computing power is

necessary for increasingly autonomous flight with such lim-

ited power and weight budgets. Custom SoC (System on

Chip) design with accelerators specific to the application have

the potential to enhance the autonomous capabilities of flap-

ping wing MAVs.
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ABSTRACT

Precision agriculture can benefit from the us-
age of swarms of drones to monitor a field.
Crop/weed classification is a concrete applica-
tion that can be efficiently carried out through
collaborative approaches, whereby the infor-
mation gathered by a drone can be exploited
as prior to improve the classification per-
formed by other drones observing the same
area. In this study, we instantiate this con-
cept by exploiting state-of-the-art deep learn-
ing techniques. We propose the usage of a
shallow convolutional neural network that re-
ceives as input, besides the RGB channels of
the acquired image, also an additional chan-
nel that represents a probability map about
the presence of weeds in the observed area.
Exploiting a realistic, synthetic dataset, the
performance is assessed showing a substancial
improvement in the classification accuracy.

1 INTRODUCTION

Use of aerial robots has been steadily increasing over the
past decade, thanks to improved remote sensing abilities, bet-
ter motion control and even onboard manipulation abilities.
Such systems constitute a natural fit for tasks related to mon-
itoring and inspection. In particular, small micro aerial ve-
hicles (MAVs) are very well suited to such operations, even
indoor, as they can navigate in narrow spaces, get close to the
target objects and safely operate around humans. MAVs con-
stitute an extremely attractive option for a number of practi-
cal use-cases—e.g., within application areas such as agrifood
or infrastructure inspection and maintenance—opening up a
wide range of market opportunities. However, for MAVs to
realize their potential and get deployed in unstructured envi-
ronments (outside the lab, without support from any external
infrastructure to operate), a number of technical and scien-
tific challenges related to navigation, perception and cogni-
tion must be solved. In addition, while MAVs small size is
key to operational settings, it also gives rise to a number of
limitations, for instance in terms of useful payload and power
∗federico.magistri@gmail.com
†nardi@diag.uniroma1.it
‡vito.trianni@istc.cnr.it

autonomy. Payload and power limitations do not support the
installation onboard of powerful computing devices, high-
resolution cameras and heavy optics, and in any case the bat-
tery lifetime may be severely limited. Such limitations make
it difficult to address inspection and monitoring tasks over
extensive areas, a necessary requisite for applications in pre-
cision agriculture—both outdoor and within greenhouses—or
in large industrial settings.

The above limitations can be gainfully addressed by
means of multi-robot systems, and notably MAV swarms, that
can improve efficiency through parallel operation over large
areas [1]. By exploiting a swarm of small drones, it is possi-
ble to acquire data at higher resolution, exploiting their ability
to hover close to a given target and to navigate narrow clut-
tered environments. Additionally, the ability for members of
the swarm to actively support each others enables collabora-
tive localisation and collision avoidance [2]. Finally, MAVs
in a swarm can collaborate to improve the quality of exte-
roception and sensory data interpretation, as a result of the
collective intelligence of the group.

In our work, we propose the exploitation of drone swarms
for precision agriculture applications [3]. Specifically, we
consider the problem of identification and mapping of weeds
within a crop field. This is a very relevant application in the
precision agriculture domain, because the detailed knowledge
of the position and type of weeds within a field can support
advanced weed control techniques, from variable-rate herbi-
cide application—a practice that can reduce herbicide usage
by more than 80%—to mechanical removal of weeds, pos-
sibly automatically performed by ground robots. Assuming
that the weed distribution within a field is non-homogeneous,
inspection of extensive fields by drone swarms can be effi-
ciently performed by means of non-uniform coverage strate-
gies, which deploy resources (i.e., drones) only towards por-
tions of the field with high relevance, while areas of low in-
terest receive much less attention [4]. To this end, an estima-
tion of the utility of each area must be performed first, and
on such basis a more or less detailed inspection can be exe-
cuted. Utility estimation is performed by a high-altitude/low-
resolution inspection, while detailed inspection is performed
through low-altitude/high-resolution inspection, and the latter
can be exploited to continuously update the former. Hence,
for non-uniform coverage strategies to be implemented by an
autonomous decentralised system, it is necessary that MAVs
are capable to communicate and adapt their mission on the

SEPTEMBER 29th TO OCTOBER 4th 2019, MADRID, SPAIN 67



IMAV2019-9 11th INTERNATIONAL MICRO AIR VEHICLE COMPETITION AND CONFERENCE

basis of what observed on the field, hence requiring suitable
algorithms for online/onboard feature detection.

While high-altitude/low-resolution inspection can be per-
formed by individual drones with standard estimation tech-
niques based on common indexes used in precision agri-
culture, low-altitude/high-resolution inspection requires the
identification and classification of individual plants, so as to
determine their type and position within the field. In this
study, we address the latter aspect, proposing a framework
for collaborative classification of relevant environmental fea-
tures based on state-of-the-art deep neural networks. We as-
sume here that detailed inspection is performed by a MAV
swarm by flying at a relatively low altitude (e.g., 3m from
the ground) so that images of the field are taken at a suffi-
cient resolution even with low-end and lightweight cameras.
Classification of crop and weed can be carried out with state-
of-the-art techniques making use of convolutional neural net-
works (CNNs) for object detection, which return the position
and class type for all relevant objects identified within an im-
age [5]. However, CNNs are computation-hungry methods
that are not suitable for the limited devices available onboard
MAVs. Therefore, for MAV swarms to be efficient and ac-
curate, it is necessary to reduce the computational complex-
ity of the algorithms running onboard the single MAV, while
exploiting collaboration among MAVs that can support each
other on the classification task.

We propose to exploit the fact that different MAVs can
inspect the same area of the field at different times and from
different perspectives, therefore having redundant informa-
tion about the same plants that can be exploited to improve
the classification accuracy. Each MAV is endowed a stream-
lined version of a deep CNN. On the first passage over an area
of the field, a MAV independently makes a classification of
the different plants it can perceive. Such classification is geo-
localised exploiting onboard devices (e.g., RTK-GNSS) or
self-localisation techniques, and then broadcasted to all other
MAVs in the swarm, possibly using a simple re-broadcasting
protocol to widely diffuse newly available information. Suc-
cessive passages exploit prior knowledge by building prob-
ability maps about the existence of crops and weeds on the
current portion of the field. Such probability maps are fed as
additional input channels to the CNN (similarly to what pro-
posed in [6] for foreground/background segmentation), so as
to improve the classification accuracy on all the relevant el-
ements in the inspected area. To validate this proposal, we
developed a realistic 3D simulation of a sugar-beet field in
which two types of weed are present. This allowed us to gen-
erate a synthetic dataset of field images as gathered from a
MAV flying at a low altitude, simulating multiple indepen-
dent passages over the same area by changing position and il-
lumination parameters. We reduce the depth and complexity
of a state-of-the-art CNN and increase the input channels to
include also the possible availability of probability maps. We
test several training approaches by varying the likelihood of

providing the additional probability maps with respect to sim-
ple RGB channels. We show that across multiple passages,
the performance of the classification substantially improves,
validating the proposed concept and calling for further refine-
ments as well as for tests with real-world datasets.

The paper is organised as follows. In Section 2, we briefly
review the available techniques for classification in a weed
management domain. In Section 3, we describe the exper-
imental setup detailing the synthetic dataset generation, the
proposed CNN architecture and the training methods devised.
In Section 4, we discuss the testing procedure and the results
obtained, comparing our iterative method with one-shot ap-
proaches. Section 5 concludes the paper.

2 CROP/WEED METHODS

In recent years, the interest in robotics applications for
precision agriculture raised constantly [7]. Among the most
important problems tackled through automatic techniques,
weed control represents an important case study as it requires
both advanced vision to recognise weed type and fine me-
chanical control to spray or remove the identified plants. As
a consequence, several approaches to the crop/weed classi-
fication problem have been attempted using both unmanned
ground (UGVs) and aerial vehicles (UAV). On the one hand,
UGVs are generally large powerful tractors adapted from tra-
ditional agricultural machinery, and can be equipped with
performing hardware, thus allowing on-board classifications
even with modern deep neural networks. However, large
UGVs must carefully manoeuvre to avoid damage to the crop
field and to reduce soil compaction. Furthermore, the close-
up view of a camera mounted on a UGV does not allow to
exploit the geometric pattern of a typical field. On the other
hand, UAVs have the possibility to quickly cover large crop
fields and to perceive a wide area at once. However, due to
payload limitations, they cannot exploit hardware with the
same computing capability as for the UGV case.

In recent years, efforts have been made to provide reliable
crop/weed classification methods. Object-based classification
methods exploit the sowing pattern to classify as weed plants
that lay outside the crop rows [8]. In [9], a random forest clas-
sifier was adapted to UAV imagery, using, as input, a large set
of hand computed features including also the main row direc-
tion of the crop field. The same authors [10] exploited also
a very shallow neural network to classify plant species; be-
fore feeding the neural network, a vegetation mask based on
the popular NDVI index is computed, and single plants are
extracted from this mask and passed to the CNN. In [11], fea-
ture learning is exploited for weed classification from UAV
images. In [12], a deep auto-encoder architecture composed
by 26 convolutional layers (the encoder) and 5 up-sampling
layers (the decoder) obtained a pixel-wise semantic segmen-
tation, using as input RGB images with NIR informations.
The same approaches have been deployed to UGV based sys-
tems [13, 14, 15, 16]. In all these examples, the classification
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is performed offline after the collecting stage is finished.

3 EXPERIMENTAL SETUP

As described in Section 2, most current approaches tackle
the crop/weed classification task by means of semantic seg-
mentation solutions, while our goal is to use state-of-the-art
object detection algorithms so that each plant can be individ-
ually classified. This will make it possible, once each plant
is detected, to take action within the field on a per-plant ba-
sis, e.g., with mechanical removal or spraying of individual
plants. For this purpose, there is no large publicly avail-
able dataset that can be exploited. Additionally, the proposed
swarm-based technique requires multiple images of the same
portion of the field taken at different times and possibly from
slightly different positions. While work is being performed
to collect a suitable dataset with the required features, the
validation of the concept can be more flexibly performed on
synthetic datasets that can be generated through modern com-
puter graphics engines [17]. We describe the dataset gener-
ation in Section 3.1. Thanks to such a dataset, we are able
to train CNNs for object detection. The chosen CNN archi-
tecture and the technical choices to provide prior knowledge
from previous passages as input to the CNN are detailed in
Section 3.2. Finally, the training methods used to obtain an
efficient object detection are discussed in Section 3.3.

3.1 Synthetic dataset generation
The proposed method for crop/weed classification relies

on multiple passages over the same area of the field, hence
on multiple images with different illumination and possibly
different perspective. Given the complexity of acquiring a
similar dataset in the field, a synthetic dataset has been gener-
ated using the advanced computer graphics features provided
by the game engine Unity 3D (https://unity.com). As a bonus,
the ground truth labelling is obtained with precision and low
effort directly from the simulator, hence removing one of the
main difficulties in machine vision research.

Starting from the 2D texture of leaves belonging to the
target plant species, it is possible to generate a large variety
of individual 3D plants by assembling multiple leaves and re-
alistically bending the texture [17]. In the simulation environ-
ment, each plant is generated with several parameters which
are individually tuned for each species to resemble as much as
possible the aspect of the real counter-part (see Figure 1). To
each plant, independently from its species, a vertical growth
axis is associated which is slightly perturbed by a random
noise. To simulate a uniform growth stage for all the plants
that have been generated, each plant has a number of layers
up to two. Each plant, moreover, has an associated number
of leaves per layer which is different from species to species.
At each layer, the leaves are homogeneously spread around
the main growth axis, again with a small random disturbance.
In order to simulate succesive visits of the same region of the
field, once a set of plants has been placed on the scene, the il-
lumination parameters have been randomly changed, moving

the position and the intensity of the light sources illuminating
the scene, hence also casting different shadows on the ground.
As a last step to create a realistic environment, the soil is gen-
erated starting from various real world textures. Every time
a fragment of terrain is created, two textures are chosen and
blended together using Perlin noise based linear interpolation
(LERP). Similarly to the plants generation, by changing the
parameters of the Perlin noise, it is possible to create a large
variety of soil textures.

With this method, images of different plants taken at dif-
ferent altitudes can be generated at will. Here, we consider
images taken at about 3m altitude, containing about 80 simu-
lated sugar beets as crop, while two types of weed are present
in variable number, having up to 20 plants per image (see
Figure 1). A training set with 500 images has been generated,
while the validation set is composed of 100 images. Regard-
ing the testing set, 10 blocks of 40 images have been gener-
ated. Each block is composed of the same 40 plant patterns,
but the illumination parameters, such as light source orienta-
tion and intensity, randomly change for each image within
a block. This results in a testing dataset with overall 400
images that we refer to as dataset A. Additionally, a second
testing set has been generated featuring also a small, random
perturbation of the camera position within the same image in
different blocks. In this way, the position error of the MAVs
flying over the same region is simulated. This second dataset
is also made of 40 fields and 10 blocks for a total of other 400
images, and is referred to as dataset B.

3.2 CNN architectures

In the literature, several architectures have been proposed
for classification purposes, either for image segmentation or
for object detection [5, 18]. Competitions and benchmarks
have contributed to establish an objective methodology to de-
termine performance and direct choice of the best approach,
given the task demands. In our case, to perform the plant
detection, Faster R-CNN has been chosen [19], which can

Table 1: CNN Architectures

5 layers 9 layers

7×7, 64, stride 2

3×3, max pools, stride 2
[
3× 3, 64

]
× 1

[
3× 3, 64

]
× 2

[
3× 3, 128

]
× 1

[
3× 3, 128

]
× 2

[
3× 3, 256

]
× 1

[
3× 3, 256

]
× 2

[
3× 3, 512

]
× 1

[
3× 3, 512

]
× 2
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(a) (b) (c) (d)

Figure 1: Synthetic dataset generation. The same field with crop rows and weeds is displayed. Panels (a) and (b) show different
illumination conditions on the same field, and also display the automatically generated ground truth. A small difference in the
plant position within the image is also present. Panel (c) shows a segmentation on the image obtainable as ground truth directly
from the simulation. Finally, panel (d) shows a probability map computed on the ground truth data.

be considered the state-of-the-art method for object detection
tasks. In its standard version, it is composed of two stages,
in which the first stage—referred to as the backbone—is a
deep CNN responsible for generating bounding boxes around
objects to be proposed to the second stage as potentially con-
taining relevant features. Considering the computing capabil-
ities of a MAV, it is not possible to use the standard Faster
R-CNN backbone such as ResNet50 [20], which is way too
demanding in terms of computational power. Therefore, we
have chosen to implement two shallow networks with much
reduced demands, removing several layers from the standard
backbone. In both cases, the first initial layers are the same as
the ResNet architectures, namely a 7×7 convolutional layer
with 64 filters and stride 2, followed by a 3×3 max-pooling
layer. After that, a sequence of 3×3 convolutional layers is
presented as described in Table 1. We will refer to the first as
FCN5 and to the latter as FCN9. Here, FCN stands for Fully
Convolutional Network.

In order to exploit detections previously made by other
agents, the input of the CNN is composed of a fresh RGB im-
age together with an auxiliary channel encoding a probabil-
ity map based on previous classifications. Well-known object
detection algorithms usually output 6 values for each detec-
tion i, that is, the class of the detected object ci, a confidence
score si, and 4 values representing bounding box coordinates
encoding the coordinates xi, yi of the center and the width wi
and height hi of the bounding box. From this values a proba-
bility P (x, y) for each point x, y is computed as follows:

P (x, y) =
∑

ci=W

si · e
−
(

(x−xi)2
2w2
i

+
(y−yi)2

2h2
i

)

. (1)

In other words, each detection belonging to the class ci =
W—standing for weed—provides a probability increment
proportional to the confidence score si, and decaying from
the center of the bounding box xi, yi as a 2D gaussian with a
spread that depends on the bounding box dimensions wi and

hi. The resulting probability map is practically null when
far from any bounding box, indicating that the probability of
finding a weed plant in that position is extremely low. Peaks
are visible in correspondence of detected weeds, as shown in
Figure 1d. Note that we decided to focus on weed classifica-
tion only, as it turns out that the performance on crop classifi-
cation is already very high (see Section 4.1), hence requiring
a specific method only for improving the weed detection.

3.3 Training methods

The CNN that we have devised must be capable of per-
forming two tasks at the same time. On the one hand, it must
observe the RGB channels alone to identify the presence of
crops or weeds. This will output a list of detections that can
be used to compute a probability map for subsequent passages
by other MAVs. On the other hand, the CNN must prove ca-
pable of using—when available—the prior information to im-
prove the classification and reduce errors. Possibly, the NN
must also identify and remove conflicts between the newly
available RGB image and the prior information encoded in
the probability map. This turns out to be an important choice
to achieve better results, since the network has to learn to bal-
ance the information coming from other agents and the fresh
image. Therefore the network will not only rely on informa-
tion coming from the auxiliary channels but it will be able to
make a valuable initial classification and to correct possible
misclassifications. A correct training of the network is there-
fore key to obtain both these abilities within a single CNN.

First and foremost, we have devised three different train-
ing strategies in terms of the frequency with which the prob-
ability map is presented. We used 25%, 50% and 75% of
the training cases, hence pushing more or less towards the
usage of the information encoded into the probability map.
Additionally, to compute the probability map, instead of us-
ing the available ground truth we decided to use realistic la-
belling as produced from a CNN classification. To this end,
we trained a FCN5 architecture with the only RGB channels
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Table 2: Crop/weed classification performance with FCN5
and FCN9, with only the RGB input channels.

Dataset A

FCN5 FCN9

Crop Weed Crop Weed

Precision 0.96 0.98 0.96 0.98

Recall 0.87 0.65 0.91 0.73

F1 0.91 0.78 0.93 0.83

Dataset B

FCN5 FCN9

Crop Weed Crop Weed

Precision 0.99 0.98 0.99 0.98

Recall 0.94 0.64 0.96 0.73

F1 0.96 0.78 0.97 0.83

on the available dataset, and we used the detections obtained
by the FCN5 to generate the probability map, without filtering
out bounding boxes with low confidence. As a consequences
the neural network will learn to deal with errors in the auxil-
iary input as generated by a similar CNN architecture.

4 RESULTS

The trainings and testings are performed with a NVIDIA
Quadro P6000, a 24 GB GPU with 3840 CUDA cores. Each
training was performed with 50000 iterations, a learning rate
of 0.01, weight decay of 0.0001 and batch size 4. Testing of
the trained networks has been perfomed on the two testing
datasets, with and without position error. In order to evaluate
our approach, precision, recall and F1-score have been com-
puted. As in many detection tasks, a detection is considered a
true positive if the Intersection Over Union (IoU) between the
detected box and the ground truth is above a certain threshold
(here: 0.5). Otherwise, it is considered a false positive.

4.1 Crop/weed classification with simple RGB images
First of all, we discuss the classification performance on

the synthetic dataset when no a priori information is provided,
hence no additional input channel is used besides the RGB
channels of the input image. The FCN5 and FCN9 networks
have been trained and tested on both datasets A and B. In this
case, each testing set is composed of 400 images. The per-
formance for the precision, recall and F1 metrics is shown in
Table 2. Note that, not using any a priori knowledge, every
image is processed independently and the differences observ-
able between dataset A and dataset B are only due to the 40
different synthetic fields generated for each.

Specifically, the crop class achieves high scores even with

the shallower FCN5 network, and dataset B appears easier to
classify, possibly due to the relative positioning of crop and
weeds, or border effects (e.g., a crop line partially included
into an image because appearing on the border). The per-
formance on the weed class is instead lower, especially for
the recall, meaning that several weed plants go undetected.
The FCN9 achieves better results here, meaning that there is
room for improvement over the FCN5 results by including
prior information with additional channels. Considering that
the testing datasets are organised in blocks representing the
same field but varying the illumination conditions, it is in-
teresting to analyse how performance varies across different
blocks, so as to determine how much the illumination matters
on the final results. Figure 2 shows that there is indeed some
non-negligible variability in performance among the differ-
ent blocks, hence further motivating the use of prior informa-
tion for more stable and reliable classification. Given that the
performance on the crop class is already very high with the
FCN5, we decided to use only one auxiliary channel repre-
senting a probability map for the weed class obtained from
previous classifications.

4.2 Crop/weed classification with probability maps
To evaluate the performance achievable over multiple pas-

sages on the same field, we perform 10 classifications in a se-
quence using the output of the current stage to compute the
probability map of the following stage (see Figure 3). As it
is possible to note, while the first passage has an empty prob-
ability map, successive passages can exploit the prior knowl-
edge to improve the classification of weeds. As a matter of
fact, it can be noted that in the successive passages, more
plants are correctly detected.

A proper performance evaluation is carried out on dataset
A, where no position error is included (corresponding to the
same condition experienced during training). Considering
that each of the 10 blocks in dataset A have independent illu-
mination conditions, we compute 100 different sequences by
random permutation of the 10 blocks, and use them to have

Figure 2: F1 performance of FCN5 and FCN9 across different
blocks of images, which differ only in the scene illumination.
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Figure 3: Classification over multiple passages. Each row correspond to a single passage over the same portion of the field, but
with different illumination conditions (first column). The RGB image is coupled with a probability map derived from previous
passages, when available (second column). The combined input provides an improved object detection across passages (third
column). In the second passage, a weed is discovered in the center-right part of the image, but one in the bottom right is lost.
In the third passage, the latter weed is detected again, and an additional weed is discovered among the first crop row on the left.

an average performance that is independent as much as pos-
sible from the specific sequence observed. The results for
precision, recall and F1 on the weed class are presented in
Figure 4. It can be noted that the overall classification accu-
racy increases when exploiting the probability maps coming
from previous passages. More specifically, the recall is the
measure most affected by the auxiliary input, while the pre-
cision can undergo a slight degrade, which is observed espe-
cially for networks trained with 75% probability of having a
probability map in input. The training strategy is indeed very
important to obtain a substancial improvement in the classi-
fication through multiple observations. When only 25% or
50% of the training examples are provided with a probability
map, the improvement in the weed classification is only mild.
Instead, with a 75% probability, the neural network learns to
properly exploit the additional input when available, reach-

ing comparable levels of performance as the more complex
FCN9 network. The proposed approach is intrinsically robust
against position errors, as shown by the testing performed on
dataset B (see Figure 5). Even though position errors where
never presented during the training phase, it is possible to
note that a performance improvement is still visible through
successive observations of the same region of the field. This
improvement is not as considerable as for Dataset A but it is
still possible with FCN5 and the auxiliary probability map to
approach the performances of FCN9.

5 CONCLUSIONS

We have proposed an approach to exploit knowledge
available on portions of the field coming from previous ob-
servations to iteratively improve the performance of classifi-
cation by a shallow neural network, to be executed onboard
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lightweight MAVs with limited payload and constraints in
the computational power. We obtained a substancial im-
provement in performance, that makes a shallow architecture
achieve similar performance of a double-size network.

These results validate the concept proposed here for the
first time, and open the way for a thorough analysis of the de-
sign space to identify possible improvements that can further
boost performance. Future work will be dedicated to this as
well as to test the methodology on real-world images. To this
end, a dataset with multiple passages on the same area has
already been collected, and studies are on the way to provide
new grounds for the analysis of the proposed framework.
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also a positioning error is included.
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Towards drone racing with a pixel processor array
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ABSTRACT

Drone racing is an interesting scenario for an
agile MAV due to the need for rapid response
and high accelerations. In this paper we use a
Pixel Processor Array (PPA) demonstrating the
marriage of perception and compute capabilities
on the same device. A Pixel Processor Array
(PPA) consists of a parallel array of processing
elements, each of which features light capture,
processing and storage capabilities allowing for
various image processing tasks to be efficiently
performed directly on the sensor itself. This pa-
per presents the use of a PPA for gate detec-
tion and location in a typical drone racing sce-
nario. Conventional sensing techniques typically
require significant processing overheads on sep-
arate hardware, resulting in lower frame rates
and higher power consumption than is possible
to achieve with a PPA. The results given here
demonstrate gate detection and location with
real-time planning to account for uncertainty in
the gate location. Additionally, the PPA only
needs to output specific information such as the
estimated target location variables, rather than
having to output entire images. This significantly
reduces the bandwidth required for communica-
tion between the sensor and on-board computer,
further enabling a high frame rate, low power op-
eration.

1 INTRODUCTION

Autonomous Drone Racing (ADR) requires a Micro Air
Vehicle (MAV) to fly with high speed, agility and accuracy.
This agile control also requires suitable perception that can
enable flight through small racing gates and around obsta-
cles. An aircraft with such capabilities would be of great use
in many future robotics applications. In such a vehicle it is
important to minimise the size, mass and power consumption
of on-board components such as sensors and processors. Im-
age sensors must also be able to cope with scenes that move at
high speed without suffering from motion blur. Sensing must

*This work was conducted at the Bristol Robotics Laboratory
1Faculty of Engineering, Aerospace and Computer Science, University

of Bristol, Bristol, England
thomas.richardson@bristol.ac.uk

2School of Electrical and Electronic Engineering, The University of
Manchester, Manchester, England p.dudek@manchester.ac.uk

be rapid, accurate, robust and take place with minimal delay
in order to allow for the rapid control decisions required for
precision flying and obstacle avoidance. Pixel Processor Ar-
rays (PPAs) are a great fit for ADR and many other robotics
applications due to their size, speed and low power require-
ments.

Figure 1: Racing layout; PPA structure; and the SCAMP-5
system tracking a single gate.

Autonomous navigation for aerial robotics has histor-
ically leveraged Simultaneous Localisation and Mapping
(SLAM), where powerful single board computers or FPGAs
process information from vision sensors such as stereo cam-
eras and RGB-D cameras e.g. [1–5]. More recently in ADR
competitions however, focus has shifted to high frame rate
estimation of the platform’s motion, rather than rapidly gen-
erating a detailed map of the environment. This rapid frame
estimation allows for agile control and manoeuvring of the
vehicle and enables accurate map generation to take place,
both at a lower frame rate and through post flight data pro-
cessing.

Another direction recently under development is the use
of delta sensors or dynamic visual sensors such as the DVS,
reporting only pixel event locations that changed intensity.
Such sensors have very low latency and energy usage, how-
ever their data often needs to be deeply processed and events
pooled to construct whole images before being usable for
navigation [6].

Targeting the current interest in ADR, this paper presents
an autonomous drone racing strategy using a Pixel Processor

SEPTEMBER 29th TO OCTOBER 4th 2019, MADRID, SPAIN 76



IMAV2019-10 11th INTERNATIONAL MICRO AIR VEHICLE COMPETITION AND CONFERENCE

Array (PPA) camera to estimate gate locations at an average
frame rate of 500Hz. The approach taken here is similar to
the previous competition winning method used at IROS Au-
tonomous Drone Racing 2018 [7]; A key difference being the
onboard sensing. Where the authors of 2018 [7] used deep-
learning to estimate relative gate pose at 10Hz on an Intel
UpBoard, this work instead uses a PPA sensor to detect the
racing gates and provide information to the control systems.

In contrast to many conventional image sensors, PPA sen-
sors, for example the SCAMP-5 system used in this work,
are capable of high frame rate, low latency, vision processing
workloads. This has the potential to greatly reduce the work-
load exacted on any associated on-board computer. PPA sen-
sors consist of a parallel array of processing elements, each
featuring light capture, processing and storage capabilities al-
lowing for various image processing tasks to be efficiently
performed directly on the sensor [8, 9]. Crucially, the PPA is
capable of outputting only required information such as the
estimated location of a target, rather than having to output
entire images. This vastly reduces the bandwidth required
per frame in communication between the sensor and on-board
computer, enabling high frame rate, low power sensing.

Figure 1 shows the overall layout of the gates and their
brightness relative to the environment. The lower portion of
the figure shows the raw SCAMP-5 system image captured
alongside the binarized image containing the extracted gate.

The following section outlines the strategy taken for gate
detection and vehicle control. Section 3 provides the ex-
perimental setup in the flight arena at the Bristol Robotics
Laboratory; and Section 4 provides the test results from au-
tonomous flight tests of the drone with the on-board SCAMP-
5 system sensing the gates, with real-time planning to allow
for uncertainties in their position.

2 METHOD

The system presented here follows recent autonomous
drone racing strategies, splitting the problem into perception,
and combined planning and control. The novelty, contribu-
tion and focus of this paper is in the programming and use of
the SCAMP-5 system for high frame rate detection and local-
ization of the racing gates. Detected gates given in the vehi-
cle’s frame of reference are combined with the vehicle’s state
estimate to produce a filtered estimate of the gate poses. The
planning and control is subsequently performed for the flight
tests using the Perception Aware Model Predictive Controller
(PAMPC) framework presented by Falanga et al. [10].

2.1 Gate Sensing using the SCAMP-5 System

Gate detection is performed using a SCAMP-5 system at-
tached to the front of the vehicle. The system is programmed
to detect potential gates within each frame, sending only their
size and location within the image frame back to the on-board
computer, hence consisting of only a short stream of bytes
per frame. This significantly reduces both the computation

overhead in the controller, and bandwidth required for com-
munication with the sensor. Additionally the gate detection
algorithm is designed to exploit the parallel features of PPAs,
which when combined with the small data transfer per gate,
allows the algorithm to be performed at frame rates of up
to 1500Hz. Performing detection at this frame rate has the
added benefit of allowing for a short exposure time, effec-
tively eliminating motion blur, and improving gate detection
accuracy under rapid camera motion.

2.2 PPA Algorithms
The approach used to detect gates makes heavy use of

two different pieces of functionality on the SCAMP-5 system.
First the ability to locate a set pixel (ie. pixel of value of +1)
within a binary image stored upon the PE array, and secondly
the ability to perform a parallel flood fill upon such a binary
image. A second binary image is used to control this flood
fill operation, restricting flooding propagation to only pixels
which are set in this control image.

Figure 2: Left to right, a white shape is extracted from the
binary camera image, inverted, and then flooded black from
the image bounds leaving only the contained shapes within.

Using these features gate detection proceeds by extract-
ing separate shapes from within a binary thresholded camera
image, and then extracting the shapes contained within each
of these as shown in Figure 2. Different combinations of the
shapes contained within each extracted shape are the tested
to determine if they constitute a potential gate. This simply
involves extracting approximations of the four corners of the
gate and evaluating how well the polygon spanning these ver-
tices fits the shapes as illustrated in Figure 3. Pseudo Code
for this algorithm is listed in Algorithm 1.

2.3 Gate Positioning
The PPA’s output is transformed into an estimated gate

pose relative to the drone through knowledge of the camera’s
intrinsic parameters. The vehicle’s state estimate is then used
to transform these relative gate poses into the world frame.
The world frame positions are compared with a set of prior
estimates provided to the vehicle before flight. Only gate up-
dates that fall close enough to the existing gate predictions are
accepted as valid gate updates used to drive the flight path.

2.4 Control
The control architecture follows that of Falanga et al. [10].

With the PAMPC controller, there are two objectives; the first
is to have the vehicle follow a reference trajectory; and the
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Figure 3: Two examples of combining and testing contained
shapes from Figure 2 as potential gates. Approximate gate
corners are extracted and a filled polygon fitted to these ver-
tices. An XOR is then performed between these two images,
with the number of remaining pixels indicating how closely
this polygon fitted the shape.

second is to bring the next gate into the field of view of the
SCAMP-5 system. In this work, the controller acts over a 2 s
horizon.

The reference trajectory is a simple linear progression
along a set of way-points, and for this work maintains a con-
stant speed along the whole path. This can result in physically
unrealisable accelerations at the transitions between each pair
of way-points. This can in turn limit the maximum speed that
the reference trajectory can be generated for while having the
vehicle successfully follow it. The way-points are generated
in pairs either side of each gate, such that the reference trajec-
tory passes through the centre of each gate, to ensure as tight
tracking as possible to the centre of each gate. The offset of
the way-points either side of the gate was set at 1.5m, which
worked well with the chosen reference trajectory speed. In
addition to these generated way-points, a start and end way-
point were added to the overall list.

In this work, the PAMPC controller’s point of interest,
which controls where the vehicle attempts to point the PPA,
is set to be the way-point after the next gate. This provides the
fastest possible acquisition of the next gate of interest using
the onboard PPA. These gate updates are subsequently used
in real-time to update the reference trajectory by updating the
endpoint for the reference trajectory generation. This rather
coarse approach to the control results in some sharp discon-
tinuities in the reference trajectory when a gate update is in-
corporated. However, this was found to be sufficient for these
tests. Future control work will focus on smoothing out the
transitions in the reference trajectory when a gate estimate is
incorporated, and generating a smoother reference trajectory
accounting for the gate topology.

Algorithm 1 Extract Gates(A,α)

Input and Output
A //Binary Camera Image
α ∈ N // Gate Error Threshold In Number Of Pixels
G // List of detected Gates as corners

while Global OR(A) do
n = 0 //Reset inner Shapes Counter
B = Extract Shape(A) //Extract White Shape
C = Flood From Edges(NOT (B))
B = NOT (OR(B,C)) //Get inner shapes
while Global OR(B) do

Sn = Extract Shape(B) //Extract inner Shape
n++ //Increment inner Shape Counter

end while
for i = 0 to n do

for j = 0 to n do
S = OR(Si, Sj) //Combine inner shapes
corners = Extract Gate Corners(S)
C = Draw Filled Polygon(corners)
C = XOR(C, S) //Generate Error Image
Err = Count Set P ixels(C)
if Err < α then

G = G ∪ {corners} //Add corners List G
end if

end for
end for

end while
return Gates

3 EXPERIMENTAL SETUP

3.1 SCAMP-5 System

Gate detection was performed using SCAMP-5 system
[9, 11, 12] specifically programmed for the task. No other
device was used in directly processing visual data. The
SCAMP-5 system integrated circuit features an array of 256×
256 processing elements (PEs), each capable of light capture,
storage and processing of visual data - effectively putting a
small “microprocessor” inside every pixel of the sensor array.
The pixels feature a photosensor, local analogue and digital
memory, and the ability to perform various logic and arith-
metic operations. The SCAMP-5 system is attached to the
front of the vehicle as shown in Figure 4. Each PE may also
communicate with its four neighbouring elements in the ar-
ray, making it possible to transfer register data across PEs.
A programmable controller chip issues identical instructions
to each PE, which then all perform said instruction simul-
taneously. In this way processing follows the standard sin-
gle instruction multiple data (SIMD) approach and allows for
efficient parallel processing. Vision algorithms can then be
performed directly upon the pixel array, without ever trans-
mitting the images out of the sensor.
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By only sending the meaningful data such as the values
relating to gate locations, there is a significant decrease in the
bandwidth and hence power required during operation. This
approach allows many visual tasks to be conducted at very
high frame-rates (such as at 100 000 fps in [9]), something
typically not possible using the standard visual processing
pipeline. SCAMP-5 system is also low power, requiring be-
low 2W, which compares well with GPU-based approaches
that while parallel, require 10s-100s of Watts.

3.2 Flight Hardware
A custom quadrotor, shown in Figure 4, was designed

and built to carry the SCAMP-5 system, it weighs 1kg with
the PPA installed and measures 400mm diagonally between
rotors. In the work presented in this paper, the sensor was
mounted facing forwards with a 4.5mm lens providing a
107◦ field of view.

Figure 4: Custom quadrotor used for experiments. SCAMP-5
system facing forwards for gate sensing.

An ODROID XU4 single board Linux computer is fitted
to the top of the quadrotor and enables the SCAMP-5 sys-
tem and ‘Pixhawk’ autopilot to both be integrated within the
Robot Operating System (ROS) for rapid development and
system testing. Data is passed from the SCAMP-5 system
over USB to the ODROID, whilst flight data from the Pix-
hawk is sent via a serial UART link. These communication
links are summarised in Figure 5. If the ROS system was not
used, the SCAMP-5 system has an M4 processor that could be
used to carry out the computations currently programmed on
the ODROID, and it could talk directly to the Pixhawk with
the available serial link. The final overall mass of the system
could therefore be reduced significantly if the requirement for
rapid development were removed.

The outer loop control system runs on the ground, with
only the low-level attitude controller running on-board the ve-
hicle. Control inputs are sent over a Laird RM024 whilst data
from the SCAMP-5 system is sent back to ground over WiFi
using TCPROS. Position information for the vehicle is pro-
vided by a series of Vicon cameras and associated tracking
software. The same system is used to track the gate posi-

Figure 5: Block diagram of hardware. ODROID is used for
rapid development and debugging with ROS and passes data
between flight controller, SCAMP-5 system and the ROS sys-
tem. It does not do any further computation.

tions, thereby providing a ground truth for the gate position
estimates.

3.3 Initial Testing
Six square gates were constructed with an array of LEDs

around the outer edges and a width and height of 1m. These
gates were then positioned at various heights and locations to
form a course, representative of the one used in IROS 2018.
No particular consideration was given to the visibility of the
gates while traversing the course. In this work, they were al-
ways vertical, although the method could be extended to deal
with inclined gates. Figure 6 shows a top-down map of the
course, highlighting the overall size, direction and number-
ing of each of the gates.
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Figure 6: Map of the course

Initial testing of the system was carried out using sim-
ulated SCAMP-5 system output feeding back to the the
PAMPC controller. This simulator used the output of the Vi-
con tracking to generate idealised inputs for the gate estima-
tion. The system was found to be highly susceptible to lag,
increasing the motivation for the low latency image process-
ing pipeline provided by the SCAMP-5 system. In parallel
with the testing of the controller, the SCAMP-5 system output
was compared to the ground truth reference points measured
using Vicon
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Figure 7: SCAMP-5 system simulated output for multiple
gates

Figure 7 shows some examples of simulated binarized
frames captured by the SCAMP-5 system used for testing.
From this image, the algorithm running on the system detects
any gates present and transfers their image location and size
to the on-board computer. This information is then utilised by
the controller to update the vehicle’s estimate of the gate po-
sitions. In these examples a number of gates are visible along
with the ceiling lights of the arena, whose shapes are rejected
by the gate detection algorithm.

4 RESULTS

Initial experimentation with the SCAMP-5 system output
feeding into the control loop was carried out with the speed
of the reference trajectory set to 1.5m s−1. The gates were
within 5 cm of the positions given in the prior estimates pro-
vided to the system. The vehicle successfully traversed the
course completing it in approximately 17.5 s. Figure 8 shows
the reference trajectory and the measured vehicle position rel-
ative to the prior estimate and measured gate positions for this
1.5m s−1 run. Of note are a number of sharp discontinuities
in the reference trajectory caused by the gate updates shifting
the end way-points for the linear trajectory generation. As
mentioned previously, future work will focus on smoothing
the effect of incorporating the updated gate estimates. There
is very little shift between the measured gate positions and
those provided as prior estimates as seen by the close corre-
spondence of the dotted and solid gate positions.

For the following set of results, selected gates were
moved prior to the flights. Three of the gates in the course
were shifted laterally by up to 75% of a gate width, namely
gates 2, 4 and 6. The gates remained in approximately the
same plane as their pre-shift positions, though it should be
noted that this is not required for the control strategy selected.
The reference speed was also increased to 2.3m s−1. With
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Figure 8: Plot showing track taken by drone through gates.
No intentional shift of gates, reference speed 1.5m s−1. Ref-
erence trajectory and prior gate estimates dotted, measured
trajectory and positions solid.

the current control implementation, this allowed for robust
and repeatable completion of the course. Figure 9 shows suc-
cessful completion of the course for this reference speed in
approximately 12.5 s. The shift in gate positions can be seen
by the offset between the prior estimates provided (dotted)
and those measured by the Vicon system (solid). The ref-
erence trajectory is noticeably noisier than that seen in Fig-
ure 8 which was at a refernce speed of 1.5m s−1, but future
smoothing of the gate updates will solve this problem. Vari-
able reference trajectory speed and way-point offsets will also
allow the overall speed to be increased.

Table 1 provides the maximum speed along all three axes
and the maximum overall velocity during this run. The maxi-
mum roll and pitch angles experienced by the vehicle are also
given.

Value Absolute Maximum
x-velocity 3.04m s−1

y-velocity 2.83m s−1

z-velocity 1.72m s−1

Total velocity 3.14m s−1

Roll 39.4◦

Pitch 44.0◦

Table 1: Maximum values reached during the run shown in
Figure 9

Figure 10 shows the location of the vehicle as it passes
through each gate relative to the mean estimated gate posi-
tion. The plot spans the overall cross-section of the gate. It
can be seen that these are closely grouped, indicating that the
vehicle is consistently passing through the gate at the targeted
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Figure 9: Plot showing track taken by drone through gates.
Gates 2,4 & 6 shifted, reference speed 2.3m s−1. Reference
trajectory and prior gate estimates dotted, measured trajectory
and positions solid.

location, as identified by the SCAMP-5 system tracking esti-
mate. The vehicle trajectory has also been included for 0.5m
on both sides of each gate pass-through, indicating that the
vehicle is consistent both in the approach and the departure
for each gate. The pass-through locations for all six gates
are within a 20 cm square, which together with the possible
improvements identified above, indicate that there is still sig-
nificant improvement possible in terms of maximum speed,
acceleration and the minimum time to complete the course.
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Figure 10: Accuracy of flight path relative to the estimated
gate positions. Gates 2, 4 & 6 shifted. Plot spans overall size
of gate, 0.5m of the trajectories either side of the gate are
plotted.

Figure 11 shows the location of the vehicle as it passes
through each gate in terms of the measured position from the
Vicon cameras. This is shown as a ground truth, and it shows
little difference in terms of the grouping when compared to
Figure 10. From these two plots, it can therefore be con-
cluded that the dynamic SCAMP-5 system driven estimate of
the gate position and the vehicle control are both sufficiently
accurate for further speed increases. The small difference be-
tween the two plots, Figure 10 and Figure 11 could be due to
a number of factors, namely a small offset in the orientation
and/or position of the SCAMP-5 system on the vehicle; an
error in the state estimate of the gate positions; or an error
in the measurement of the true gate position. The combined
errors though are very small and are not currently the limiting
factor with regards to overall vehicle performance.
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Figure 11: Accuracy of flight path relative to the measured
gate positions. Gates 2,4 & 6 shifted. Plot spans overall size
of gate, 0.5m of the trajectories either side of the gate are
plotted.

5 CONCLUSIONS

This work has shown that a novel Pixel Processor Array
(PPA) device can be used to correct imperfect knowledge of a
drone racing course in real-time. The high frame rate achiev-
able with the SCAMP-5 system - i.e. an average of 500Hz -
has been shown to provide robust and reliable estimates of the
true gate positions. This has been carried out on a represen-
tative drone racing course, with rapid and significant changes
in vehicle trajectory. For the results shown, the position esti-
mate based on the PPA sensing was not found to be the overall
limiting factor for speeds and accelerations experienced.

Key limitations in the control strategy used have been
identified and these will be addressed in future work to find
the limits in terms of speed and acceleration for the scenario
considered. These results show the PPAs are likely to be one
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of a suite of sensors used on future small agile drones when
manoeuvring rapidly in an unknown environment.
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Polarization Compass for Navigation of MAVs
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ABSTRACT

We present the integration of a polarization com-
pass in a visual-inertial sensor fusion framework
onboard a Micro Aerial Vehicle (MAV). The po-
larization compass estimates the position of the
sun indirectly from the pattern of skylight polar-
ization even in cases where the sun is not visi-
ble. It is based on a polarization sensor which
consists of a standard RGB camera and a small
polarizing unit that creates three polarization im-
ages on the camera sensor. Due to its low weight
and compact size it is ideally suited for small
aerial systems. The readings from the polariza-
tion compass are fused with angular rate and ac-
celeration measurements from an Inertial Mea-
surement Unit (IMU) and the 6 Degrees of Free-
dom (DOF) pose changes from the Visual Odom-
etry (VO) in an indirect extended Kalman fil-
ter (EKF). Two different approaches to integrate
the readings from the polarization compass in
the filter are presented and compared. We show
in experiments that adding a compass to visual-
inertial sensor fusion does not only eliminate the
drift of yaw angle estimates but also improves
overall state estimation of the system.

1 INTRODUCTION

Due to the complementary information they provide, the
fusion of visual and inertial data is widely used for state-
estimation of MAVs, in particular in environments where
global navigation satellite systems (GNSS) are unavailable
or unreliable. While it is possible to estimate absolute roll
and pitch angles based on acceleration measurements, the
yaw angle is subject to drift as it can only be estimated by
continuously integrating orientation differences. Therefore,
magnetometers are often added. By measuring the magnetic
field of the Earth, the absolute yaw angle can be estimated.
In this case all degrees of rotation are observable, as well as
the angular velocity and acceleration biases, which results in
higher overall accuracy of the system. However, magnetic
compasses can be disturbed by magnetic objects or electrical
devices. Beside the magnetic field of the earth the position of
the sun can be used as a compass cue and even if the sun is not
directly visible its position can be estimated indirectly via the

∗Email address: florian.steidle@dlr.de

Figure 1: Multicopter “ARDEA” with a frame in triangle
shape, three pairs of counter-rotating rotors and a sensor suite
mainly consisting of an IMU, two pairs of wide-angle stereo
cameras and an insect-inspired polarization compass (high-
lighted by red ellipse).

polarization pattern of the sky light. An other advantage com-
pared to a magnetic compass is its insensitivity to interference
fields caused, for instance, by electric devices. This motivated
us to equip our multicopter “ARDEA” [7] with a bio-inspired
polarization sensor and integrate its compass measurements
in our Visual Inertial Navigation System (VINS).

In [1] a polarization compass was fused with IMU read-
ings, but VOs were not used, the measurement equation for
the polarization is different and instead of a indirect EKF a
complementary filter was used. In [2] accelerations and angu-
lar rates are fused with readings from a polarization compass
in a Kalman filter. But they also used readings from a GNSS
and only estimated the orientation of their device.

The main contributions of our approach are a system for
pose estimation onboard a MAV which does neither depend
on external infrastructure nor readings of the magnetic field
and nonetheless can provide a drift-free 3 DOF orientation
estimate. Its accuracy is improved in comparison to a pure
VINS and it avoids the usage of 3 DOF measurements of the
direction vector to the sun with almost singular covariance
matrix by projecting the measurement errors to different two
dimensional subspaces.

In the following we describe the polarization compass
in Section 2, the approach to combine data from different
sensors in Section 3, the experiments in Section 4 and finally
conclude the paper with Section 5.
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Figure 2: The polarization sensor, a standard camera with
cylindrical polarizer unit mounted in front of the camera lens
is positioned between the two stereo camera pairs (left). The
sensor was inspired by the ocelli of orchid bees. As high-
lighted by the red circle in the inset of the right figure (shown
is a close up view of the head of the bee Euglossa imperi-
alis), bees have three simple eyes with polarization sensitive
photoreceptors (photos courtesy of Emily Baird, Stockholm
University). In orchid bees, the preferred polarization orien-
tation is very similar within each eye but differs between eyes
by somewhat less than 60◦ [3].

2 POLARIZATION COMPASS

We briefly describe the polarization sensor and summa-
rize the computation of the sun vector. For more details
see [4]. The polarization sensor utilized on our multicopter
is identical to the one described in [4] except for the camera
sensor. It is replaced by an USB3 camera with Sony IMX265
CMOS color sensor (IDS UI 3271LE-C).

2.1 Sky polarization pattern as compass cue
Scattering of sun light in the atmosphere creates a charac-

teristic polarization pattern in the sky that is essentially sym-
metric with respect to the position of the sun. The degree of
polarization is low close to the sun, increases with angular
distance from the sun up to 90◦ and decreases for larger an-
gles. Measuring the polarization, in particular its orientation,
which is known to be more reliable than the degree of po-
larization [5], even just for small regions of the sky allows to
estimate the sun position or at least its azimuth in cases where
the sun is occluded by clouds, trees or buildings. Therefore,
similar to the sun, the polarization pattern can be used as a
compass. Interestingly, insects are known to use both, direct
sun position and polarization pattern for orientation [6]. Bees
and many other insect species, like desert ants, have a spe-
cialized region in the upper part of their compound eyes that
are sensitive to polarization. In addition, there is recent evi-
dence that the three simple eyes of bees located at the top of
the head in between the two compound eyes, the “ocelli” (see
right sub figure of Figure 2), might also play a role in polar-
ization sensing. While each ocellum contains photoreceptors
of similar preferred orientation, the preferred orientations of
all three ocelli differ strongly. This arrangement of polariza-
tion sensitive photoreceptors in bees inspired the polarization

sensor design and its use as compass cue on our multicopter
ARDEA. As sky light is predominantly linearly polarized, i.e.
contains almost no circular or elliptical polarization, three is
the minimum number of linear polarizers sufficient for esti-
mating all relevant polarization parameters.

2.2 Polarization sensor and multi-camera setup on MAV

As shown in Figure 1 and 2 the polarization sensor is
placed between Ardea’s “compound eyes” that consist of two
wide-angle cameras on either side. The arrangement of these
cameras provides a very large stereo FOV of approx. 240◦

vertically. As described in [7], each wide-angle camera is
remapped to two virtual pinhole cameras to allow for efficient
image processing.

The polarization sensor consists of a standard camera
with a small-aperture lens to which the cylindrical polarizer
unit is attached, see Figure 2. By means of this unit the cam-
era image contains three basically identical images of the sky
seen through three differently oriented linear polarizers (Fig-
ure 3 left). The preferred polarization orientations differ by
60◦.

In contrast to several devices based on photodiodes,
e.g. [8, 9], the polarization sensor allows to estimate a large
number of polarization vectors, which – in combination with
a comparatively large field of view of approx. 56◦ – enables
the estimation of the “sun vector”, i.e. not only the azimuth
of the sun but also its elevation angle can be inferred.

2.3 Remapping and polarization estimation

Raw images of the polarization camera of size 800× 800
pixels are de-bayered, scaled down by factor 0.5 and then
remapped to three polarization images (120×120 pixels) with
constant radial resolution of 0.5◦ per pixel. From the inten-
sity differences of corresponding pixels, i.e. pixels with same
viewing directions as estimated by a three-camera-calibration
using the DLR-CalDe/CalLab tool [10], the angle φ and de-
gree of polarization δ can be determined for each pixel of the
reference image (the remapped sub-image ’1’), see [4] for de-
tails. By retracing the pixel rays, the polarization orientation
on the sky sphere can be computed, which we describe by the
3D unit vector ±fi in the following, where i is the index of
the pixel with image coordinates (ui, vi). If the multicopter
is aligned with the north direction then the u-axis of the cam-
era image points towards the west and the v-axis towards the
south (see p-frame in Figure 4). The exact transformation
between the polarization camera frame and the IMU or body
frame of the multicopter was estimated based on an extrin-
sic calibration of the polarization camera and the topmost left
virtual pinhole camera and an IMU-to-camera calibration be-
tween the reference pinhole camera and the IMU.

SEPTEMBER 29th TO OCTOBER 4th 2019, MADRID, SPAIN 84



IMAV2019-11 11th INTERNATIONAL MICRO AIR VEHICLE COMPETITION AND CONFERENCE

2.4 Sun vector estimation
As described in [4], the sun vector pps can be estimated

by minimizing

E(pps) =
∑

i

w̃i(±f>i
pps)

2 =p p>s
(∑

i

w̃ifif
>
i

)
pps (1)

under the constraint ‖pps‖ = 1. w̃i = (
∑
k wk)−1 wi are

normalized weights. The weights wi basically depend on the
degree of polarization and the “blueness” of the correspond-
ing pixel favoring “sky-pixels”. Equation 1 is motivated by
the fact that ideally all polarization vectors {fi} are orthog-
onal to the observer-sun axis, i.e. the sun vector cpps. Pre-
whitening [11] of matrix P =

∑
i w̃ifif

>
i is used to reduce

the bias that would result from solving the eigenvalue prob-
lem defined in Equation 1 directly. Assuming independent
and identically distributed errors with standard deviation σ,
the covariance matrix of the sun vector can be estimated,

Σpps
≈ σ2 Q

∑

i

w̃2
i (1− (pps

>ei)
2)fif

>
i Q> . (2)

Q is a matrix describing rotation, scaling and projection onto
the plane orthogonal to the estimated sun vector, and ei is the
viewing direction of pixel i.
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Figure 3: Estimation of sun position from the three images of
the polarization sensor. Left: The camera image containing
the three sub-images after de-bayering. In this example the
sun is located outside the field of view of the camera. A bright
cloud visible in the upper right corner of the sub-images in-
dicates the approximate sun direction. Intensity differences
between the three sub-images allow to estimate polarization
degree and angle for each pixel. For example, quite strong in-
tensity differences can be observed in the lower left corner of
the three sub-images indicating high degree of polarization.
Right: Shown are the sky polarization angles, i.e. the angles
of the polarization vectors with respect to the local meridi-
ans (great circles of constant azimuth) in color code, rang-
ing from −90◦ (blue) to +90◦ (red), and polarization vectors
fi with length scaled according to weight wi (black arrows),
projected onto the image plane. The red cross in the upper
right corners depicts the estimated position of the sun (ap-
prox. −34.5◦ azimuth and +36◦ elevation angle with respect
to the camera frame).

3 FUSION

3.1 Extended Kalman filter based visual-inertial odometry
In [12] and [13] an indirect, extended Kalman filter was

introduced that combines the readings from an IMU and a
single VO. In [7] the filter was extended to cope with multiple
VOs.

Figure 4: An image of ARDEA with the navigation frame
(n-frame), the body frame (b-frame), the frames of one stereo
pair (cl- and cr-frame) and the frame of the camera with the
polarization compass (p-frame).

The main state x of the filter is defined by

x =
[
n
bp> n

bv> n
bq> bb>a

bb>ω
]>
, (3)

with the position n
bp ∈ R3 of the body frame (b-frame) rela-

tive to an earth-fixed, inertial frame (n-frame), the velocity
n
bv ∈ R3, the orientation n

bq ∈ R4 represented by a unit
quaternion and the acceleration bba ∈ R3 and angular rate
bbω ∈ R3 biases of the IMU. The relationship between the
main coordinate systems involved is shown in Figure 4.
If a raw measurement from a sensor is taken, its transmission
and processing needs time and is therefore delayed when the
results are available to the filter. For some sensors, e.g. IMUs
the delay can often be neglected, for other sensors, e. g. cam-
eras the delay usually has to be taken into account. Therefore,
parts of the main state that are necessary to process the de-
layed measurements, when they arrive have to be augmented
to the state. The final state consists of the main state x and an
arbitrary number of augmented states xaug.
A measurement from the VO that becomes available at time
tk can be described by

hk = h(xk−n,xk−m), (4)

where the states at time tk−n and tk−m must be part of the
augmented state.
Instead of estimating the state directly, it is possible to esti-
mate the errors of the state. This has several advantages, e.g.
system dynamics can be decoupled from error dynamics, a
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sophisticated model of the system is not needed and rotation
errors can be locally described with a minimal representation.
The indirect formulation is given by

δx =
[
n
bδp

> n
bδv

> n
bδφ

> bδb>a
bδb>ω

]>
, (5)

where all errors are in the form of n
bp̂ = n

bp+ n
bδp, except the

orientation error, which has an multiplicative error definition
n̂qb = nqb⊗ n̂δqn. The quaternion multiplication is denoted
by ⊗ and n̂δqn is the error quaternion corresponding to the
angular error δφ.

3.2 Extending the EKF with readings from a polarization
compass

The polarization compass determines the direction vector
pp̄s ∈ R3 pointing to the sun expressed in the frame of the
polarization camera (p-frame) and its corresponding covari-
ance matrix Σs ∈ R3×3.
Using the convention to indicate the spherically normalized
version of a vector p by p̄ = p

‖p‖ , the equation to transform
the position of the sun in the navigation frame nps to the cam-
era frame pps is given by (see [14])

pp̄s = cRb
bRn

np̄s . (6)

The relation between the error of the expected measurement
ĥ and the actual measurement hm as well as the error of the
system state δx have to be defined in order to use them in the
filter,

δh = Π(ĥ− hm)

= Π(pRb
bRn̂

np̄s − pRb
bRn

np̄s)

= Π(pRb
bRn̂

np̄s − pRb
bRn(I3×3 + b δφ c×)np̄s)

= Π pRb
bRn̂b np̄s c×δφ .

(7)

To solve Equation 7 the true rotation from the navigation
frame to the body frame bRn is unknown and can be ap-
proximated by bRn = bRn̂(I3×3 + b δφ c×). The matrix
Π is a projection matrix. It can be set to a constant value,

e.g. Πs =

[
1 0 0
0 1 0

]
, which maps the angular error δφ

to the x-y-plane of the polarization camera. If the deviation
between the sun vector and the z-axis of the camera is suf-
ficiently small, the performance will be satisfactory. Given
the dynamics of the system and the fact, that the sun vector
changes during the day, improvements can be expected by
adapting Πd dynamically. By projecting the error between
the predicted and measured sun vector onto the tangent space
on the sphere at the predicted sun vector, the measurement er-
ror is invariant with respect to the estimated orientation [15].
The tangent space to the unit sphere is spanned by the column
vectors of the matrix

Πd = N (pp̄s
>) =

[
s1⊥ s2⊥

]>
, (8)

where N (pp̄>s ) denotes the left null space of the vector pp̄s.
The matrix Πd has to fulfill the property ΠdΠ

>
d = I2. One

possible solution is given by

s1⊥ =
1√

p̄2s,x + p̄2s,y

[
−p̄s,y p̄s,x 0

]>
,

s2⊥ =
1√

p̄2s,x + p̄2s,y

[
−p̄s,xp̄s,z −p̄s,yp̄s,z p̄2s,x + p̄2s,y

]>
.

(9)

In the case of a static projection matrix, the covariance esti-
mate Σs can be projected to the subspace by the equation

Σs,r = ΠsΣsΠ
>
s . (10)

In the case of a dynamic projection matrix, the static projec-
tion matrix Πs has to be replaced with the matrix Πd defined
in Equation 8 and Equation 9. The reduced covariance matrix
Σs,r ∈ R2×2 is non-singular and can be used in the filter
update equations.

4 EXPERIMENTS
Several experiments were carried out to test the different

components of the system under varying conditions. The set
of indoor experiments was done in a lab where high frequency
ground truth data was available, but readings of the polariza-
tion sensor had to be simulated. For the set of outdoor exper-
iments ground truth data was only available occasionally but
real readings from the polarization sensor could be used.

The set of indoor experiments consists of a trajec-
tory of ARDEA, which was augmented with simulated
readings of the polarization compass to evaluate the in-
fluence of the polarization compass. The set of outdoor
experiments consists of one experiment to evaluate the
performance of the polarization compass itself and a second
experiment to evaluate the performance of the overall system.

4.1 Test of the polarization compass
As an initial test, we placed the multicopter on a leveled

turntable and recorded the estimated sun azimuth and eleva-
tion angles while turning the multicopter in steps of 30◦. As
illustrated in Figure 5, the sun position can be determined
quite accurately with a standard deviation below 1◦ for az-
imuth and below 3◦ for elevation angle.

4.2 Indoor test of pose estimation with simulated measure-
ments from the polarization compass

In the second experiment a trajectory of an indoor experi-
ment in the lab was augmented with simulated measurements
of the polarization compass. The measurements of the po-
larization compass were artificially corrupted by zero mean,
white Gaussian noise. The noise levels were empirically de-
termined. For the indoor datasets at each time stamp the
ground truth pose of ARDEA is available with high precision.
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Figure 5: Test of the sun position estimation by turning the
multicopter in 30◦ steps. Shown are the azimuth angle with
respect to the initial orientation (green ’x’) and the sun eleva-
tion angles (red ’x’) as estimated by the polarization compass.
The dashed line shows the true sun elevation angle (≈ 32◦).

Therefore, Euler angle errors can be calculated. They are de-
picted in Figure 6. Roll and pitch errors stay limited for all
three cases, while the yaw angle error grows unbounded with
time if the polarisation compass is not used. Due to the use of
the polarization compass its steady increase can be compen-
sated.

4.3 Outdoor test of pose estimation with real measurements
from the polarization compass

In Figure 7 the estimated position of ARDEA during an
outdoor experiment is given. The start and final positions are
at the origin. The polarization compass improves the esti-
mates in the case of the dynamic projection matrix Πd and
also in the case of the static projection matrix Πs. Slight dif-
ferences between the static and dynamic projection approach
can be seen for the z-direction, where the dynamic projection
results in a lower error.

An often used error metrics for translational errors is the
norm of the distance of the estimated final position to the
true final position with respect to trajectory length. Given the
length of the trajectory of approx. 132 m, the relative errors
are 2.7%, 0.6% and 0.5% for the approach without the polar-
ization compass, with the polarization compass and a static
projection matrix and with the polarization compass and dy-
namic projection matrices.

Roll and pitch angles are globally observable when fusing
accelerometer and gyroscope readings with the delta poses
of a VO. Therefore, the polarization compass only slightly
improves their estimation. But the slight improvement of roll
and pitch estimation results in a lower vertical position error.
Without the polarization compass, the yaw angle error grows
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Figure 6: Roll, pitch and yaw error for a single run with sim-
ulated sun vector measurements. Blue: without polarization
compass, red: with polarization compass using static projec-
tion, yellow: with polarization compass using dynamic pro-
jection.

unbounded with time. Due to the polarization compass this
drift can be compensated, which results in improvements of
x and y position estimates.

Multiple runs with different trajectories resulted in similar
system behavior and similar values of the error metrics.

5 CONCLUSIONS
It was shown in the experiments that fusing the polariza-

tion compass with the data from an inertial measurement unit
and a VO in an indirect EKF improves the accuracy of pose
estimation. The differences are small between the approach
with a static projection matrix and a dynamic projection ma-
trix. While a polarization compass can obviously provide
orientation estimations only outdoors, it is likely to improve
state estimation also in mixed indoor/outdoor flights. Fur-
thermore, using a polarization compass in conjunction with a
VINS could also be beneficial in other applications, e.g. when
matching maps from multiple robots.
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ABSTRACT

In this paper we present a CNN architecture to
automatically estimate the position of a drone, in
metres, relative to a gate in a race track. The
latter arises in the context of the autonomous
drone racing competition where the challenge is
to design a drone that can beat a human in a
drone race. There have emerged different pro-
posals to address this problem. Notably, local-
isation of the drone in the race track is one of
the first capabilities that could lead to a solution.
However, global localisation may require sophis-
ticated methods such as odometry or SLAM that
may become expensive to be computed on board.
Furthermore, global localisation may drift as the
drone runs the track. Motivated by the latter, we
present a CNN architecture based on the Posenet
network, which was designed for camera relo-
calisation in real time. Nevertheless, we have
adopted, modified and re-trained such network
to the context of relative localisation w.r.t to a
gate in the track, which can be exploited by the
autonomous navigation algorithms for the race.
We report an average performance of 50 fps and
a maximum up to 100 fps in a low budget com-
puter with a modest GPU, thus outperforming
similar works in the state of the art.

1 INTRODUCTION

Autonomous Drone Racing (ADR) is an open challenge
that focuses on having to beat a human in a drone race.
This task leads to various challenges, such as localisation
and drone control navigation. To know where the drone is,
represent a fundamental task in the planning for autonomous
navigation, in the last decade several works were focused on
estimating the pose of a robot by means of using a single
camera and a techniques such as visual odometry or visual
simultaneous localisation and mapping, with good accuracy
in the estimation, but with the caveat that such estimates may
be obtained at low frame rates (20 - 30 Hz). Pose estimation
at high frequency is desirable as it could be exploited in

∗Department of Computer Science at INAOE. Email addresses: {cocoma,
carranza}@inaoep.mx

agile flights, such as those expected in a drone race. Even

Figure 1: We design a method for Autonomous Drone Rac-
ing based on CNN for pose estimation and an algorithm
for autonomous navigation. See https://youtu.be/
5rboqinFXYo

proposals that have been employed in ADR competitions
operates at 10 fps.

Motivated by the above, in this work we proposed an al-
gorithm for Autonomous Drone Racing based on Convolu-
tional Neural Networks aiming at estimating the pose of the
drone relative to the gate and at a high frequency. Similar
works have achieved this but at a frame rate of 10 fps. In con-
trast, our proposal achieves an estimation speed of 100 fps on
average with GPU and 20 fps on average with CPU.

To describe our approach, first we will discuss the related
work in section 2, then we will describe the methodology
used to design and train the network and how we use the pose
estimation for autonomous navigation in section 3. Next, we
will present the testing results showing that we can estimate
the pose up to 100 fps, in section 4. Finally, conclusions are
discussed in section 5.

2 RELATED WORK

In recent years, the problem of estimating the position of
the camera has been widely studied. There are two main ap-
proaches to Visual Odometry: geometrical approach and deep
learning approach.
Visual SLAM is one of the most used algorithms to known
the robot (camera) position in navigation. V-SLAM solves
the problem of localisation and mapping the environment by
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landmarks and features from the frame observed [1]. Deep
learning-based algorithms have explore different ways to esti-
mate camera pose. We can found in literature works that uses
CNN as main algorithm and shows the viability of the results
instead geometric ones [2, 3], other ones resolves localisation
via V-SLAM in where estimates VO and also generates a map
of the environment [4, 5]. One relevant work is the reported
in [6, 7] where they propose a Network they called Posenet.
Posenet is based in GoogLeNet [8]. The main contribution
of the work is the change of the softmax classifier in the last
three layers by a regressor to estimate the pose of the camera.
They report high accuracy in their results. Also, it is reported
a real-time computation for pose estimation, a time of 5ms.
There are some works, focus in the estimation of the pose of
an object in the image, this is the scope of the works pub-
lished in [9, 10, 11, 12].
Seminal works addressed the problem to autonomous navi-
gation by using visual odometry or visual SLAM algorithms
to resolve the drone’s localisation [13] and then generate a
planning based on the pose of the drone. In this same con-
text, the works [14, 15] describe an algorithm to autonomous
navigation by detecting the gate objective and develop a plan-
ning route for the drone flying. Using traditional computer
vision, the works presented in [16, 17] propose a strategy
based on colour pixels of the gate for detection (four corners)
and subsequently, the problem of perspective n-point (PnP)
is solved to estimate the relative position of the drone. Other
approach based on gate detection by the use of deep learning
is presented in [18], they propose a modified SSD network
they called ADR-Net to gate detection and then they propose
a guidance algorithm based on LOS vector guidance to per-
forms autonomous flight to cross the gate.

3 METHODOLOGY

For autonomous navigation in drone racing, the principals
approach have shown an efficient way to planning navigation
knowing the position of the gate.

In this work we propose an approach to pose estimation
based on gate position, this means, not to estimate the pose
of camera based on the whole scene, instead take the gate as
reference an estimate how far is the camera from the gate.

We propose a CNN solution based on Posenet [6].
Posenet allows to estimate 6D camera pose for a complete
scene outdoors and indoors. We are only interested in 3D
camera pose, it means only translation is required for this
work, thus we modify the regressors layers to outputs only
position (x, y, z) and set the euclidean distance only for trans-
lation for the learning algorithm. Also is eliminated a image
normalization (mean subtraction) due the use in continuous
video images (real-time). For this propose, this modifications
are made in a complete network and also is designed a re-
duced one for increasing network rate predict (see figure 2).

The dataset was designed in simulated environment using
gazebo. The scene is created with two gates only, the reason

Figure 2: Reduced Posenet architecture.

for this is because when the drone is far enough of gate one, it
can see the both gates. Then the drone flies towards the gate
and when it is close to the gate one the camera will be in a
blind point from that gate, this means that the drone will no
be able to see the gate one. Thus, gate two will appear in the
line vision producing a new estimation of the pose related to
gate two. It is for that reason that the dataset is design in that
way, figure 3 shows an example of the gates in the Gazebo
scene.

Figure 3: Example of gates used for training.

Using the gates designed as shown, the pose of the drone
is calculated used gazebo model state, but not from scene ori-
gin, the pose is related to the gate one. Thus the groundtruth
is created related the distance of the drone from the gate one,
the figure 4 illustrates how is the pose of the drone taken in
the simulator.

The pose estimation calculated by the CNN, is used to de-
velop autonomous navigation. The algorithm developed cal-
culates the trajectory adjustment necessary to fly through the
gate. In the first step, the drone aligns its position to the cen-
ter of the gate (y position), and then when it is centered the
algorithm commands to fly the distance necessary to close
the gate. As we describe early, when the drone is in the
blind point of the gate, then predict the position to the next
gate, with this new position, it is estimate the distance left
to cross the gate. When the gate has been through, the algo-
rithm restarts the process to fly and cross the next gate. The
methodology described is illustrated in the figure 5.
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Figure 4: Pose of the drone related to the center of the gate,
top view.

Figure 5: Proposed methodology.

4 EXPERIMENTS AND RESULTS

The experiments were conducted by the use of simulated
environment using gazebo. This section describe the results
obtained in each experiment.

4.1 Pose evaluation
To evaluate the pose predicted. ROS framework was

used to communicate simulated environment (Gazebo) with
the Predictor (Modified Posenet) and RVIZ. The experiments
performed showed that exist a precision zone for the predic-
tion due to the design of the training dataset. Inside the pre-
cision area (this area has size 2.2m x 2.5m), the mean error
decreases and prediction is close to the groundtruth, the fig-
ure 6 shows the evaluation of the pose predicted displayed in
RVIZ, also is attached to figure a white rectangle indicating
the precision area detected.

The error calculated inside and outside the area indicates
that when the gate is the line vision of the drone the error
decreases (inside area), but the error increases as the drone
flies away leaving out of the line of vision to the window. The
poses were compare calculating the distance between them
(error). Figure 7 plots the errors in the navigation test. As the
drone flies insider of the precision area, the error decreases to
a mean of 0.16 m. Even if the drone is inside the area, the
orientation also affects the pose estimation, the more oriented
to the front of the gate, implies the less error in prediction.

To evaluate the performance of the Reduced Posenet, nav-
igation tests are carried out in the same way as the Modified
Posenet. It can observes from figure 9 that the pose predicted
is close to groundtruth inside the precision area in the same

Figure 6: Predicted pose compared with groundtruth using
RVIZ. White arrow shows Groundtruth and Blue arrow Pre-
dicted.

Figure 7: Error over time in navigation. Left graph shows the
error while navigating inside the precision area. Right graph
shows the error while navigating outside the precision area.

way that Modified Posenet, besides the error increases more
outside the precision area. This is not really significant, be-
cause when the drone is flying towards the center of the win-
dow automatically will be placed inside the area and the pre-
diction will be best for the navigation algorithm.

We have found a similar behavior for the error in the in-
side and outside area when we plot the error (position differ-
ences between predicted and groundtruth) over the time in a
navigation. This is showed by figure 8.

Figure 8: Error over time in navigation. Left graph shows the
error while navigating inside the precision area. Right graph
shows the error while navigating outside the precision area.

We have test the algorithm for autonomous drone rac-
ing. Using the scenario from Gazebo, via ROS framework,
we communicate the pose prediction with the algorithm for
navigation to the Gazebo world. In the world presented in
figure 10, we put three gates in the line vision of the drone to
evaluate at first the prediction in the autonomous navigation.
The algorithm correctly estimate the pose from the gate and
command the drone to center the gate to fly across. As the se-
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quence shows, the drone flies satisfactorily through the gate
and then stop and oriented to the next gate.

In the table 1, we summarise the error results of both ap-
proaches as well as the frequency of process of the pose pre-
diction. The best performance is for the Reduced Posenet,
that has minimum error inside the precision area and has the
highest frame rate operation for prediction.

Inside ε Outside ε Frame rate (GPU)
MPoseNet 0.1597 m 0.4866 m 50 fps
RPoseNet 0.1285 m 0.5867 m 100 fps

Table 1: Results in navigation testing Modified PoseNet
(MPoseNet) and Reduced PoseNet (RPoseNet) for both in-
side and outside precision area of prediction. ε is the mean
error of the predictions over the time of navigation.

All the test of the algorithm were conducted in a computer
with a GTX 860m, 16Gb of RAM and an i7-4710HQ CPU.

5 CONCLUSIONS

Autonomous Drone Racing represents a big challenge
to develop efficient algorithms that can beat a human pilot
in navigation. Localisation at high-speed is still one of the
principal problems to solve.
In this work, we have shown that it is possible to estimates
3D pose of a drone relative to a gate in real-time, and at high
frame rate.
To achieve this, we have developed a dataset that allows the
proposed CNN to learn the pose of the drone with respect to
the gate with a low error. In addition, we have designed an
algorithm for Autonomous Drone Racing based on the pose
obtained from the CNN.
The tests performed in simulation shows goods results with
low error.
We report the highest rate for pose prediction at 100 fps
(20 fps with CPU) with our reduced Posenet for and with a
low error of around 13 centimetres, which still enables our
navigation algorithm to centre the drone w.r.t the gate to then
command it to cross the gate.

As future work, we will improve the test for real-world
scenarios to evaluate the pose estimation and the autonomous
drone navigation.
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ABSTRACT

Convertible unmanned aerial vehicle (UAV)
promises a good balance between convenient
autonomous launch/recovery and efficient long
range cruise performance. Successful design of
this new type of aircraft relies heavily on good
understanding of powered lift generated through
propeller-wing interactions, where the velocity
distribution within propeller slipstream is criti-
cal to estimate aerodynamic forces during hover
condition. Current study analysed a propeller-
wing combination with a plain flap. A 5-hole
probe measurement system was built to construct
3 dimensional velocity field at a survey plane af-
ter trailing edge. The study has found that sig-
nificant deformation of propeller slipstream was
present in the form of opposite transverse dis-
placement on extrados and intrados. The defor-
mation could be enhanced by flap deflections.
Velocity differences caused by the slipstream de-
formation could imply local variation of lift dis-
tribution compared to predictions from conven-
tional assumptions of cylindrical slipstream. The
research underlined that the mutual aspect of
propeller-wing interaction could be critical for
low-speed aerodynamic design.

1 INTRODUCTION

Small-scale unmanned aerial vehicle has recently at-
tracted great amount of interests due to their autonomous ca-
pability to conduct highly repetitive or dangerous flight mis-
sions. This capability is realised through electrical propulsion
system and improved autoflight system. The current UAV lift-
ing systems are generally derived by down-scaling manned
aircraft. The clear division of rotorcraft and fixed-wing air-
craft can still be seen in most professional UAV applications.

It has been seen however that a hybrid design that com-
bines the vertical take-off / landing capability and the ef-
ficiency of fixed-wing aircraft could improve mission per-
formance of current UAV applications and eventually open

∗Email address(es): yuchen.leng@isae-supaero.fr

up new type of missions. Rotor lifting system is inefficient
for long-endurance flight, and thus mission range is limited.
On the other hand, most current fixed-wing UAVs rely on
crew and sometimes specific systems for launch and recovery,
which limits the origin and destination to dedicated points
where the aircraft can be accommodated by ground crew. To
perform a fully autonomous long-range mission, a hybrid de-
sign called convertible drone is needed.

(a) Combination of quad-copter and flying wing [1]

(b) Darko developped by ENAC drone research group

Figure 1: Examples of convertible drone configurations

The key to an optimised design of convertible drone lies
in the interaction between propulsion system and the lifting
surfaces. An entirely independent design, such as shown in
Figure 1a requires lifting propellers that aren’t used in cruise
flight, hence additional weight and drag are introduced. A
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fully hybrid approach (Figure 1b) takes advantage of arrang-
ing lifting surfaces within propeller slipstream for augmented
lift from blown wing. In this way the propeller and wing are
both used during hover and cruise flight, and their sizes must
match to deliver the required aerodynamic performance while
minimizing the weight of combined system.

Unlike an independent design, the hover lift is distributed
between the vertical component of propeller thrust and wing
lift augmented by rotor slipstream. Thus flow interference
between the wing and slipstream must be well understood to
ensure sufficient lift in hover.

To further augment wing lift and to provide flight con-
trol, trailing edge flap is typically installed, such as shown in
Figure 2. Propeller slipstream can therefore be deflected at
a certain angle to generate additional aerodynamic force and
moment. Sufficient pitch and roll control authority can be
achieved with appropriate flap design.

Figure 2: Convertible UAV Cyclone hovering with negative
flap deflection

During preliminary design, reduced-order models such as
panel method, vortex lattice method, to name a few, are pre-
ferred due to their capability of analysing large amount of
candidate configurations at a relatively small computational
cost [2]. Veldhuis et al. has identified two approaches in
analysing propeller-wing systems : single approach and dual-
coupling approach.

In single analysis mode, only the influence of propeller
slipstream is taken into consideration. When calculating wing
lift for sections immersed in propeller slipstream, the accel-
erated freestream velocity and sometimes the circumferential
swirl velocity are applied to calculate local angle of attack
and dynamic pressure. The velocities in the slipstream are
computed from a free propeller model, such as one based on
blade element momentum theory.

A dual-coupling mode is sometimes used to improve ac-
curacy. The same calculation on wing sections still applies.
A main difference is that the freestream condition of the pro-
peller is also modified after the wing circulation distribution

is solved, and induced velocity from the lifting surfaces is
added to flight speed for propeller calculation. Ideally, an it-
erative approach is used until both solutions converge.

Both analysis modes require an empirical coefficient to at-
tenuate propeller induced velocity before application in wing
calculation [3, 4]. This suggests propeller induced velocity
distribution might have changed due to the presence of wing.
The effect was treated semi-empirically in [3], but a clear
physical understanding is still absent.

Recent studies on tractor propeller wake measurements
have found that the influence of wing to the propeller isn’t
limited to the flow upstream of the rotor disk. Deters et al [5]
have used a seven-hole probe to make wake survey at differ-
ent downstream locations after three different propellers. A
flat plate wing is situated close to the propeller. The presence
of wing is significant that the upper and lower halves of the
slipstream translated in opposite direction by a distance up
to 1 propeller radius at survey plane. The phenomenon was
first observed and analysed by Witkowski et.al [6]. However
neither studies provided quantitative analysis.

In this paper, a wake survey in static condition is pre-
sented at different rotation speeds and flap deflection angles.
The test equipment and condition will be introduced in Sec-
tion 2. Results and quantitative analysis will be shown in
Section 3.

The test was also performed with flap deflection to inves-
tigate the slipstream development when the wing was gener-
ating lift.

2 TEST SET-UP

2.1 Test equipments
The test was conducted in the indoor flight arena at Ecole

National de l’Aviation Civile (ENAC). The flight arena’s
volume provides static ambient environment for simulating
hover condition.

The test equipments were divided into three subsystems :
1) propeller-wing combination and their relevant motion con-
trol system ; 2) 5-hole probe and its data acquisition system ;
3) motion control system for 5-hole probe. The test setup in
shown in Figure 3.

Tractor Propeller

Semi-span Wing

Aeroprobe

Motion control system

Figure 3: Test set-up in ENAC indoor flight arena
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2.1.1 Propeller-wing model

The wing tested was a semi-span model with 500mm span.
The straight wing had a constant chord length of 150mm and
NACA0012 aerofoil section. A propeller nacelle was situated
at 55mm from plane of symmetry, where a CM2206 direct
current brushless motor was enclosed. A full-span plain flap
was installed for the last 50% chord, and a servo allowed sym-
metrical flap deflection of 15◦ in either direction.

An APC 3-blade 5x4.6E propeller was tested. A tilt-rotor
mechanism was designed to allow propeller install angle to
change between −10◦ to 10◦ with respect to wing chord line.
The tilt mechanism was fixed at 0◦ for this experiment.

2.1.2 5-hole probe

The wake survey was conducted with an Aeroprobe 5-hole
probe. The centre of probe head was located at 15mm behind
trailing edge or 1.7 times propeller diameters downstream of
rotor plane.

At the centre sphere, five holes were arranged in a cross
pattern with one in the centre, a pair in vertical plane and an-
other pair perpendicularly arranged. A series of static ports
were situated after the probe head. When air is blown, the ve-
locity, pitch and yaw attitude of probe will produce pressure
difference between centre hole and static ports, vertical pair
and side pair holes.

Honeywell analogue differential pressure sensors were
used to measure the three pairs of pressure differences which
were needed to resolve flow velocity. A calibration method
proposed by Reichert et al [7] were used to take into consid-
eration of cross-product terms and to correct alignment errors.

Figure 4: Flow angle measurement

The calibration were also analysed for measurement er-
ror. An uncertainty analysis were performed similar to the
one described by Reichert et al, and fitting error as well as
pressure fluctuations were considered in uncertainty propa-
gation. A validation test were performed in the wind tunnel
with known wind velocity and probe attitude. Flow angle

Figure 5: Flow speed measurement

measurement and its uncertainty is plotted in figure 4; flow
speed measurement and its uncertainty is plotted in figure 5.

From the validation case, uncertainty in flow speed was
estimated at ±0.3m/s and error in flow angle was estimated
to be less than 2◦ below 20◦.

2.1.3 Motion control system

A 2-axis linear motion frame was constructed to allow auto-
matic wake survey at a given plane perpendicular to propeller
axis. Three stepper motors controlled by I2C bus were used
to move a cart on which the 5-hole probe was mounted within
the survey plane. The measurement was made on a 15 × 15
grid using alternating survey pattern as depicted in figure 6.
Mean velocity data was obtained from sample recorded at
700Hz over a period of 5s.

Figure 6: Motion control system and survey pattern

2.2 Test conditions
All tests were conducted at V∞ = 0 to analyse flow con-

dition at hover flight. Different propeller rotation speed and
flap angle were tested, and the test matrix is given in Table 1

The rotation of propeller in front of a finite wing made
the situation no longer symmetrical. Since lift must vanish
at wing tip, spanwise lift distribution isn’t uniform for a fi-
nite wing without propeller. Furthermore, an up-going pro-
peller blade influences the wing section behind in a different
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Test Variables
Rotation Speed [rpm] 5770 / 8000 / 10000
Flap Deflection [◦] 0, ±15

Table 1: Test Parameters

way from the down-going blade, hence the influence of a sin-
gle rotating propeller isn’t symmetrical. For this reason, both
positive and negative flap deflections were tested.

3 RESULTS

In this section the results of 0◦ flap deflection will first be
presented in subsection 3.1, where the effect of rotation speed
as well as the general flow structure of propeller-wing inter-
ference will be discussed. Further discussion will continue in
subsection 3.2 on the effect of flap deflection.

3.1 0◦ Flap Deflection
The configuration at neutral flap setting excluded the ef-

fect of different velocity and pressure profiles on the extrados
and intrados. The wake survey therefore was only influenced
by the fact that propeller slipstream was separated by a solid
surface.

The wake survey at 8000rpm is presented in Figure 7.
The velocity field distribution in the survey plane is depicted
as two components : the streamwise component u is per-
pendicular to the survey plane and the transverse component
Vt =

√
v2 + w2 is situated within the survey plane. In Fig-

ure 7, the background contour shows u distribution while the
transverse Vt is superposed by arrow symbols that give both
magnitude and direction of Vt at sample points.

Figure 7: Velocity distribution at survey plane for symmetri-
cal configuration at 8000rpm

Above and below the wing, propeller slipstream can be
identified as a semi-circular region of high energy airflow.

Within the slipstream, both u and Vt are noticeably higher
in magnitude than the surrounding flow region. The increase
in axial velocity is expected as the propeller produces forward
thrust by accelerating air in downstream direction. The trans-
verse velocity is caused by the air resistance against blade
rotation. Transverse velocity contains both induced velocity
and viscous effect, and is commonly referred to as swirl in
rotary wing terminology.

According to momentum theory [8], the induced axial ve-
locity at propeller disk can be related to thrust coefficient.

ui = nD

√
2CT
π

(1)

where n is rotation speed in revolution per second and D is
propeller diameter. Thrust coefficient is defined as CT =
T

ρn2D4 , and was obtained as tabulated data from propeller
manufacturer at different rotation speeds [9]. After the ro-
tor plane, contraction of slipstream accelerates flow towards
twice of ui at downstream infinity. The flow survey is non-
dimensionalised using the induced axial velocity at ultimate
wake. The benefit of such normalisation is to remove the ef-
fects of thrust loading and rotational speed.

A circle in dashed line represents the undisturbed slip-
stream boundary obtained from vortex theory from Mc-
Cormick [10], where

R (z̄) = Rp

√
1 + z̄2 − z̄

√
1 + z̄2 (2)

where z̄ is the distance from propeller plane normalized by
Rp and z̄ is negative downstream. Through comparison with
the actual high-speed regions, a distinct separation of flow
structures between the extrados and intrados can be observed.

Figure 8: Comparison of axial velocity distribution at differ-
ent rotation speeds

While increases in ui and Vt can be reasonably explained
by free propeller theory, movement of the two slipstream re-
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gions can’t be similarly explained. For a single propeller, the
slipstream will stay together as in an approximate cylindrical
shape. But when a wing is present, as seen in Figure 7, the up-
per slipstream exhibited a general displacement towards the
right (outboard) while the lower slipstream region moves op-
positely towards the left (inboard). The directions of move-
ment is associated with the direction of propeller, where in
the test case, the inboard blade was turning upward relative to
the wing chord.

Axial velocity contours of cases from three different ro-
tation speeds are plotted in Figure 8, where the solid line de-
picts u distribution at 5770rpm, dashed line represents the
one at 8000rpm and dotted line is for 10000rpm.

Plotted in non-dimensional form, the contour lines of
three different cases generally overlap for most flow region.
Major differences lie close to the axial velocity peaks at in-
trados and extrados. The general agreement of flow topol-
ogy suggests that at hover condition, the wake development
is scalable with thrust loading and blade rotation.

A quantifiable measurement is made by determining the
centres of extrados and intrados slipstreams. Due to the pres-
ence of wing wake, the slipstream centre cannot be easily de-
fined. An indirect method was used to determine slipstream
centre through shear stress at the boundary.

Rw

R1
θ1

yc

Figure 9: Geometry relations to determine slipstream centre

From turbulent jet theory, it can be concluded that the
axial velocity profile of a round jet surrounded by static air
can be approximated by Gaussian function. The jet bound-
ary corresponds to where the extrema of shear stress exists.
If streamwise partial derivatives ( ∂∂x ) are assumed to be small
compared to cross flow derivatives, the cross-flow shear stress
can therefore be determined.

τxy = µ
∂u

∂y
(3)

τxz = µ
∂u

∂z
(4)

The wake boundary was then determined to be the locus
of maximum transverse shear stress, drawing analogy from
conclusions of turbulent jet theory.

(y, z) : max
√
τ2xy + τ2xz (5)

The vertical extrema of the slipstream boundary were
chosen as the radius of contracted wake Rw. The angular and
radial position of the closest points of slipstream boundary to
rotational axis were determined asR1 and θ1. From geometry
relations, the slipstream centre can then be determined.

yc =

√
R2
w − (R1 sin θ1)

2
+R1 cos θ1 (6)

The displacement of slipstream centre from propeller axis
can therefore be found, and the results for three test cases can
be found in Table 2.

RPM CT yc/R Theoretical yc/R Error
5770 0.1907 0.4290 0.4252 0.9%
8000 0.1908 0.4086 0.4253 3.9%
10000 0.1906 0.4017 0.4252 5.5%

Table 2: Centreline displacement at different rotation speeds

ȳc (z̄) =





0, z̄LE ≤ z̄

2

π
(tanφ− secφ) (z̄ − z̄LE) z̄TE ≤ z̄,

− 2

π
secφ

(
√

1 + z̄2 −
√

1 + z̄2LE + ln

∣∣∣∣∣
z̄LE
z̄

1−
√

1 + z̄2

1−
√

1 + z̄2LE

∣∣∣∣∣

)
, z̄ < z̄LE

2

π
(tanφ− secφ) (z̄TE − z̄LE)

− 2

π
secφ

(
√

1 + z̄2TE −
√

1 + z̄2LE + ln

∣∣∣∣∣
z̄LE
z̄TE

1−
√

1 + z̄2TE
1−

√
1 + z̄2LE

∣∣∣∣∣

)
z̄ < z̄TE

+
2

π


tanφ (z̄ − z̄LE)− z̄ − z̄TE

z̄TE

(√
1 + z̄2TE − z̄2TE

) secφ


 ,

(7)
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From Table 2 it can be concluded that the three cases
have nearly identical wake displacement. A theoretical re-
sult was also calculated for each case. This value is based on
a potential flow method considering the mean chord surface
as an imaginary plane, and thus a transverse velocity is in-
duced from streamwise vortices in propeller slipstream, such
idea was first introduced in [6] qualitatively and a quantitative
model has been proposed by Leng et al [11].

The resulting model for centreline displacement ȳc =
yc/R is a function of downstream location z̄ = z/R, with
blade tip vortex shedding angle φ as a parameter. The centre-
line displacement is given in equation 7 at static condition.

Angle φ can be calculated from momentum theory using
thrust coefficient, and z̄LE , z̄TE are leading edge and trailing
edge locations divided by propeller radius with origin at rotor
centre and negative direction pointing downstream.

Figure 10: Velocity distribution at survey plane for sym-
metrical configuration at 8000rpm, with displaced slipstream
boundary

In Figure 10, slipstream boundary from momentum the-
ory was displaced by the predicted amount from Table 2. The
deformed boundary appeared to include both high-speed flow
regions at extrados and intrados. The results confirm that at
static condition, displaced centreline can be accurately calcu-
lated using the theoretical model. The results seem to affirm
that the presence of wing serves as an imaginary plane for
slipstream vortex system, and its induced transverse velocity
component explains centreline displacement.

3.2 Effect of Flap Deflection
In subsection 3.1 the slipstream development in 0◦ flap

deflection configuration was presented and analysed. In this
condition the wing wasn’t lifting, and thus the transverse slip-
stream displacement was purely caused by the presence of
solid surface between the extrados and intrados parts of slip-
stream.

Results obtained at 8000rpm are included and discussed
in this section, while the other results are included in ap-
pendix for simplicity. The effects discussed in this section
are similar at a different tested rotation speed.

Figure 11 demonstrated the wake survey in a similar fash-
ion as in Figure 7. The dashed line represents the flap trailing
edge location when deflected. High speed region can still be
observed in the velocity field, but the distribution took a dif-
ferent shape because of the deflection of flap. Besides the
transverse displacement in left and right directions, the slip-
stream profiles also differ from each other in their vertical
expansion. On the extrados, the slipstream was displaced to-
wards the right and took a slightly narrower width. While
the highest point of extrados slipstream stayed close to 1 pro-
peller radius, the region spread lower and generally followed
the deflected trailing edge flap. The extended vertical expan-
sion is consistent with the reduced lateral width, since flow
continuity must be satisfied.

Figure 11: Velocity distribution at survey plane for with 15◦

flap deflection at 8000rpm

The intrados slipstream was wider and flatter compared
to the extrados slipstream and Figure 7. The combined effect
produced a distinct velocity difference for the wing section
after up-going blade (inboard section), while such difference
was more subtle on the other side. The non-uniform velocity
distribution could imply significant local lift variation in the
surveyed section.

Wake survey for negative flap deflection is depicted in
Figure 12. The velocity distribution is generally axial sym-
metric of Figure 11. However the vertical extent of the intra-
dos slipstream is slightly larger than the extrados slipstream
in positive flap deflection. In Figure 12, the wake boundary
of intrados slipstream is shown lower than 1 propeller radius.
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Figure 12: Velocity distribution at survey plane for with−15◦

flap deflection at 8000rpm

4 CONCLUSION

In this paper, a wake survey was presented immediately
after a propeller-wing combination to investigate the flow in-
teraction for a convertible UAV under hover condition. A
symmetric wing profile was tested in ENAC indoor flight
arena at calm wind condition. Velocity magnitude and direc-
tion were measured by a 5-hole probe at a plane perpendicular
to streamwise direction and downstream of trailing edge. The
test was conducted with zero flap deflection, as well as with
flap deflection of 15◦ in either direction.

The results demonstrated that the presence of wing influ-
ences velocity distribution within propeller slipstream com-
pared to a free propeller. In the experiment, the upper half
slipstream was observed to translate towards outboard while
the lower half slipstream translates towards inboard. The re-
sults contrast with most reduced-order model of propeller-
wing interaction where propeller wake was assumed to keep
its cylindrical shape.

Comparison with a theoretical model suggests that wing
influence on propeller slipstream velocity distribution can be
accurately modelled using method of reflection on slipstream
streamwise vorticity.

The influence of wing on velocity distribution within slip-
stream was observed to be different between upper and lower
surfaces when flap deflection was present, with the deforma-
tion being stronger on the wing surface opposite to flap de-
flection.
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APPENDIX A: WAKE SURVEYS WITH FLAP

Wake surveys with ±15◦ flap deflections are depicted in
Figure 13a and Figure 13b for propeller rotation speed at
5770rpm.

(a) −15◦ flap deflection

(b) 15◦ flap deflection

Figure 13: Velocity distribution at survey plane for with flap
deflections at 5770rpm

Wake surveys with ±15◦ flap deflections are depicted in
Figure 14a and Figure 14b for propeller rotation speed at
10000rpm.

(a) −15◦ flap deflection

(b) 15◦ flap deflection

Figure 14: Velocity distribution at survey plane for with flap
deflections at 10000rpm
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ABSTRACT

This article presents the design of a mini UAV
dedicated to atmospheric research with tight op-
erational constraints coming from the end-users,
which are the meteorologists associated to the
project. Several aspects are covered in addi-
tion to the conceptual design of the frame it-
self and its manufacturing process. This includes
the innovative launching system based on water
rocket, the design of a 5-hole probe for wind and
turbulence measurements, the new version of the
on-board autopilot and finally the evaluation of a
long range communication system. Preliminary
results are presented to conclude the paper.

1 INTRODUCTION

Unmanned Aerial Vehicles (UAV) are now commonly
used for scientific research and especially in atmospheric re-
search [1, 2] with a wide range of scale and mission. They
have proved themselves to be cheaper and more agile than
manned aircraft or balloons to probe the low-level atmo-
spheric boundary layer. It is also important to be able to op-
erate them in all sorts of weather conditions, including rain
and strong winds [3]. However, flying a small UAVs at high
speed, in harsh conditions and with a flight time as long as
possible raises many technical challenges, especially to keep
the overall system easy to operate.

One of the key measurement is the turbulence of the atmo-
sphere which usually requires the use of 3D wind probes [4].
These type of sensors are already commercially available, like
the µADC from Aeroprobe, but are pretty expensive and re-
quires cumbersome electronic boards. It is also important to
increase the sampling frequency with the speed of the aircraft
in order to maintain a large usable bandwidth [5].

This article presents the design of a high performance
small UAV designed for atmospheric turbulence measure-
ments at high speed. After presenting the mission and the op-
erational constraints in section 2, section 3 will describe the
aircraft conceptual design and its innovative launching sys-
tem, the next section will then focus on the on-board system
integration and the design of a 3D wind probe. Finally pre-
liminary flight and sensors tests will conclude the paper.

2 MISSION OVERVIEW AND CONSTRAINTS

The mission considered in this article is the measurement
of the turbulence of the atmosphere with a small UAV. This is
part of the NEPHELAE project, which involves atmospheric
scientists as well as researchers in aerial robotics.

From the long experience of the authors in similar UAV
operations [6, 7], it has been decided that a particular focus
will be made on the take-off and landing procedures, as well
as the capability of the plane to fly in strong wind conditions.

The UAV should be able to fulfil the following require-
ments:

• Lift a maximum of 800 grams of scientific payload in
a roomy enough cargo bay.

• Cruise more than 2 hours to give the entire observation
period coverage without having to land for recharging.

• Cruise at an average altitude of 3000 m above sea level
where weather phenomena take place.

• Cruise at a speed of around 25 m/s which is fast enough
to both counter the violent turbulences accompanying
observed weather phenomena and to move from one
measurement point to another in an acceptable time.

• The whole, fully equipped, aircraft should not weight
more than 2.5kg to be easily transportable even in re-
mote operating areas.

One of the main issue that is arising from these require-
ments is coming from the rather high cruise flight speed
which prevents the use of off-the shelves airframes that would
not be able to fly as fast (or as long, if overpowered) as ex-
pected, as it will be seen in section 3.

Figure 1 shows a typical location for operating UAVs
without any proper ground infrastructure such as a runway.
There is not even a flat space for belly landing. The UAV sys-
tem must therefore presents VSTOL capability, which will be
detailed in sections 3.2 and 3.3.

3 AIRFRAME DESIGN

Aircraft conception is an iterative process that covers the
conceptual design, the definition of the launching and recov-
ering systems and the manufacturing choices.
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Figure 1: Base camp for operations of MAV in harsh environ-
ment.

3.1 Aircraft conceptual design
The conceptual design consist in optimizing the aircraft

characteristics assessing its performances on a typical mis-
sion.

The basic architecture of the aircraft is predefined:

• A pusher configuration is adopted in order not to inter-
fere with the sensors accommodated in the nose of the
aircraft (cf. section 4).

• An electric power-plant is selected for its simplicity in
operation. Sufficient autonomy can be achieved when
combined with lithium-ion batteries. The battery is a
homemade pack of 18650 type cells of 3500mAh ca-
pacity each.

• The aircraft is likely to withstood high vertical wind
gradients. Therefore, a flying wing configuration is
adopted in order to reduce turbulence by minimiz-
ing the longitudinal distance between the aerodynamic
center and the lifting surfaces.

• The electric systems in the fuselage are air cooled by a
flow entering through a particle separator located in the
nose.

One of the design case mission considered is presented in
Figure 2 which is a vertical profile up to the top of the cloud
formation.

Main optimization parameters are the chord and the span
of the wing, the motor and the propeller. The software used
(GENCAB) for this study is based on genetic algorithms, dif-
ferential evolution and non-linear simplex (Nelder Mead al-
gorithm). This hybridisation of global and local techniques
makes the convergence of the overall algorithm quicker and
also increases the robustness of the tool over a variety of prob-
lems, and in particular problems involving alphanumeric pa-
rameters. The optimization process leads to a high wing load-
ing to reduce the zero lift drag produced by the wing wetted

Figure 2: UAV typical mission.

area. High wing loading presents the other advantage to be
less turbulence sensitive. However its drawback is a higher
stall speed which has been limited to 13 m/s for take-off and
landing operations.

Moreover, the propulsion system maximum power have
been chosen much higher than what is required in cruise in
order to reduce the climb time to 3000m.

3.2 Launching systems
The relatively high stall speed imposes the use of a

launching systems since a whole prototype has been lost dur-
ing a hand launched test.

Several existing options have been considered:

• Cataplut launching seems to be the most popular solu-
tion. Tests have been performed with two off the selves
systems. It results that either they do not transmit suf-
ficient energy to the aircraft (SKYWALKERRC) or the
acceleration is much too high (Gatewing) for the struc-
ture, the autopilot and the payload. Figure 3 shows the
position of a dummy UAV along the time obtained dur-
ing a test. The final velocity is about 17.5m.s−1 which

Figure 3: catapult launching performance

would be sufficient, but the acceleration is around 9.8g
which is unacceptable. In addition, the maximum ve-
locity is reached at less than one meter high which is
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dangerous for operators and does not provide sufficient
clearance.

• Winch launching using a bungee and placing the plane
on a ramp at the beginning achieves good repeatabil-
ity. It presents much lower accelerations, however this
solution requires planes with rather low stall speed so
that the plane doesn’t touch the ground after leaving the
ramp. If it is not the case, a longer ramp can be used
at the expense of a possible uncontrolled yaw moment
due to the friction of the wing on the ramp.

• Car (manned or RC) top launching do not present the
latter defect but requires an even longer clear flat area
to be operated.

• Trebuchet launching or multicopter lifting are more un-
usual solutions because they require relatively bulky fa-
cilities.

• Several UAVs are rocket launched following the idea of
the Zero-length launch of manned aircraft developed in
the 1950’s. The main issues with this method is the fire
hazard represented by the solid fuel rocket.

Therefore, a specific takeoff system based on a water
rocket has been designed. Its main advantages are: limited
acceleration, high height clearance, very high reachable air-
speed, very compact facilities, only little hazard compare to
the solutions previously presented. In addition, the launch
pad consists in a tube inserted in the water rocket that guide
it at the very beginning of the launch and reduce the waste
of water acting like a piston. The maximal acceleration can
be limited by reducing the nozzle diameter, while the internal
volume of the water rocket is computed in order to store the
required amount of energy. The acceleration has been limited
here to 4g. The UAV is released at 15 m/s and 8 m high with
an initial pressure of only 9 bars. The acceleration is thus
much more gentle than with a catapult as it can be noticed in
Figure 4.

However, its integration is more restrictive than for a clas-
sical Jet-Assisted Take-Off (JATO) system that is jettisoned
in flight like a drop tank. As water rocket has indeed a much
lower specific energy than solid fuel rocket, it cannot be fixed
underneath the aircraft and must be placed at the rear of the
drone like the first stage of a rocket. In this position, the CG
is very far back. An additional lifting surface must therefore
be added at the very back of the water rocket to restore the
natural longitudinal stability. The additional lifting surface
area is computed in order to move the aerodynamic center
behind the center of gravity of the set with a static margin of
5% of the UAV aerodynamic chord. The UAV and the rocket
are connected thanks to a cone shape coupler made of a male
plug mounted on the motor shaft and a female plug put on top
of the rocket. A parachute is added to the assembly through a
cable ensuring the separation of the two components on time.

Figure 4: Water rocket performances

The parachute is laid on the floor beyond the drone and is
naturally inflated when the UAV passes over it. A diagram
illustrating the operation principle of water rocket launching
is shown in Figure 5.

Figure 5: Water rocket launch phases.

3.3 Recovering systems
Several solutions can be implemented to obtain a short or

vertical landing. The most popular solution consists in ac-
commodating a ballistic parachute in the airframe. Despite
the fact that very reliable systems are available on the market
for the considered aircraft size, the additional weight is too
high not to be detrimental.

Arresting hook is another solution but it still requires a
piece of runway and constitute another overweight.

Therefore, a vertical arresting net has been selected since
it can be used on almost every cleared ground and do not need
any additional on-board system.

3.4 Manufacturing process
The manufacturing process is custom to deal with the un-

usual constraints of the chosen UAV operation mode. In ad-
dition, the manufacturing must be easy, fast, low cost in order
to produce the whole fleet on time, on cost and with the re-
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quired quality. To do so, several solutions have been adopted
as shown in Figure 6.

Figure 6: UAV construction.

The high aspect ratio combined with the high wing load-
ing and the high expected turbulence impose the use of a
spanwise carbon spar. In order to gain weight, the back half
of the wing is built from an extruded polystyrene foam block
with a hot wire CNC. This material has a high stiffness suit-
able for the sharp trailing edge. The front half is built with the
same tool but from a block of expended polypropylene which
offers a very good shape memory that is of great interest when
the UAV impacts the arresting net. The joint between the two
parts is made of a mixture of resin and glass micro-sphere.
The obtained wing is covered with a high-density polyethy-
lene film that protects it against abrasion and improves its
polishing.

The planned number of UAVs is too low to justify the
purchase of fuselage moulds. Therefore an innovative man-
ufacturing process has been developed. The external skin of
the fuselage is 3D printed in PET. The PET is chosen because
of its very good inter-layer cohesion and its very low wrap-
ping despite its higher density compared with ABS. However,
the fuselage is built with the minimum possible thickness that
ensures good printing result. The strength of the fuselage is
obtained by laying carbon fibers on the inside surface of the
printed part. The resulting fuselage presents the strength of a
carbon molded part at the cost of a 3D printed part.

The water rocket is built by splicing two 2L soda bottle
back to back. the maximum tolerable pressure is around the
expected 9 bars. Therefore, a carbon fiber fabric is wrapped
around the bottles assembly. Test have been performed up to
12 bars without showing any weakness. The wing is made of
a carbon spar reinforced extruded polypropylene foam shape
to withstood hard landings. The general layout of the water
rocket booster is shown in Figure 7.

4 SYSTEM INTEGRATION

4.1 Autopilot
The open-source autopilot system used to equipped the

UAVs is called Paparazzi[8]. The previous hardware boards

Figure 7: Rocket booster construction.

used during past project was reaching end-of-life since some
components were declared obsolete by the manufactures, so
it was decided the design a new version.

The general guidelines were to keep the board small,
eventually with the same footprint than the previous gener-
ation for easier upgrade, improve the connectivity to support
more sensors and use latest available integrated components
such as MCU and IMU. The main characteristics of this new
board, named Tawaki, are listed in Table 1.

MCU STM32F7
IMU ICM20600 (accel, gyro) + LIS3MDL (mag)
Baro BMP3
Serial 3 UARTS, I2C (5V + 3.3V), SPI
Servo 8 PWM/DShot output (+ ESC telemetry)
RC 2 inputs: PPM, SBUS, Spektrum

AUX 8 multi purpose auxiliary pins
(ADC, timers, UART, flow control, GPIO, ...)

Logger SD card slot
USB DFU flash, mass storage, serial over USB

Power 6V to 17V input (2-4S LiPo)
3.3V and 5V, 4A output

Weight 12 grams

Table 1: General characteristics for the Tawaki autopilot
board.

The Figure 8 shows the top and bottom 3D view of the
final design of the Tawaki autopilot. A first prototype have
already been assembled and successfully tested so far.

4.2 Communication system
The communication system on this UAV needs to provide

at least a 10 km range and accommodate for several aircraft.
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Figure 8: 3D view of the final design of the Tawaki autopilot

As the 2.4GHz XBee modems used in previous projects were
a bit too short in range, the P2400 from Microhard has been
selected in place. Its main characteristics are shown in Ta-
ble 2. It must be noted that two types of Lora modems pro-
viding long range communication have been tested but the
throughput of theses modems was two low to be usable for a
UAV command and control link.

Frequency band 2400↔ 2483.5MHz
Spreading method Frequency hopping
Link to autopilot UART

or computer up to 230.4 kbps
Link Rate 19.2 to 345 kbps

Emitted power up to 1W
Power consumption TX peak 6.6W

Size 26.5x33x3.5mm
Weight 5g

Table 2: General characteristics for the P2400 modem.

In order to estimate the communication range, a modem
has been installed on board a UAV flying in circles at 150 m
altitude while a car was driving away with another modem
attached to a computer running a test program. To the day
of writing this article, tests have been done with a wireless
rate of 172.8 kbps resulting in a maximum range of 4.3km.
This range is not sufficient for the planned mission, never-
theless the sensitivity of the modem (and hence its maximum
communication range) increases when one configures a lower
wireless rate allowing for a range increase. Through simple
computation with the Friis free-space transmission formula,
the feasible range have been evaluated for a 55 kbps wireless
rate to be around 7.7 km. Furthermore, we plan to use a direc-
tive antenna which would give us a further boost in range up

to 14 km which should provide enough range even counting
the attenuation due to clouds.

4.3 Turbulence probe
In order to measure the turbulence of the atmosphere, a

commonly used type of sensors are the multi-hole probes.
Their primary usage are to measure the angle of attack and
the sideslip angle, which doesn’t require a very high sampling
frequency, around 10 Hz. However, the dynamic of the tur-
bulence requires a larger bandwidth with a minimum of 100
Hz.

For this project, a new integrated probe using fast differ-
ential pressure sensor is under development. The main char-
acteristics are presented in Table 3.

MCU STM32F7
Differential pressure 3 x SDP31

Absolute pressure LPS33HW
IMU ICM20600 (accel, gyro)

Logger SD card slot
Data UART, USB

Powering 5V
dimensions � 22 mm, L 110 mm min

Table 3: Main features of the 3D wind probe

Since it integrates a micro-controller and a SD card di-
rectly inside the probe, the recording and processing at high
frequency can be done with minimum latency and indepen-
dently of the main autopilot. A serial UART connection al-
lows to forward the filtered and pre-processed data to autopi-
lot, which will eventually forward the messages to the ground
for real-time monitoring.

In addition to this, IMU data can be recorded for angle
correction, or processed in real-time using attitude filter. The
serial connection can also be used to receive external data
such as GPS position, speed and heading for a better recon-
struction of the local 3D wind field.

The Figure 9 shows the preliminary design of this new
sensor. The expected sampling frequency is 500 Hz for the
differential pressure and 50 Hz for the absolute pressure.

Figure 9: Inner view of the integrated 3D wind probe
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4.4 Other sensors

In addition to the 3D wind probe, other meteorological
sensors can be embedded inside the plane:

• Temperature and humidity, mostly used to build verti-
cal profiles of the atmosphere the same way weather
balloons would do.

• Cloud sensor [9] used to determine some of the char-
acteristics of the water droplets and the liquid water
content (LWC) of the atmosphere.

• Radiation sensors used to measure the albedo.

5 FLIGHT TESTS AND EXPERIMENTAL RESULTS

5.1 Flight patterns simulations

In order to efficiently sample the clouds, dedicated flight
patterns have been defined based on the feedback from the
scientists that will post-process them.

Figure 10: The different parts of the cloud that will require a
specific focus during the mission.

The result is a set of predefined adaptive shapes that al-
lows focusing the acquisition on certain parts of the cloud
such as the border, the base or the core as shown on Figure 10.
The real-time feedback from the sensors reduces the required
time to sample a particular region corresponding to the phys-
ical process being studied, thus providing a better set of data
to reconstruct the complete evolution of the cloud. The other
benefit of this expert-based approach is that the computational
load is limited compared to previous work on this topic [7]
and can be performed in real-time by the on-board autopilot
without heavy computations on the ground.

These strategy have been tested in simulations with real-
istic aircraft and cloud models [10]. The Figure 11 is showing
the flight tracks of three UAVs where two of them are measur-
ing the vertical wind intensity at two different altitudes to es-
timate the airflow inside the cloud, while the last one is cover-
ing the border in 3D to estimate the volume. The turnarounds
at the edge of the cloud are triggered based on the liquid water
content estimation in real-time.

Figure 11: Simulation of 3 UAVs sampling 2 horizontal
planes and the last one covering the outer 3D border.

5.2 Flight tests
Preliminary test flights have been performed with the op-

timized planes. At the very beginning, the issues during take-
off using conventional techniques, leading to a loss of the
plane, conduct to the design of the rocket-based launching
procedure.

The second second session of flight tests have revealed an
issue linked to the structural vibrations of the aircraft. Those
vibrations, which disturb the attitude (AHRS) estimation fil-
ter, should be reduced prior to more flights. Two solutions
have been implemented, which are a mechanical damping of
the autopilot and a better filtering of the accelerometer data.

5.3 Five-Hole Probe Calibration (Prototype)
At the time of writing this draft paper, the final turbu-

lence probe was not ready. In preparation for it, the calibra-
tion procedure has been done with prototype electronics, and
an off-the-shelf 5-hole probe from AeroProbe. The proto-
type electronics consists of three differential pressure sensors
(SDP31), an absolute pressure sensor, and STM32L4 micro-
controller.

The calibration process has been done inside a low speed
wind-tunnel facility, where the test section dimensions are
50cm by 50cm. The static ports on the probe are located at
the very tip of the tube that has a spherical shape.

During the calibration process, it is important to keep
the tip of the probe at the same location (fluid stream tube)
in order to avoid possible uncertainties that may arise from
nonuniform distribution of the speed. Therefore, a custom
calibration bench has been designed and build that holds the
tip of the probe in its center during the pitch and yaw move-
ments. Figure 12 shows the calibration mechanism inside
wind tunnel’s test section. The bench has been designed to
move from -20 deg, up to +20 deg both in angle of attack
and side slip axes. During calibration, first the airspeed is
fixed, and then for each angle of attack, side slip angle has
been changed. Once all angle of attack and side slip angles
are covered, the wind tunnel speed has been changed and the
process is repeated for different airspeed (8m/s, 11m/s, and
14m/s).

A linear regression on the calibration data has been ap-
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Figure 12: Calibration bench located inside the test section of
ENAC’s low speed wind-tunnel.

plied in order to estimate the angle of attack, side slip angle
and the dynamic pressure by using the three on-board differ-
ential pressure sensors as



α
β
q


 = A



P1/P3

P2/P3

P3


+



c1
c2
c3


 ,

where A is a [3 × 3] coefficient matrix (obtained from the
linear regression), and c1−3 are the offset values.

As the angle of attack and side slip angles should be esti-
mated independent of the airspeed, the linear regression fea-
tures has been selected in a normalized way being P1/P3 and
P2/P3. It can be understood that P3 is the differential pres-
sure sensor that is connected to the total pressure and static
pressure holes.

Figure 13 shows the result of the predicted angle of attack,
side slip angle and the airspeed with respect to ground truth
that comes from bench mechanism servo angles and wind-
tunnel airspeed setpoint. The actual airspeed has been cal-
culated by predicted dynamic pressure and the measured on-
board absolute pressure and temperature values.

6 CONCLUSION AND ONGOING WORK

This paper has presented the overall design of a small
UAV optimized for meteorological research, such as cloud
and turbulence analysis. This includes the conception of the
plane itself, taking into account the requirements of the atmo-
sphere researchers, but also the adaptation of the manufac-
turing process to make the structure easily reproducible and
adaptable and the launching system adapted to the specific
performances of the aircraft. In addition, a special attention
to the system integration has led to the conception of an inte-
grated 3D wind probe based on 5-hole measurements, a new
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Figure 13: Comparison of predicted versus ground truth val-
ues of angle of attack, side-slip angle and the airspeed.

version of the main autopilot board and the integration of long
range communication devices.

Future work will focus on the plane performances evalua-
tion in real-flight, completing the final design of the 3D wind
probe and manufacturing it in order to test it in flight.
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Lamraoui, Murat Bronz, and Simon Lacroix. Adaptive
sampling of cumulus clouds with UAVs. Autonomous
Robots, 42(2):pp.491–512, February 2018.

[8] Gautier Hattenberger, Murat Bronz, and Michel Gor-
raz. Using the Paparazzi UAV System for Scientific Re-
search. In IMAV 2014, International Micro Air Vehicle
Conference and Competition 2014, pages pp 247–252,
Delft, Netherlands, August 2014.

[9] Gilles Harrison, Martin Airey, Graeme Marlton, Keri
Nicoll, and Paul Williams. Volcanic ash detection.
Meteorological Technology International, pages 54–56,
September 2017.

[10] Titouan Verdu, Gautier Hattenberger, and Simon
Lacroix. Flight patterns for clouds exploration with a
fleet of uavs. In 2019 International Conference on Un-
manned Aircraft Systems (ICUAS), Atlanta, 2019.

SEPTEMBER 29th TO OCTOBER 4th 2019, MADRID, SPAIN 110



IMAV2019-15 11th INTERNATIONAL MICRO AIR VEHICLE COMPETITION AND CONFERENCE

Effects of asymmetrical inflow in forward flight on the
deformation of interacting flapping wings
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ABSTRACT

This study investigates the wing deformation of a
flapping-wing micro air vehicle (MAV) in climb-
ing and forward flight conditions. A measure-
ment setup was developed that maintains ade-
quate viewing axes of the wings for all pitch an-
gles. Recordings of a high-speed camera pair
are processed using a point tracking algorithm,
allowing 136 points per wing to be measured
simultaneously with an estimated accuracy of
0.25 mm. Results of the climbing flight study
show that although inflow is symmetric, the wing
deformations are slightly asymmetric. Further-
more, it was found that an air-buffer remains
present between the wing surfaces at all times,
especially with increased freestream velocity.
Apart from a minor camber reduction, the clap-
and-peel motion remains mostly unchanged for
changing velocities, while during the remaining
cycle the incidence angle and camber ratio are re-
duced, together with the angle of attack. In for-
ward flight the clap-and-peel motion is twisted
around its contact area to align with the inflow
direction, while the general deformation remains
unchanged, suggesting similar effectiveness as
in hover. Positive mean incidence angles are
present for the entire cycle, especially for fast
forward flight and stroke reversals. Furthermore,
camber is positive during downstroke, while ap-
proaching zero for the upstroke in fast forward
flight, which suggests low loading during the up-
stroke.

1 INTRODUCTION

Aerodynamic efficiency of flapping wing fliers was
poorly understood until the later part of the 20th century. The
low Reynolds number regime in which insects fly should not
allow for sufficient lift production to fly. Nonetheless, rel-
atively high lift coefficients are found for hovering insects
[1]. Reason for this was later found to be the appearance of
strong leading edge vortices (LEV), which remain attached
to the wing surfaces and delay stall. Especially the ’clap-and-
fling’ mechanism was found to harness this effect strongly
[2], where LEV are created between two separating wings.
∗Email address: dorian.heitzig@me.com

The wings were thereby assumed to separate rigidly, with-
out any deformation. Subsequent studies however showed
that insect wings are highly flexible, which further increases
efficiency due to passive deformations of the wing shape such
as dynamic camber production and wing twisting [3]. Cam-
ber production is thereby assumed to be especially influen-
tial, as it delays the LEV detachments, which improves the
delayed stall effect [4].

All effects occur due to the interaction of aerodynamic
and structural, i.e. inertial and elastic, forces and must
therefore be considered in all discussions. Inertial forces
acting on the wing trailing edge were for instance found to
result in a phase lag [5], which initiates a recoil effect after
stroke reversal that is beneficial to thrust production [6].
Elastic forces built up over the stroke can lead to extended
rotation of the wing trailing edge at the stroke end, while
aerodynamic forces act as damping [7].

In this study, the specific interaction of the flapping wing
micro air vehicle (MAV) ’DelFly II’ [8], henceforth simply
called ’DelFly’, is investigated. This MAV features two wing
pairs in an X-wing configuration, which ’clap-and-peel’ [5]
on each side. Several studies of the force production [9] and
flowfield around the DelFly have already been carried out
[10, 11, 12], however the wing deformation was treated com-
paratively little [7]. So far, for simplicity the deformation
was considered to be purely symmetrical, as only a station-
ary hover case was studied. This study extends on this work
and introduces a freestream velocity in which the DelFly is
pitched to different angles, thus simulating forward flight.
This problem is especially interesting, as the clap-and-peel
deformation was investigated only very little outside its de-
signed symmetrical condition [13] and potentially opposing
effects such as asymmetrical camber and incidence angle de-
formations are seen to come into play as fast forward flight is
approached [3, 6].

2 EXPERIMENTAL SETUP

The used DelFly MAV (Figure 1) consists of only the
X-wing pair with half span, stip = 140 mm, the flapping
mechanism enabling stroke angles of φ = 44◦, the electronic
speed controller and a central airframe to which it is mounted.
Similar as in other tethered studies of the DelFly, the tail is
omitted, and power is supplied externally using a laboratory
power-supply and servo tester to generate the flapping fre-
quency signal. The wing material is chosen to be 15 µm thick
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Mylar, together with the default stiffener setup featuring a D-
shaped leading edge rod which increases the stiffness in the
stroke plane [8].

Figure 1: DelFly II MAV. The used model omits the tail and
electronics. [11]

Several different optical measurement methods were
considered for the measurement of the wing deformation.
Ultimately, a back-light point tracking method [7] was cho-
sen, that tracks distinct points placed on the wing over time,
thus giving information of the overall wing deformation.
Preliminary tests showed that compared to other methods
such as digital image correlation [14] or fringe projection
[15, 16], this method can be used to measure both wings
simultaneously from one stereo view pair as it does not
require opaque wings. Instead, the default transparent DelFly
wings can be used, which allows points to be captured
through an overlying wing. Methods that require opaque
wings will either need optical measurement equipment on
both sides of the object or separate measurements of the
wings which must later be synchronized and aligned, likely
increasing the measurement uncertainty.

2.1 Measurement setup

The basis of the measurement setup is formed by a frame,
which is mounted on a rotating stage positioned below the
center of an open 600 mm× 600 mm windtunnel test sec-
tion, as shown in Figure 2. The DelFly is mounted on its side,
positioned so that the quarter wing chord is exactly over the
rotational axis and at 10◦ pre-pitch relative to the plane of the
frame. This proved to give the best optical access through the
flapping cycle by the two cameras which are mounted at±10◦

relative to the frame. The used cameras are two Photron Fast-
cam SA 1.1 with a CMOS sensor with a 1024 pixel x 1024
pixel resolution and 20 µm pixel pitch capturing at 2 kHz and
1/2000 s exposure. Both are positioned around 600 mm from
the DelFly and are fitted with a Nikon lens with 60 mm focal
length and f# = 16 mounted on a Scheimpflug adapter. The
background illumination is provided by three LaVision LED-
Flashlight 300 lamps also mounted to the frame. The lamps
are pulsed in sync with the cameras with 10 % duty cycle. Al-

though the lamps produce a relatively large and homogeneous
light area, they are further diffused using a combination of a
frosted acrylic screen and paper, mounted to the windtunnel
nozzle.

DelFly II

Camera 1

Camera 2

Lamps

Diffusion screen

W
in
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un

ne
l
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am

e

U∞

20◦

θb
10◦

(a) Top-down sketch on the test section with the DelFly pitched with
θb around the rotation axis (red).

(b) Picture of the measurement setup showing the DelFly mounted
in front of the windtunnel nozzle.

Figure 2: Measurement setup.

This setup allows the pitch angle, θb of the DelFly to be
adjusted from 0◦ to 70◦ by simply manipulating the rotating
stage. No readjustments of cameras or lamps are needed
to maintain good visibility of the wing deformation, which
would require frequent re-calibrations. The only exception
is that for θb ≥ 50◦ an additional halogen lamp is added
on the camera side to provide sufficient illumination of the
region close to the windtunnel nozzle where the background
illumination no longer reaches.
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The points are applied on the wing using a permanent
marker as shown in Figure 3. Per wing, a total of 136 black
markers of approximately 1 mm radius spaced at around
7.5 mm× 10 mm are applied, thereby the grid is shifted
between the upper and lower wing, so that overlapping of
points during the contact phase is avoided. The marker
position is exact to approximately 1 mm, this has however
only very little influence on the measurement process and in
theory any arbitrary point spacing may be used.

7.5mm

1
0

m
m

88mm

1
4
0

m
m

upper wing
lower wing

Figure 3: Schematic of DelFly wing half with point grids.

2.2 Point tracking algorithm
The recorded images are processed using a point tracking

algorithm coded in MATLAB. Essentially, the algorithm
uses a temporal tracking method to follow the image point
movements, which are then triangulated to obtain the world
locations. However, as points are not easily distinguishable,
small errors due to for instance minor inaccuracies in the
exact point location, can over time lead to larger errors such
as snapping of the points to an incorrect one, especially as
the path of points of the two wings often cross. Therefore,
the known point spacing is used to reduce noise in the
predictions and to detect errors. Once a full flapping cycle
is measured, these measurements are used as predictions
for the following cycles. This allows the algorithm to run
fully automated, with only limited initial manual inputs. The
following paragraphs explain the algorithm in more detail.

Initially, the images recorded in the LaVision software
DaVis are imported into MATLAB and pre-processed, which
includes distortion correction, background removal using
separately recorded images, image inversion and Gaussian
smoothing with a 7×7 kernel size. The camera model neces-
sary for distortion correction and later triangulation was cre-
ated using the MATLAB stereo camera calibration toolbox.

A two-stage Circular Hough Transform (CHT) method
[17] is used to detect the wing points, starting with a record-
ing where the wings are in contact and almost orthogonal
to the camera view. One point per wing must be selected
manually, the following will then be detected automatically
using the known point spacing and an estimated magnifica-
tion factor. With all points detected in all views, the stereo
calibration is used to calculate the world positions.

For the subsequent timesteps, a temporal tracking method
is used to predict the point locations. Therefore, an up to third
degree polynomial is fitted to the growing time-series, which
coefficients can be used to determine the point velocity com-
ponents (after the first timestep they are assumed to be zero).
The velocity vector multiplied by the timestep then gives an
estimation of the point pixel shift. As the determined point lo-
cations contain some error, noise quickly accumulates in the
determined velocities. Therefore, a spatial fit of the velocities
is computed using radial basis interpolation using a C2 com-
pact support function, which is used instead of the calculated
velocity if the difference between calculated and fitted veloc-
ity is larger than the velocity fit itself. It showed thereby that
normalizing the velocities with the span-wise point location,
analogous to the rotational velocity around the stroke axis,
improves the spatial interpolation.

The true point locations are then determined as the si-
multaneous correspondence between all point predictions and
CHT measurements which minimizes the total prediction er-
ror. This simultaneous matching of both wings avoids in-
correct correspondence of points which easily occurs when
points in close proximity are sequentially corresponded. The
optimization is done using a mixed-integer linear program-
ming algorithm, where duplicate use of a measured point is
prevented using constraints. If no measurement that fulfills
the set tolerance could be found, the point status is set to miss-
ing.

These points are neglected in the spatial predictions. Fur-
thermore, in the following timesteps they are corresponded
after successfully found points using the world re-projection
instead of the temporal prediction. If the point status in one
view is considered correct, the prediction is improved further
by moving the re-projection onto the epipolar line.

Nonetheless, points correspondences can be incorrect,
e.g. due to incorrect detection by the CHT method, or snap-
ping to wrong points due to noise in the tracking. Therefore,
a check for incorrect point measurements is also done in the
world domain. Here, a spatial fit of the triangulated world
points is created using the previously used radial basis inter-
polation for the in-plane location together with a polynomial
fit for the out of plane location. Points which measured loca-
tion lies more than 2.5 mm from the fit, or have a reprojection
error above 1.5 pixel, are assumed to be incorrectly triangu-
lated.
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Once a point exceeds this tolerance by a factor of two,
a correction of the triangulation is attempted. Therefore,
the view with lower certainty is selected, which is the view
where either no point measurement could be corresponded
or where the reprojection of the spatial fit lies further from
the measured point location. This incorrect point view is
then handled like the missing points described above. The
increased tolerance of the correction is used to prevent over-
use of corrections without allowing incorrect triangulations
to be considered in the spatial predictions.

After a full cycle is measured, the exact cycle length is
determined which allows to combine the measurement series
to a single cycle. This series is then resampled, thereby filling
gaps where points could not be found, to create a prediction
for the following cycles. This cyclic prediction is improved
with each full cycle as new measurements are added.

The complete measurement series is low-pass filtered
using a MATLAB function to remove noise. The cut-off
frequency was set to the 10th flapping harmonic, i.e. between
100 Hz and 130 Hz, which is conservative compared to the
influence limits found in other studies [18, 19].

The described algorithm works well in determining the
DelFly wing deformation. On average, the reprojection error
lies at around 0.21 pixel with 3.4 % point tracks are deter-
mined to be incorrect based on the mentioned criteria. The
tracking quality is thereby lower for the second cycle half
and the lower wing as point motions are possibly less favor-
able and larger points are more often occluded by stiffeners.
Worse tracking results in isolated false positive point mea-
surements, which increase the mean reprojection error.

Measurements of a 150 mm diameter reference sphere
were done to get a better understanding of the general setup
accuracy. The 63 markers of 1 mm radius had an average re-
projection error of 0.11 pixel, resulting in an average distance
of 0.12 mm from the fitted sphere surface. Assuming a linear
relation with the reprojection error, the deformation measure-
ments can be said to be accurate to approximately 0.25 mm.

3 RESULTS

As forward flight of the DelFly results in simultaneous
variation of pitch angle and flapping frequencies together
with the inflow velocity, the effects of each parameter by
itself should be understood. Previous studies have already
addressed the effects of the flapping frequency variations [7].
Studies on the wing deformation due to increasing inflow
velocity however have not yet been done, therefore this effect
is analyzed before the forward flight results. Climbing flight
is of further interest as recent tailless DelFly can sustain such
condition more reliably [20].

The following discussion uses the measured points to rep-
resent the wing surface, i.e. the most forward and back-

ward point are used as wing leading and trailing edge, re-
spectively. To obtain equivalent parameters, the points on the
lower wing are interpolated to match the upper wing. The to-
tal of 2000 measurements is allocated to 100 phase bins over
the flapping cycle to calculate the deformation statistics. The
phase is thereby indicated by the non-dimensionalized time,
t∗ = t/T , where period, T = 1/f , with t∗ = 0 at the clos-
est distance between the wing leading edge. Thus, the cycle
starts with the outstroke and ends with the instroke.

The point measurements are transferred from the body co-
ordinate system to a wing coordinate system fixed to the wing
leading edge shown in Figure 4a. An exemplary xw − zw
cut at span location sw is shown in Figure 4b. In this plot,
the shown measurements are normalized by the mean chord,
cmean = 80 mm, indicated by the asterisk and the origin is
shifted by ∆zw = tan(φ)sw to the intersection with the di-
hedral plane as done in [7] to visualize the stroke angle.

xb

yb

zb
xw
yw

zw

∆zw
φ

(a) Sketch of the DelFly including body (red) and local wing (green)
coordinate systems and dihedral plane (blue).
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Figure 4: Used coordinate systems.

The wing coordinate system is also used to calculate dif-
ferent local wing profile parameters, later used for a quan-
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titative description of the deformation. The camber ratio, ε
is the ratio of camber and chord, where a curvature against
zw-direction is defined as negative, as shown. The incidence
angle, θw is the angle between the chordline and the xw-axis
and used to describe wing twisting. The difference between
incidence angle and angle of the inflow velocity, Utot,w is
used to represent the angle of attack, α. Thereby the inflow
direction is calculated from the sum of the freestream velocity
in the wing reference frame, U∞,w and leading edge velocity,
ULE,w, however neglects induced velocities.

3.1 Climbing flight

In ideal hover or climb, the DelFly is orientated vertically
remaining approximately in a fixed location in the horizontal
plane. The vertical force is produced by the flapping wings,
while conventionally a tail maintains stability. The frequency
required to maintain hover lies above 13 Hz [9, 12] and
must increase further to achieve climbing flight. Here, three
cases were tested, ranging from hover with zero freestream
velocity to U∞ =1 m s−1 and 2 m s−1 at θb = 0◦. The
flapping frequency was kept constant at 12 Hz, the results
are therefore not representative for free flight, as the main
objective is to understand the basic effects of non-zero inflow
velocity.

A representation of the temporal development of the wing
deformation is given in Figure 5. The spanwise location,
sw = 100 mm = 0.71stip is chosen as it showed to give
a good representation of the average wing shape. In span-
wise direction the deformation is relatively straightforward
where the deformation magnitude typically increases towards
the wing tips while maintaining the same temporal trends.

The clap-and-peel phase, where the wings are rolling off
on each other can clearly be seen in the figure. The duration is
slightly reduced from ∆t∗ = 0.174 to 0.193 (based on trail-
ing edge detachment at sw = 100 mm) at faster climb speeds.
As found by others, the leading edges thereby make no con-
tact [7]. This gap appears larger in hover, and is increased
especially towards the root, where a large gap remains for
the entire first wing half. However, also for the remaining
wing surface, minimal distances were found to remain. Op-
posed to the wing leading edge, the wing surfaces are closest
at the hover case, with distances of around 0.7 mm close to
the wing tip. At U∞ = 2 m s−1 the minimal distance lies
around 1.3 mm. The general presence of this ’air-buffer’ be-
tween the wing surfaces is plausible, as viscous forces prevent
large fluid accelerations close to the wing surfaces. Determin-
ing an exact reason for this behavior is however difficult, and
is likely due to a combination of interactions over the entire
wing cycle, such as pressure fields and elastic forces.

Even for this symmetrical inflow case, the wing defor-
mations show clear asymmetries, which has not previously
been noted. These asymmetries are visible especially during
the end of the outstroke, where the lower wing displays
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(a) Hover. t∗ is indicated for the upper wing.
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(b) 1m s−1 climb.
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(c) 2m s−1 climb.

Figure 5: Wing profile deformation at sw = 100 mm over the
flapping cycle due to different climbing velocities. The upper
wing can be seen in the right half, the outstroke profiles are
dashed.

camber while the upper wing is mostly flat. This effect
is reduced at higher flow-speeds. Also, the leading edges
heave of both wings are clearly asymmetric. The upper wing
heaves considerably more during the instroke than during
the outstroke, while the lower wing heaves approximately
identically during both strokes. Multiple reasons could result
in this asymmetry. The dihedral angle of the DelFly already
introduces a slight asymmetry, as the upper wings come
closer to each other than the lower. This leads to minor
differences in the aerodynamic behavior, as well as possible
asymmetric wing tensioning. Inaccuracies in the manual
manufacturing process of the wings can increase this effect.
Further discrepancies may be introduced by the measurement
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procedure, e.g. the support, the diffusion wall and possibly
small uncertainties in the set pitch angle.

A closer investigation is done based on the wing profile
parameters shown in Figure 6. Although asymmetries are
again evident in the plots, as well as relatively large standard
deviations (s.d.) at some instances, trends are still clearly
visible and allow a discussion of the results.

Through the clap and peel, the incidence angle changes
with an almost equal rate for all cases. The wing in hover is
thereby initially twisted least outwards, and therefore twisted
most inwards at the end of the clap-and-peel phase.

In the outstroke phase, the wing incidence angle peaks at
the time where the trailing edges detach, around t∗ = 0.18 at
this span location. Once detached, the trailing edge velocities
become much larger than the leading edge velocities, which
starts to reduce the incidence angle. The large acceleration is
likely due to the elastic forces build-up during the clap-and-
peel phase. The incidence angle of the hover case thereby
start to decrease faster than that of the climb cases, which
results in lower inwards wing twisting during the last part of
the outstroke. Looking at the wing deformation plots, it can
be seen that in fact the trailing edge location at the end of
the outstroke is similar for all cases, while the leading edge
moves further in the stroke plane direction.

This can be explained by the aerodynamic forces, which
are dominant during the high stroke velocity phase. Due to
the high freestream component for the fast climb case, the in-
flow angle is quite low, in fact similar to the incidence angle.
For U∞ = 2 m s−1, this results in a low angle of attack of
|α| ≈ 20◦ during the majority of the fast stroke phases, as
can be seen in Figure 6c. Analysis of the spanwise distribu-
tion shows that this holds for most of the wing, only at the
wing tip larger angles are found. This alignment of the in-
ner wing surface with the inflow direction results in reduced
wing loading, which in turn reduces the damping effect of the
aerodynamic forces, thus allows the leading edge to stroke
further.

At U∞ = 1 m s−1, the inflow angles are already consid-
erably larger, resulting in larger angles of attack, and in the
hover case even increases to α ≈ 90◦, although the low veloc-
ity magnitude makes this phase irrelevant. The large spike in
angle of attack around the stroke reversal occur due to small
changes in the leading edge movement direction and should
therefore also be neglected. Similarly, an incorrectly corre-
sponded point of the hover case at t∗ = 0.42 results in the
downwards α spike.

The instroke then behaves mostly as the outstroke, with
the incidence angle of the climb cases again lagging the
hover case. The incidence angle increases at an even higher
rate, which can be linked to a torsional wave traveling down
the wing span [6] seen in the 3D animation (Video 1). The
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Figure 6: Wing profile parameters at sw = 100 mm due to
different climbing velocities indicated by U∞. The outstroke
phase is shaded in grey, the instantaneous s.d. is shaded in the
respective color.
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maximum incidence angle obtained by the hover case now
reaches a considerably larger values compared to climbing
flight, which can again be attributed to respective inflow
direction, which results in low angles of attack and loading
during climb. The incidence angle is now maintained for
a longer period, where again the angle of the hover case
reduces earlier, and the leading edges stop further apart when
compared to the climb cases.

Apart from the wing twisting, camber or interchangeably
camber ratio also plays a significant role in force production
and is worth analyzing. The wing peel leads to a large
camber production during the cycle start. On average, the
wings of the hover case have thereby slightly larger camber
ratios, which appears to be due to the faster detachment of
the leading edges and a lower wing surface distance. As for
the incidence angle, the maximum camber ratio is reduced
quickly once the trailing edges separate. In the following
out- and instroke, the camber ratio is lower for the climb
cases. This is likely linked to the reduced inflow angle,
which is assumed to lead to lower wing loading. At the start
of the instroke, the camber shows also a peak, although lower
than that during the clap-and-peel of the outstroke. This is
similar to the recoil effect seen to increase thrust production
in different insects [5, 6], which occurs due to inertial forces
leading to trailing edge lag. Outside the clap-and-peel, the
camber ratio decreases close to the wing tip, which is against
the general spanwise trends and assumed to be due to the
stiffener positioning [7]

3.2 Forward flight
During horizontal forward flight, the DelFly is pitched

forward, which results a horizontal component of the forces
produced by the flapping wings. The pitch angle and flapping
frequency must then be matched to maintain horizontal flight
at a certain velocity. To simulate this in the windtunnel, the
parameters θb, f and U∞ were set to replicate values mea-
sured in previous free forward flight investigations [9, 12].
The cases investigated here are shown in Table 1.

θb [◦] U∞ [m s−1] U∞,z [m s−1] f [Hz]
70 0.50 0.47 13.00
50 1.12 0.85 11.89
40 1.63 1.05 11.07
30 2.26 1.13 10.11

Table 1: Tethered flight settings representing free forward
flight.

Changes of the wing deformation are therefore not purely
dependent on the changing pitch or inflow direction, but are a
result of the combination of the three parameters. Addition-
ally to the terms in- and outstroke, which described the wing

movement towards and from the dihedral plane, with the
introduced horizontal orientation the terms downstroke and
upstroke are now used. These describe the wing movement
relative to the horizon, and correspond inversely to in- and
outstroke for the upper and lower wing.

The wing profiles at 100 mm span location presented in
Figure 7 show that the introduced asymmetry of inflow direc-
tion and force production has a large influence on the wing
deformation and goes beyond the minor asymmetries found
in the climbing cases. In all cases a mean incidence an-
gle directed towards the inflow direction is present. This
effect increases especially for low pitch angles, see for in-
stance the wing contact region and the trailing edge loca-
tion at the outstroke end. This suggests that the increased
freestream velocity during these phases has a larger influence
than the pitch angle alone. In fact, the asymmetry appears to
be proportional to the freestream component in zw direction,
U∞,z = sin(θb) · U∞, listed in Table 1.

Interesting to see is that the core clap-and-peel defor-
mation remains relatively unaffected by the pitch angle
and appears to be simply rotated to a twisted wing contact
plane. The leading edge path of the lower wing is therefore
directed considerably more backwards, which results in an
asymmetric heave of both wings, where the wings are heaved
more during downstroke. This typically indicates higher
loads during this phase, which is in line with the required
lift production. The clap-and-peel duration at sw = 100 mm
reduces slightly from ∆t∗ = 0.185 to 0.165 for faster
forward flight.

The wing parameter plots shown in Figure 8 give further
insight into the deformations. For all cases, the mean inci-
dence angle is positive over most of the cycle, especially for
the cases with large normal freestream component. This trend
is especially large during stroke reversal, where the inflow
velocity is almost entirely made up by the freestream veloc-
ity. Also, the upstroke, where the incidence angle is negative,
varies more with the pitch angle.

Little differences in incidence angle during the clap-and-
peel phase show again that this phase is relatively unaffected
by the asymmetric inflow. Difference is only a shift in the
initial incidence angle, while the incidence angle increase
rate remains identical. The final angle difference between the
wings is in line with the effect of reduced flapping frequency
[7].

The assumption that the clap-and-peel behavior is largely
unaffected is also supported by the measured camber defor-
mation. While initially the both wings have positive camber
ratios, between t∗ = 0.05 and t∗ = 0.18 the camber ratio
is almost symmetric. The reduced magnitude can again be
linked to the reduction in flapping frequency [7] and reduced
freestream velocity. The θb = 50◦ case is the only outlier for
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(a) 0.5m s−1 forward flight at θb = 70◦. t∗ is indicated for the
upper wing.
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(b) 1.12m s−1 forward flight at θb = 50◦.
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(c) 1.63m s−1 forward flight at θb = 40◦.
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(d) 2.26m s−1 forward flight at θb = 30◦.

Figure 7: Wing profile deformation at sw = 100 mm over
the flapping cycle due to different different forward flight ve-
locities. The upper wing can be seen in the right half, the
outstroke profiles are dashed.
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Figure 8: Wing profile parameters at sw = 100 mm due to
different forward flight velocities indicated by θb. The out-
stroke phase is shaded in grey, the instantaneous s.d. is shaded
in the respective color.
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this assumption, the camber production during peel follows
no clear trend. This appears to be due to the specific contact
region rotation, which results in a sharper peel angle in this
case.

For the θb = 70◦ case, the camber deformation is quite
similar to the hover case. Larger asymmetries occur for lower
pitch angles. Here, during the downstroke similar positive
camber ratios occur for all cases, while during the upstroke
the camber ratio reduces approximately proportional with the
pitch angle, approaching zero for θb = 30◦, a behavior that is
common in insect flight [3, 6]. Figure 7d shows that the upper
wing profile has an S-shape towards the end of the outstroke,
which makes the determination of the camber direction dif-
ficult, thus leads to large s.d.. The wing surface towards the
leading edge is thereby already curved upwards, while the
trailing edge is still curved downwards. Towards the wing tip
this behavior is increased where the entire profile is inverted
already before the stroke reversal. This suggests that the wing
is here already beginning to produce lift and possibly a LEV
starts to develop on the upper wing surface. This effectively
moves the start of the lift producing phase of the upper wing
forward.

This may be an explanation for the absences of a large
initial camber production, previously called recoil, and the
reduction of the torsional wave. Recoil remains visible only
for θb = 70◦.

Further links can be drawn between the camber and twist
development to the wing loading, represented by the angle
of attack. As already seen for the camber development, dur-
ing the clap-and-peel phase the angle of attack is relatively
symmetric, and large angles of attack still indicate the pro-
duction of LEV even in the fastest forward flight case. This,
together with the alignment of the clap-and-peel motion with
the flight direction, will likely result in the majority of the re-
quired thrust being produced during this phase. This could
reduce the need for the wings to produce thrust during up-
stroke, as it is assumed to occur for single wing fliers [3].

Afterwards, the angle of attack is similar for both stroke
halves, where during the downstroke the angle of attack re-
mains mostly constant in time, while reducing considerably
for the upstroke. This occurs due to motion of the wings rel-
ative to the freestream, which also leads to higher relative
velocity of the wing during downstroke [19]. This change in
loading directly corresponds to the change in camber, which
partially speaks for a well working passive deformation prop-
erties of flexible flapping-wings. This can be seen particularly
for the θb ≤ 40◦ cases, where α ≈ 0◦ during the last part of
the upstroke of both wings. It was assumed that the wings
already start producing lift at this span location, and indeed
the sign change of α and ε coincide very closely. This is
remarkable, especially considering the neglection of induced
velocities in α and the likely presence of structural effects.

4 CONCLUSION

Previous studies on the wing deformation of the DelFly in
hovering flight [7] were extended to climbing flight of up to
2 m s−1 and forward flight with 70◦ to 30◦ pitch. An optical
measurement setup was developed which co-aligns a camera
pair together with the DelFly and the background light to
maintain adequate viewing axes of the wings which undergo
large stroke angles. As the wings are transparent, 136 points
applied to each wing could be measured simultaneously.
The points were tracked using an in house developed point
tracking algorithm, which uses known structural information
to enhance the temporal tracking so that very few false point
matches occur. The general accuracy lies around 0.25 mm
based on reference sphere measurements. The developed
setup and measurement algorithm may be useful in the future
for investigating different flight states or other models and
may also be an important tool for optimizing wing designs
and generating validation data for numeric methods.

The carried out measurements show different general de-
formation behaviors of interacting flapping-wings, which to
the best of our knowledge have not yet been noted in liter-
ature. Firstly, measurements show that the wing surfaces do
not touch during the clap-and-peel phase, instead an air-buffer
remains at all times. This air-buffer lies between 0.7 mm
and 1.3 mm and increases with inflow velocity. Furthermore,
slight asymmetries are found even in symmetrical inflow con-
ditions. These are assumed to be to an extent inherent be-
cause of the dihedral angle which influences aerodynamics
and wing tension, but may also be a result of measurement
uncertainties.

Apart from this, the climbing flight study showed that
the increase in freestream velocity has relatively little effect
on the clap-and-peel, only minimal camber reductions were
found. The incidence angle is mostly unaffected during the
entire outstroke, as elastic energy stored during the clap-and-
peel is released during the remaining cycle half. Otherwise,
camber ratio and incidence angle are reduced with increasing
climbing rate, which is assumed to be driven by lower wing
loading, indicated by the angle of attack. Torsional waves
traveling in spanwise direction were found, as well as recoil-
like camber increase at the cycle start.

The forward flight study showed that asymmetries are es-
pecially large in fast forward flight, which suggests that asym-
metric deformations are not proportional to pitch angle but to
the normal freestream component. Clap-and-peel deforma-
tion is thereby again mostly unaffected, indicating that the
produced LEV has a dominant effect over the asymmetrical
freestream velocity and that the motion likely remains as ef-
fective as in hover. Varied is only the motion symmetry plane,
which is now twisted to align more with the inflow. A positive
mean incidence angle is present during the entire cycle, and
especially large during the stroke reversal, where the tip ve-
locities are low. The camber production now differs between
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up- and downstroke: During the downstroke wings remain
cambered upwards, while during the downstroke the negative
camber is heavily reduced for fast forward flight. This, to-
gether with the angle of attack estimation indicates very low
wing loading during upstroke. The calculation of α thereby
neglects the presence of large unsteady aerodynamic effects,
for instance due to LEV and wing rotation. This makes the
estimation of the loads difficult and prevents extended discus-
sion, which may be addressed in future work.
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ABSTRACT

The design of a long-range unmanned aircraft
system powered by fuel cells is investigated,
with the study focusing on the feasibility of
crossing the Atlantic Ocean. The motivation be-
hind this aircraft is to demonstrate the capabil-
ity of hydrogen fuel cells as an alternative fuel
source and to create a case for future commercial
and civilian aircraft. Existing hydrogen powered
UAS are benchmarked and an in-depth analysis
of the mission environment is conducted to ul-
timately determine reasonable requirements for
the aircraft. The requirements of a 3000 km
range, a maximum mass of 25 kg and being pri-
marily powered by fuel cells, are used as inputs
for the conceptual design phase. A classical de-
sign approach is conducted but modified appro-
priately for a fuel cell powered UAS. The air-
craft mass, lift-to-drag ratio, wing loading and
thrust-to-weight ratio are iterated until a baseline
configuration that can feasibly cross the Atlantic
Ocean is achieved. Some additional aspects ori-
ented towards exploitation of atmospheric phe-
nomena in the purpose of performance improve-
ment will also be exposed.

1 INTRODUCTION

Unmanned aircraft systems (UAS) have become instru-
mental tools for missions in various military, civil and com-
mercial fields. Current generation electrical powered un-
manned aircraft systems are limited in terms of range and en-
durance due to the low energy density of their lithium-based
batteries. However, many UAS applications require high
range and endurance capabilities for intelligence, surveillance
and reconnaissance. This demand for flights which last for
considerable periods of time without the need to frequently
land coupled with efforts to minimize environmental impact
and the benefits of a low thermal and noise signature, make
long range electrical aircraft desirable. An emerging source
of electrical energy with the potential to solve the limitations
of batteries is hydrogen fuel cells. They offer compelling
∗Postdoctoral researcher, Department of Aerodynamics and Propulsion

(Email address: nikola.gavrilovic@isae.fr)
†Graduate student
‡Full Professor, Department of Aerodynamics and Propulsion

value for unmanned aircraft systems due to the ability to pro-
vide approximately five times more power per flight hour for
the same weight as lithium based batteries, as well as offer-
ing improved reliability and reduced maintenance when com-
pared to small internal combustion engines.

This project aims to analyze the feasibility of an un-
manned aircraft system powered by hydrogen fuel cells that
has the capability of crossing the Atlantic Ocean, as detailed
in Figure 1. This route has been selected as it has histori-
cal significance; it was used by the French aviation company,
”Aéropostale“ in the 1930’s and to date has only been crossed
by UAS powered with internal combustion engines. The ob-
jectives of this project are to design a long range UAS fea-
turing hydrogen fuel cell based propulsion, capable of flying
from Dakar to Natal and being sufficiently light-weight to be
within the certification category allowing beyond line of vi-
sual sight.

Figure 1: Route from Dakar to Natal 3000 km. Source:
Google Maps, 2019.

2 STATE OF THE ART

Hydrogen fuel cells generate energy through catalysis; a
process that separates the electrons and protons of the reactant
fuel and forces the electrons to travel through a circuit which
generates an electric current as explained by Gundlach [1].
Another catalytic process then takes the electrons and com-
bines them back with protons and oxygen from the ambient
air to form water as a waste product. It is seen that a fuel cell
resembles a battery because it provides a direct electrical cur-
rent, however, it uses a separate fuel and oxidant that are not
stored together. According to Osenar et al. [2] this makes a
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fuel cell system inherently safer than other advanced high en-
ergy density battery technologies. The fuel cell itself is a way
to convert the fuel and oxidant but does not store any energy.
In general, because air is used as the oxidant and not stored
with the fuel, the energy density of the fuel system is able to
exceed traditional battery systems. Additionally, this allows
of the system to be scaled up easier, as only larger hydrogen
fuel tanks need to be installed and not a larger fuel cell. In
comparison, to increase the range of a battery powered UAS,
additional batteries will need to be added which significantly
increases the mass. The high electrochemical conversion ef-
ficiency of fuel cells combined with the high specific energy
of H2 fuel makes them suited to extending the endurance of
small UAS.

A state of the art evaluation of existing unmanned air-
craft systems revealed several hydrogen fuel cell powered
UAS which have been successfully designed and built. It also
serves as a means to benchmark the project’s objectives to a
reasonable standard, ensuring a feasible project with worth-
while applications.

2.1 Sparkle Tech: Eagle Plus

The Eagle Plus is a small, VTOL, unmanned aircraft sys-
tem built by Sparkle Tech based in Hong Kong and is shown
in Figure 2. This UAS is a new generation hybrid fix wing
and multi-rotor configuration which allows it to be versatile
due to not requiring a runway and also have high endurance as
the cruise phase occurs with the fixed wing. The length of the
UAS is approximately 2m with the airframe made from com-
posite carbon fibre. The Eagle Plus has a 3.5 m wingspan, a
wing area of 0.7 m2 and its maximum take off mass is 21 kg.
It utilizes a 500 W electric engine that is powered by a 9L liq-
uid hydrogen fuel cell and also is equipped with a 10000mAh
lithium polymer battery as a redundancy for flight safety. The
total weight of the fuel tank, battery and equipment is 10 kg,
which enables an endurance of 5 hours at a cruise speed of 28
m/s.

Figure 2: Eagle Plus VTOL UAS. Source: Sparkle Tech [3].

2.2 US Naval Research Laboratory: Ion Tiger

The United States Naval Research Laboratory’s Ion Tiger
features a conventional wing and stabilizer layout, as shown
in Figure 3. The cruise velocity for the Ion Tiger is 13.9 m/s,
features a wingspan of 5.2 m, a wing area of 1.57 m2 and has
a length of 2.4 m. The maximum take of mass of Ion Tiger is
16.1 kg, with a structural mass percentage of approximately
44% and cruise power of 300 W. The energy is provided by
550 W hydrogen fuel cells, stored at at pressure of 34.5 MPa.
The Ion Tiger accomplished a 26 hour flight with a payload
mass of 2.5 kg.

Figure 3: Ion Tiger UAS. Source: Swider-Lyons et al. [4].

2.3 H3 Dynamics: Hywings

The Hywings UAS, as shown in Figure 4, is developed
by H3 Dynamics based in Singapore. It features a similar
conventional wing and stabilizer layout to the Ion Tiger and
has the same cruise velocity of 13.9 m/s. The maximum take
off mass of Hywings is 7 kg and it features a 200 W hydrogen
fuel cell system, pressurized between 30 and 35 MPa, that
allows for quick hydrogen bottle refuelling. The UAS does
not require a runway and can take-off via a hand launch and
can achieve a range of up to 500 km and an endurance of up
to 10 hours.

2.4 Insitu: Scan Eagle

Scan Eagle is developed is by Insitu, a subsidiary of Boe-
ing, and is a small, long-endurance, low-altitude UAS that
is used for reconnaissance. The original variant as shown in
Figure 5, is powered by a petrol engine, however, there are
currently efforts to incorporate a hydrogen fuel cell power
system to drive the UAS. As the 1200 W fuel cell module fits
within the existing airframe without modification, the Scan
Eagle fuel cell variant aims to be a technology demonstrator
with a flight time of 9 hours. The UAS maximum take off
mass is 22 kg, with a length of 1.55 m and a wingspan of
3.11 m. In addition, it takes off using a runway independent
launcher and lands via a hook recovery system so it does not
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Figure 4: Hywings UAS. Source: H3 Dynamics [5].

require landing gear.
The main characteristics of these platforms are outlined

in Table 1. The analyzed platforms all feature hydrogen fuel
cell propulsion but were not limited to a specific mission. The

UAS M (kg) V (m/s) b (m) E (hr)
Eagle Plus 21 28 3.5 5
Ion Tiger 16 14 5.2 26
Hywings 7 14 1.9 10

Scan Eagle 22 25 3.1 9

Table 1: Summary of existing fixed-wing UAS powered by
fuel cells.

following conclusions may be drawn from the above bench-
marking analysis:

• All benchmarked hydrogen fuel cell powered aircraft
have a mass between 5 kg and 25 kg, which puts them
within the open UAS category under EASA’s [6] clas-
sification.

• It is important to note that the leading aircraft config-
uration for this platform is a conventional wing de-
sign. It is also noticed that the multi-rotor configura-
tions used with hydrogen fuel cells had significantly
less range and endurance than the fixed wing configu-
rations which is why they were not included in the state
of the art.

• The endurance time varies significantly between plat-
forms, with the Ion Tiger featuring the highest en-
durance. This shows that weight is not the only pa-
rameter important for endurance; it is inferred that
wingspan contributes significantly as the Ion Tiger has
the largest wingspan which in turn minimizes the in-
duced drag due to the large aspect ratio.

Figure 5: Scan Eagle UAS. Source: Insitu [7].

3 MISSION SPECIFICATION AND EQUIPMENT

3.1 Aircraft Requirements
The main design requirements for the unmanned aircraft

system will be presented in this chapter. The first range re-
quirement has been selected as this is the distance between
the two cities, Dakar and Natal and the mass requirement is
highly desirable to minimize the required certification for be-
yond visual line of sight flight. The third requirement has
been selected because the motivation of the aircraft is to
demonstrate the capability of enormous energy density of hy-
drogen fuel cells.

• Must be able to cross the distance of 3000 km.

• To have a total mass of less than 25 kg.

• Must use hydrogen fuel cells as primary energy source.

3.2 Feasibility Analysis
The initial feasibility study of basic aircraft parameters

for completion of a defined mission has been performed to
verify the requirements presented earlier. The iteration pro-
cess has been set with basic parameters shown in Table 2. The
objective of the iteration process is to achieve convergence in
the total mass of the aircraft while satisfying the chosen pa-
rameters. According to a chosen speed of flight, lift to drag
ratio and available energy density needed for cruise related to
a fixed distance, the program will try to converge towards a
total mass of the aircraft.

This analysis has been primarily performed for two
sources of energy of which the lithium-polymer batteries
and fuel cells. The sources of energy have been character-
ized through a value of specific energy density where the
highly efficient lithium-polymer batteries provide around 250
Wh/kg, according to Gatti [8], which is 4 times less than for
fuel cells. The analysis has revealed that the convergence pro-
cess cannot be achieved with the usage of lithium batteries
for such a required distance. On the other hand, the energy
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Varying parameter Value
V (m/s) 23
L/D 30

Energy Density (Wh/kg) 1015
Equipment mass (kg) 1
Structural mass (%) 40

Fixed parameter Value
Distance (km) 3000

Propeller efficiency 0.8
Motor efficiency 0.8

Converter efficiency 0.9
Battery return rate 0.9

Ration motor mass/power (g/W) 0.3

Table 2: Parameters of feasibility study.

density of fuel cells achieves a steady convergence with a to-
tal mass of 20 kg for a relatively high required lift-to-drag
ratio. This analysis has brought a conclusion that such a dis-
tance cannot be crossed with the usage of even most efficient
lithium batters, while on the other side, the usage of fuel cells
makes the journey possible.

Figure 6: Mass convergence for chosen set of parameters pre-
sented in Table 2.

3.3 Fuel Cell Power System

Although there are nowadays several suppliers of mod-
ules and equipment related to the latest fuel cell technology,
the present work is focused on products available from HES
Energy Systems [9]. The specifications of the light weight
commercially available Aerostak fuel cells (as an example
shown in Figure 7) are summarized in Table 3, where the
model number is the stack’s rated power. Each fuel cell is
cooled by an integrated fan and requires a hydrogen input
pressure of 0.6 to 0.8 bar. Note that an additional 0.1 kg was
considered for each fuel cell system specification for margin,
as well as for the cylinder masses in Table 4.

Model P (W) Dimensions (mm) M (kg)
Aerostak 250 300 110 x 120 x 124 0.83
Aerostak 500 600 194 x 105 x 166 1.4

Aerostak 1000 v1 1200 254 x 170 x 125 2.14
Aerostak 1000 v2 1300 194 x 127 x 193 1.9

Table 3: Summary of existing fixed-wing UAS powered by
fuel cells.

Figure 7: Aerostak Fuel Cell. Source: HES Energy Systems
[9].

The fuel cell model selected for the aircraft will be de-
cided based on the conceptual design which will determine
the required power. It is desirable to have the smallest possi-
ble fuel cell that can produce the required power as this will
minimize the weight of the aircraft and improve the range
capability. The hydrogen storage options are also to be pro-
vided by HES Energy Systems. The types of storage cylin-
ders, shown in Figure 8, are summarized in Table 4 , where
their model number indicates the storage volume in liters.

Model M (kg) Energy (Wh) D (mm) L (mm)
A2 1.3 784 102 385

A2.5 1.35 980 132 288
A3.5 1.75 1372 132 375
A5 1.95 1960 152 395
A9 2.95 3528 173 528

A12 3.6 4704 196 532
A20 7.10 7840 230 655

Table 4: Summary of existing fixed-wing UAS powered by
fuel cells.

3.4 Mission Environment

Due to the relatively low cruise speed and mass of the
UAS, the wind’s speed and direction can highly impact its
performance. As the cruise phase will take place over the
Atlantic Ocean, the wind conditions in this region have been
examined using a tool called Windy. It compiles GFS and
ECMWF wind models from the Swiss company Meteoblue
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Figure 8: Hydrogen Cylinders. Source: HES Energy Systems
[10].

and displays the wind conditions worldwide. Figure 9 shows
the wind map for an average day in March at different alti-
tudes, with the black line marking the mission route.

It is observed that the majority of the wind’s direction
over the aircraft’s design route is favorable under an altitude
of 1 km, with wind speeds varying between 3 and 10 m/s.
While the wind has the potential to reduce the power require-
ments during cruise and increase the range of the aircraft, it is
decided to not factor the benefits of the wind into the design.
Despite the observed trend over this region of the Atlantic
Ocean, the wind is still considered unreliable as its direction
and speed will vary depending on the day. Therefore, the fa-
vorable wind will be considered as an external bonus but the
aircraft will be designed such that it is capable of achieving
its mission without assistance from the wind.

4 CONCEPTUAL DESIGN

The principal aim of the conceptual design phase is to de-
termine the information required in order to decide whether
the concept will be technically feasible and capable of meet-
ing the design requirements. This process is primarily con-
ducted using a classical conceptual design approach outlined
by Raymer [11] and Roskam [12], but modified appropriately
for a hydrogen fuel cell powered UAS. The expected outputs
from this phase of the design are the aircraft mass, the re-
quired lift to drag ratio, the energy system requirements and
a baseline geometric configuration.

4.1 Design Parameters

To determine the total aircraft mass, wing loading, thrust
to weight ratio and aerodynamic requirements, an iterative
procedure is used. The design flow, shown in Figure 10, il-
lustrates the non-linear method, where the yellow icons rep-

Figure 9: Wind direction at 100 and 750 m of altitude be-
tween Dakar in Senegal and Natal in Brazil.

resent inputs from the feasibility study of the aircraft and mis-
sion, the blue icons represent mass inputs that are iterable and
the green icon represents the outputs which are the conceptual
design parameters.

4.1.1 Geometric Parameter Summary

The Table 5 summarizes the geometric aircraft parameters
which have been determined for the initial conceptual design.
These parameters will be used throughout the conceptual de-
sign of the aircraft to establish a baseline configuration, how-
ever, will be adjusted appropriately to maximize the lift to
drag ratio in the preliminary design. As an example, a slight
dihedral angle has been applied for stability purposes. The
parasite drag coefficient has been obtained through the ra-
tio between the surface area of the aircraft that interacts with
the flow and the planar area of the wings and equivalent skin
friction drag coefficient. For a light aircraft, the equivalent
skin friction drag is estimated to be Cf = 0.004 according
to Raymer [11] and the wetted area ratio is estimated from
initial modems of the unmanned aircraft to be approximately
3.7. It is observed from Figure 11 that a lift to drag ratio of
approximately 30 is common for powered sailplanes with as-
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Figure 10: Conceptual Design Flow Chart.

pect ratios near 15. The Oswald efficiency factor is calculated
for a trapezoidal wing with an aspect ratio of 15 without wing
sweep.

Figure 11: Statistical relationship between L/D and aspect
ratio for sailplanes.

4.1.2 Initial Baseline Design Case

From the process of iterating the initialization variables, sev-
eral feasible configurations are obtained. The cruise veloc-
ity of the aircraft is settled at 23 m/s at an operating alti-
tude of 300 m and the maximum payload size is considered
to be 1 kg as it results in an achievable L/D. Furthermore,
from the state of the art and benchmarking hydrogen fuel cell

Parameter Value
Aspect Ratio 15

Wing Sweep (◦) 0
Dihedral Angle (◦) 6

Taper Ratio 0.45
Parasite Drag Coefficient 0.0165

Oswald Efficiency Faactor 0.76

Table 5: Summary of Geometric Aircraft Parameters..

based UAS, a structural mass fraction of 0.38 has been set for
the baseline aircraft and it is estimated that the in flight data
transmission can be achieved with an avionics mass of 0.5
kg. However, a redundancy battery system will also be added
to the avionics mass bringing the total to 1.22 kg. Gund-
lach [1] suggests that a depth of discharge, fDOD, of 80% is
the maximum allowable discharge before reducing the battery
efficiency below 0.9. For a lithium-polymer battery, this ef-
ficiency is deemed reasonable from also consulting Gatti [8].
From Roskam [12], an energy reserve of 20% is considered
sufficient to provide the extra power for the climb and descent
segments as well as it serving as a reasonable safety margin
to ensure that the mission’s design range is achieved. The fol-
lowing Tables 6 and 7 summarize the input and state of the art
parameters used for the initial design configuration.

Most notably though from the process, it is determined
that the 250 W fuel cell is unable to provide a sufficient output
power, whereas the 500 W system (Aerostak 500 from Table
3) is adequate. Therefore, the 1000 W system will lead to an
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Parameter Value Unit
R 3 x 106 m
M ≤ 25 kg

Mpayload 1 kg
Mavionics 1.2 kg
Vcruise 23 m/s

Rate of climb 1 m/s
Climb angle 3 ◦

Table 6: Design Case Input Parameters.

Parameter Value Unit
MFstruct 0.38 −

Mmotor/Pshaft 0.25 g/W
ηp 0.8 −
ηm 0.85 −
ηe 0.9 −
ηf 0.95 −
ηb 0.9 −

fDOD 0.8 −

Table 7: State Of the Art Parameters.

unnecessary mass increase of the aircraft, resulting in the 500
W system being the most appropriate. With regards to the
quantity of hydrogen cylinders (please note that we are con-
sidering the gas state of the hydrogen), only the two cylinder
configuration is able to achieve the range requirement with a
L/D below 30 while meeting the mass requirement, as shown
in Table 8.

No. of Cylinders MTOW (kg) L/Dreq

1 12.7 37.9
2 19.5 29.5
3 26.4 26.7

Table 8: Comparison between No. of Hydrogen Cylinder for
a 500 W Fuel Cell System.

4.2 Configuration and Layout

The outputs of the configuration layout task are design
drawings of the aircraft as well as geometric information re-
quired for further analysis in the preliminary design phase.
For the aircraft, a T-tail configuration with a tractor propeller
has been selected. The placement of the horizontal tail on top
of the vertical fin provides increased leverage and assists with
stability. Additionally, due to its higher placement, it will re-
main in undisturbed flow during a stall. As a consequence
of the smaller required vertical tail, the T-tail can be lighter
and due to the increased leverage, the horizontal tail can also
be smaller. This reduces the friction drag, as well as there

being less interference drag as a result of raising the horizon-
tal tail. Due to the short nature of the fuselage and the low
structural support of the introduced boom, a tractor propeller
will be employed. Propellers mounted on the wings were also
investigated, however, the idea was ultimately dismissed due
to the increased complexity and weight increase, as two sets
of smaller motors and propellers will be heavier than a single
motor and propeller system (Gatti [8]). Shown in Figure 12
is the initial internal layout of the aircraft. Two detail views,
A and B, are shown for the front and rear fuselage sections
respectively. Each labeled component from Figure 12 is de-
tailed in Table 9. Note that it is not an exhaustive drawing of
all internal components, with components such as the avion-
ics and additional battery system not being included. This
schematic serves as an initial internal layout and will be re-
fined in the preliminary design. The key finding from this
drawing is that the hydrogen cylinders occupy majority of the
internal space and that the fuselage may need to be extended
in the preliminary design phase to embed all required internal
components.

Component Description
1 Forward Hydrogen Cylinder - A12

2 Rear Hydrogen Cylinder - A12
3 Fuel Cell - Aerostak 500

4 Motor
5 Propeller and Hub

6 Beginning of Boom

Table 9: Conceptual Schematic Description.

4.3 Summary of Conceptual Design
The conceptual design of the transatlantic hydrogen pow-

ered UAS resulted in a 19.5 kg aircraft that with a lift to drag
ratio of approximately 29.5 can feasibly cross the Atlantic
Ocean. The wing, fuselage, empennage and propulsion sys-
tem were appropriately sized to meet the mission objectives.
Major aircraft and mission parameters are detailed in Tables
10, with wing and fuselage parameters shown in 11.

Parameter Value Unit
MTO 19.5 kg

Mpayload 1 kg
L/Dreq 29.5 −
Altitude 300 m
Vcruise 23 m/s

Table 10: Aircraft and Mission Parameters.

The fuel cell and power plant characteristics are summa-
rized in Table 12 and the empennage is detailed in Table 13,
with an isometric drawing of the aircraft shown in Figure 13.
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Figure 12: Internal Schematics of Conceptual Design.

Parameter Value Unit
Sref 0.85 m2

bref 3.6 m
AR 15 −

Lfuselage 2.3 m
Dfuselage 0.25 m

Table 11: Wing and Fuselage Design Parameters.

5 ATMOSPHERIC ENERGY AS A POTENTIAL FOR
PERFORMANCE IMPROVEMENT

Various styles of flight could be noticed while bird watch-
ing. According to Scott and McFarland1 [13] birds use sev-
eral strategies of energy harvesting, which serve as an inspi-
ration for all the current improvements in the field of UAV
long endurance performance. Interaction of wind and obsta-
cles such as buildings, hills, or waves generates an ascend-
ing component of air motion. Many birds with knowledge
of soaring techniques use these updrafts to power their flight
instead of wing flapping.

In case of unequal heating of Earth’s surface provoked,
for example, by punctured cloud layer, implies uplift of hot
air, known as thermal. Eagles, condors, vultures, and many
other large birds use these updrafts with a technique called

Parameter Value Unit
Pfc 500 W
Efc 955 Wh/kg
TO 9 N

Pinputcruise 274 W
Dpropeller 0.375 m

Table 12: Fuel Cell and Power Plant Parameters.

thermal soaring in order to extend their endurance while
searching for a prey. Another example is sweeping flight
within the gust pushed by the waves. Gulls and pelicans
use these gusts to power their flight by flying along the wave
cliffs. Gaining speed while wave slows down, they are able
to pull up and glide to another wave where the process con-
tinues.

As there are many examples in nature, Albatrosses are
particularly adept at exploiting wind gradients above sea level
and can travel many thousands of kilometers using very little
energy from flapping. Albatrosses and other birds that soar
dynamically also have a skeletal structure that allows them
to lock their wings when they are soaring, so the bird can
continue flying almost indefinitely without having to put in
much effort besides steering. In effect, it is harvesting energy
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Figure 13: Isometric Drawing of Conceptual Transatlantic UAS.

Parameter Value Unit
SHT 0.067 m2

SV T 0.039 m2

ARHT 8 −
ARV T 1.6 −

V Tlocation 2.1 m

Table 13: Empennage Design Parameters.

from the wind gradient.
Those biologically inspired flight techniques would not

be possible if the birds were not equipped with natural sen-
sory systems for the detection of atmospheric phenomena.
Severe turbulent flows will cause the feathers to vibrate and
gyrate wildly. As the feathers are elevated by the air stream,
mechanoreceptors increase their discharge frequency. How-
ever, it is clear that identical copies from nature to man-made
technologies are still not feasible. It took millions of years for
evolution to develop such extraordinary sensory systems and
skills of natural yers. On the other hand, an imaginative inspi-
ration and transformation into technology are often based on
various steps of abstraction. Finally, it should also be pointed
out that besides biologically inspired flight techniques, birds
also serve as an inspiration for an extensive amount of ex-
traordinary aerodynamic structures that are in service of per-

formance improvement. An overview of aerodynamic struc-
tures for aircraft drag reduction inspired by wingtips of some
natural fliers has been investigated by Gavrilovic et al [14].

5.1 Biologically Inspired Sensory Systems

5.1.1 Pressure Measurements on the Wing

The paper from Gavrilovic [15, 16] reveals a system for the
local angle of attack estimation based on pressure measure-
ments on the wing. The idea implies that a certain pair of
pressure ports is located on the wing, as shown on Figure
8, where one port is on the upper surface of the chosen sec-
tion, while the other is on the lower surface. Those points
are recording a pressure difference with time which has to
be normalized with dynamic pressure in order to enable the
effectiveness of the system for various airspeeds. If a single
location on the wing measures pressure difference then the es-
timation of the local angle of attack, including the influence
of aileron deflection.

5.1.2 Multi-hole probes

These sensors consist of pressure-based multi-hole probes
that can measure flow angles and airspeed in flight. A sin-
gle tube provides real-time measurement of the local angle
of attack and airspeed ahead of the wing. Therefore, several
probes placed along wing-span can be used to determine the
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gust length scale. This method of flow sensing has been pre-
viously demonstrated by Gavrilovic [17] If gust length scales
were equal to or larger than the wingspan, then flight through
such a large gust structure would result in only pitching and
heaving motion. However, gusts smaller than the wingspan
would provoke unequal load distribution along wingspan im-
plying additional roll and yaw moments on the wing. Using
multiple probes would ensure that aircraft reacts only within
sufficiently large wind field.

5.1.3 Aerobooms

Aerobooms can be considered as custom-designed equipment
for estimation of wind magnitude and direction, usually based
on a single pitot tube which allows measurement of airspeed
and a pair of wind vanes for the angle of attack and sideslip
angle. The wind vanes are attached to magnetic encoders
(acting as a potentiometer) which enable a digital signal to a
controller. The advantage of using such equipment is the ease
of manufacturing and relatively low cost when compared to
sophisticated multi-hole probes or pressure surface systems.
The comparison of the angle of attack estimated with Aero-
boom shown in Figure 14 and angle from pressure measure-
ments on the wing is investigated in the work of Gavrilovic
[15].

Pressure holes 
on the wing

Aeroboom

Figure 14: A small UAV equipped with wing pressure system
and aeroboom.

5.2 Energy-Harvesting from Atmospheric Phenomena
The analysis that compared different flight strate-

gies through a sinusoidal wind field showed that energy-
harvesting flight represents the most favorable flight tech-
nique when compare to auto-stabilization or fixed-stick flight.
It was also shown that energy-harvesting from wind fluctua-
tions could potentially lead to a very significant savings in
invested power that can even go up to 40 %, depending on

the magnitude of wind field. Those results have been pre-
sented in the work by Gavrilovic [17]. Another flight tech-
nique which utilizes the energy of rising air has been demon-
strated by Stroman and Edwards [18]. The previous work has
demonstrated more than 100 km flight with a 4 m glider, all
without a motor. On the other hand, a shorter cycle of climb
within strong wind updraft and significant benefits in reduced
invested power has been recorded in the work of Gavrilovic
et al. [16]. Another very promising flight technique related to
the exploitation of spatial wind gradients is dynamic soaring.
This flight technique is usually related to the flight of Wander-
ing Albatross as shown in Figure 15, which can cross enor-
mous distances while being fueled by only couple of grains
of food. A dynamic soaring mechanism in the ocean bound-
ary layer has been previously presented by Bonnin [19]. A
demonstration of gain in potential energy while exploiting a
horizontal wind gradient with reduced power of a small un-
manned aerial vehicle has been previously demonstrated by
Gavrilovic et al. [16, 17]. Finally, it can be concluded that
energy-harvesting represents an opportunity to significantly
enhance the performance of a small unmanned aerial vehi-
cle, through extended endurance and range. With equipment
for detection of flow magnitude and the direction, the aircraft
would be able to apply adequate maneuvers for increasing its
energy state.

Figure 15: Albatross neutral energy cycle with dynamic soar-
ing.

6 CONCLUSION

The conceptual design phase was conducted using a clas-
sical approach, but modified appropriately for a hydrogen fuel
cell powered UAS. It involved taking the inputs from the mis-
sion objectives and iteratively outputting the aircraft mass,
required L/D, wing loading and thrust to weight ratio until
a baseline configuration that can feasibly cross the Atlantic
Ocean was achieved. The initial analysis has also proved
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that crossing a distance of 3000 km would not be possible
with only Li-Po batteries. On the other side, a significant rise
in specific energy density provided by fuel cells ensures that
crossing the Atlantic Ocean is possible. The conceptual de-
sign phase resulted in an aircraft with a maximum take off
mass of around 20 kg and cruise velocity of 23 m/s that is ca-
pable of carrying a 1 kg payload. The reference wing area of
0.85 m2 and wing span of 3.6 m are sized according to a wing
loading that met all operational constraints. Furthermore, the
500 W fuel cell unit and 274 W cruise motor power are sized
from the thrust to weight ratio obtained from the constraint
analysis. Future work for this project includes transitioning
into the preliminary design phase, where the conceptual de-
sign will be refined. An optimal combination of airfoil and
horizontal tail position are to be determined as well as an
in-depth sizing of the heavily coupled motor and propeller.
Further modifications to the aircraft will also be investigated
such as incorporating geometric twist to the wings and adding
wingtip devices to minimize the induced drag. These modi-
fications are to be studied by using Vortex Lattice Method
(VLM) and Computational Fluid Dynamics (CFD) programs.
This work has also presented some of the bio-inspired sys-
tems for wind speed and direction measurements. Besides
their primary function, those devices can also be used as stall-
recovery systems, as they can locally estimate the angle of
attack on the wing. Moreover, those bio-inspired systems can
be also applied as a way of sensing atmospheric phenomena
that can be exploited by an aircraft. In such a way the air-
craft performance can significantly be enhanced by utilizing
the energy of the atmosphere.
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ABSTRACT

Autonomous navigation in dynamic unknown
environments is a key research topic in robotics
and has gained a lot of attention from the re-
search community in the last years. In this paper,
we propose a strategy for autonomous naviga-
tion in an environment with spheric obstacles. In
this strategy, we use the YOLOv3 object detec-
tion model to detect the obstacles and an Iterative
Perspective-n-Point (PnP) algorithm to estimate
the center of the obstacle based on the result from
the detector. Then using the obstacles’ positions,
a Receding Horizon Control (RHC) based plan-
ner is used to plan a trajectory using Covari-
ant Hamiltonian Optimization (CHO) function,
and a trajectory controller controller based on
Model Predictive Control (MPC) is used to fly
the planned trajectory. The proposed navigation
strategy is evaluated with Rotors Gazebo sim-
ulator in a dynamic environment. Experimen-
tal results show that our autonomous navigation
strategy is a valid approach for Unmanned Aerial
Vehicle (UAV) navigation in dynamic environ-
ments.

1 INTRODUCTION

Navigation in dynamic environments is a key challenge
in the area of autonomous navigation. It is still an un-
solved problem because of the requirements of fast percep-
tion, planning and control algorithms when robots operating
in a dynamic environment. During the last years, this prob-
lem has attracted a lot of researchers’ attention and several
methods have been proposed [1, 2, 3]. Among these meth-
ods, the following ones have gained a lot of interest within
the research community, Artificial Potential Field (APF),
geometry-based approach, Velocity Obstacle (VO), Partially
Observable Markov Decision Process (POMDP), learning-
based method and sampling-based strategy.

Our method can be thought of as a kind of geometry-
based strategy because we describe the obstacles using geo-
metric models (spheric obstacle in this case). In our method,
first of all, we build a dataset of the obstacles we want to avoid
and train the tiny version of the YOLOv3 model [4] to detect

∗Email address(es): liang.lu@upm.es

them. Next, the 3D positions of the centers of the obstaces
will be computed using an Iterative PnP algorithm. Then, an
online trajectory planner uses an RHC framework will be ap-
plied to plan a path. Finally, an MPC trajectory controller is
employed to fly the planned trajectory.

The remainder of the paper is organized as follows. Sec-
tion II presents problem formulation. In Section III, we intro-
duce the proposed methodology. We show the experimental
results and discussion in Section VI. And finally, Section IV
concludes the paper and summarizes future research direc-
tions.

2 PROBLEM FORMULATION

2.1 Robot Model Assumption
A multirotor UAV has been used in this research. The

multirotor UAV has 6 Degrees of Freedom (DoF), 3 DoF in
translation and 3 DoF in rotation, and can fly freely in the 3-
dimensional environment. The on-board sensors of the UAV
are a front RGB camera and an Inertial Measurement Unit
(IMU) sensor. The front RGB camera is used to detect obsta-
cles within its the Field of View (FOV) and the IMU sensor
is used for estimating the pose of the UAV. In this paper, the
UAV will be modelled as a sphere that fully contains the UAV.

2.2 Environment Model Assumption
The operating environment in this paper is an environ-

ment with dynamic obstacles, modelled as spheres. The size
of the obstacles is given but their positions are unknown. The
initial point Pinit and goal point Pg are given and the robot
should move from Pinit to Pg without collision. The robot
will be thought as reaching Pg when the distance from the
center of the robot to Pg is smaller than the threshold LG.
The environment model which is used in the paper is shown
in Figure.1.

3 METHODOLOGY

The description of the proposed architecture for au-
tonomous navigation is shown in Figure.2. There are 3 main
parts in it, which are robot localization , obstacles detecting
and pose estimation and online RHC trajectory planner
and controller. The part of the robot localization is based on
our previous work [5].

3.1 Obstacles Detection and Pose Estimation
In this paper, we train tiny YOLOv3 to detect the obsta-

cles. It’s an object detector that uses features learned by a
deep convolutional neural network to detect an object. Given
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Figure 1: The environment model with dynamic obstacles.

the controlled experimentation conditions of this work, a very
naive obstacle detection method ( for example thresholding
by color and circle detection) based on classical computer vi-
sion can be designed, but this could not work on future ex-
perimentation that includes real world flights. The reason of
using YOLO instead of an easier method is to take un ac-
count the noise that would be introduced by the detector in
the real world. The detector trained by tiny YOLOv3 has a
very high frame rate and can be run real-time with a Graph-
ics Processing Unit (GPU). The average processing time is
15ms using a GeForce GTX 1050Ti GPU. The output of the
detector are the bounding boxes which enclose the detected
obstacles. The dataset used to train the network has been de-
rived from OpenImages V4.

In order to calculate the pose of the obstacles with suffi-
cient accuracy, the bounding boxes should enclose the obsta-
cle completely. And because the obstacles in our paper are
spheric obstacles, the bounding boxes should have a square
shape. As it can be seen from Algorithm 1, if the quotient
between the bounding box’s width w and height h is within
a predefined range of [σ0, σ1], the bounding box will be con-
sidered valid and used to compute the center of the obstacle.

With selected bounding boxes, we use an Iterative PnP
algorithm [6] to compute the 3-dimensional position of the
center of the obstacles. The average processing time of the
iterative PnP is 14 ms when we run it a laptop with an Intel
Core i7-8750H CPU..

3.2 Online RHC trajectory planner and controller
The RHC framework based trajectory planner is used in

order to find the best trajectory from a trajectory library. In
this paper, first, we use some ideas from Andreas Bircher et al
[7] to generate online goal candidates and some ideas from
Zheng Fang et al [8] to build the CHO objective function.
Then the CHO objective function is used to generate a trajec-
tory library. The initial point and goal point of the path are

Algorithm 1 Bounding Boxes Filter

Input: Bounding Boxes From Detectors
Output: Bounding Boxes Selected

1: B0 ← Bounding Boxes From Detectors;
2: for Bounding Boxes B in B0 do
3: if σ0 < B.width/B.height < σ1 then
4: Bounding Boxes Selected← B;
5: end if
6: end for

the current robot position and the generated goal candidates,
respectively. Finally, the trajectory with the lowest objective
function value is selected as the best trajectory.

The Rapid Random Tree (RRT) framework [9] is used to
generate the goal candidate nodes. As it can be seen from
algorithm 1, first we set the number of maximum goal can-
didate nodes Nmax, next a random node is generated in the
predefined goal candidates searching area VS , then we find
a goal candidate by Nearest and Steer function from the
RRT framework and store this goal candidate. The Nearest
function is responsible for searching for Pnearest and Steer
function is used for generating Pnew, detail information about
these two functions can be found from [9]. At last, if the num-
ber of goal candidates is larger than Nmax, the online goal
candidates generation process is finished.

A modified objective function for CHO is built to create
the trajectory library and search for the best trajectory. Our
objective function measures four different aspects of the tra-
jectory planning problem. First, in order to get a smooth path,
we add a penalization based on dynamical criteria, like veloc-
ities and accelerations to the trajectory. Next, we penalize the
trajectory by the distance from the trajectory waypoint to the
objects to make the trajectory avoid obstacles. Then, the end
of the trajectory is penalized by the distance from it to the
final goal, which can help the trajectory planner plan a tra-
jectory close to the final goal ξg . Finally, we penalize the
trajectory by the distance from its waypoint to the ground to
make the trajectory go far away from the ground. We describe
these four items by fs, fo, fg , fa respectively, and define our
objective function by summing their weights:

f(ξ) = w1fs(ξ) + w2fo(ξ) + w3fg(ξ(1)) + w4fa(ξ) (1)

As described above, the trajectory is ξ and ξ(s) is the
function mapping the trajectory length s to the robot configu-
rations, the initial and end configurations of the trajectory ξ is
ξ(0) and ξ(1) respectively. The waypoints in the trajectory ξ
are 3 DoF point {x, y, z}. w1, w2, w3 and w4 are the weights
for each objective functions.

The objective functions of fs, fo, fg are the same from
[8]:

fs(ξ) =

∫ 1

0

co(ξ(s))‖
d

dt
ξ(s)‖ds (2)
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Figure 2: Architecture of the autonomous navigation method proposed.

fo(ξ) =
1

2

∫ 1

0

‖ d
dt
ξ(s)‖2ds (3)

fg(ξ(1)) = ‖ξ(1)− ξg‖ (4)

co(ξ(s)) in the objective function is the obstacle cost for
the spheric obstacle obstacle:

co(ξ(s)) =
w0Ro
3

(1− Dist(ξ(s))

Ro
)3 (5)

w0 is the weight and Ro is the radius of the spheric obsta-
cle obstacle. Dist(ξ(s)) is the distance from the waypoints
in the trajectory to the center of the spheric obstacle.

The objective function of fa is learned from [10]:

fs(ξ) =

∫ 1

0

ca(ξ(s))‖
d

dt
ξ(s)‖ds (6)

ca(ξ(s)) in the objective function is the altitude cost:

ca(ξ(s)) =

{
(Alt(ξ(s))− ε)2, Alt(ξ(s)) ≤ ε

0, Alt(ξ(s)) > ε
(7)

Alt(ξ(s)) is the altitude of the waypoints of the trajectory
ξ and ε is predefined the minimum value of the altitude.

The path library is generated by using the objective func-
tion f(ξ) and the best trajectory is the trajectory with the low-
est objective function value and optimized by minimizing the
objective function f(ξ).

After obtaining the trajectory, an MPC based trajectory
controller which is similar to [11] is used to follow the robot
to correctly follow the planned trajectory.

While the robot is flying along the trajectory, we will
check the status of several trajectory points in front of the
robot. If the distance from one of the trajectory points to the
center of the obstacles is smaller than the obstacles’ radius,
the trajectory planner will search for a new trajectory to fly.

Algorithm 2 Online Goal Candidates Generate

Input: Current Robot Position
Output: Goal Candidate Nodes

1: P0 ← Current Robot Position;
2: T ← P0;
3: NT ← 0;
4: while NT < Nmax do
5: Prand ← SampleFree(VS);
6: Pnearest ← Nearest(T, Prand);
7: (Pnew, Tnew)← Steer(Pnearest, Prand);
8: Put Pnew in Goal Candidate Nodes
9: NT ← NT + 1;

10: end while

4 EXPERIMENTAL RESULTS AND
DISCUSSIONS

4.1 Experimental Setup
RotorS Gazebo simulation environment and Robot Op-

erating System (ROS) have been used under Ubuntu 18.04.
The Rviz/Gazebo environment can use real physical param-
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eters of the robot and environment. All the experiments run
on a laptop with Intel Core i78750H at 2.2GHz, a GeForce
GTX 1050Ti GPU. The simulation of the proposed naviga-
tion method is integrated into our open source framework
Aerostack1. The used environments are 3D indoor environ-
ments. The UAV in the simulation is the AscTec Humming-
bird, which is equipped with a front RGB camera. The front
camera takes charge of receiving information from the envi-
ronment in which the robot operates. The UAV can fly freely
in the 3-dimensional environment.

4.2 Evaluation of Obstacle Pose Estimation

We build the environment which is shown in Figure 3 to
evaluate the performance of our obstacle pose estimation al-
gorithm. The size of the environment is 10m × 12m. The
multirotor UAV hovers at the point (0, 0, 1.1)m, the proposed
approach for obstacle detection and pose estimation strategy
are used to calculate the center of the obstacles by using the
images captured from the UAV’s front camera. We test our
obstacle pose estimation strategy with two different spheric
obstacles. The radius of these spheric obstacles is 1m and
1.5m, respectively. The position of obstacle will generate
randomly in the obstacle area. The obstacle area is a cube
area, the center of the area is (5, 0, 1.125)m. The length (L),
width (W) and height (H) of the obstacle area is 6m, 6m and
1.5m respectively. We run our algorithm 1000 times for the

Figure 3: The environment used to evaluate the performance
of obstacle pose estimation algorithm.

spheric obstacles mentioned above respectively, and compute
the error which is the euclidean distance of the estimated ob-
stacle center position and Gazebo ground truth. Then, Max
Error (MaxE), Min Error (MinE), Mean Error (ME) and Root

1www.aerostack.org

Mean Square Error (RMSE) is calculated and can be seen
from Table 1

obstacle radius = 1m obstacle radius = 1.5m
MaxE (m) 1.9534 3.3951
MinE (m) 0.0105 0.0135
ME (m) 0.3061 0.2981
RMSE (m) 0.2315 0.3114

Table 1: Results of obstacle pose estimation.

4.3 Experiments of Autonomous Navigation
We use the environment shown in Figure 1 to test the per-

formance of our autonomous navigation system. In the en-
vironment, there are 3 dynamic obstacles which have a sinu-
soidal trajectory. The initial point of the robot is (0, 0, 0)m.
The coordinate x, y and z are randomly generated between
[8, 8.5]m, [−3, 3]m and [0.75, 1.5]m, respectively. We run
our autonomous navigation algorithm 50 times in the environ-
ment. Table 2 shows the results after running the algorithm
50 times. In the table, the Successful Rate (SR), Path Length
(PL), Time to the Goal (TG), Maximum Velocity (MaxV) and
Mean Velocity (MeanV) express the performance of success-
ful flight from the initial point to the goal point, the mean
length of the path, the average time to reach the goal, the av-
erage maximum velocity, and the average velocity for the 50
runs.

SR (%) 82
PL (m) 9.8848
TG (s) 28
MaxV (m/s) 0.7012
MeanV (m/s) 0.3223

Table 2: Results after 50 runs of our navigation algorithm in
the dynamic environment.

Figure 4 shows 3 flying trajectories from the 50 runs. The
figure of top left, bottom left and bottom right correspond re-
spectively to the top view, left view and normal view of the
3 flying trajectories in the test environment. In the figure, the
red point is the initial point which is (0, 0, 1.1)m, the yellow,
green and blue points are the goal points for different trajec-
tories and the purple, brown and blue line lines correspond to
the 3 different trajectories. The red spheric obstacles are the
dynamic obstacles which move with a sinusoidal trajectory.

A video description of these flights for the 3 trajectories
can be seen from https://vimeo.com/347564788.

4.4 Discussions
As it can be seen from Table 1, there are some errors in

the obstacle pose estimation. However, the SR in Table 2
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Figure 4: Three views of three flight trajectories.

shows that it is still valid for our proposed trajectory planner.
The SR in Table 2 also shows that our navigation strategy
can be used for navigation in an environment with dynamic
spheric obstacles with a maximum velocity of 0.7012m/s
and an average velocity of 0.3223m/s.

In this paper, we build a Gazebo simulation environment
and use Rotors Gazebo simulator to evaluate our algorithm,
Rotors Gazebo model incorporates a good dynamic model for
the aerial robot which can provide realistic flight behaviors
and it is widely used in the research community [12, 13].

5 CONCLUSIONS AND FUTURE WORKS
In this paper, a method for autonomous UAV naviga-

tion in an environment with dynamic obstacles has been pre-
sented. An obstacle detector based on YOLOv3 and an iter-
ative PnP algorithm are used to estimate the relative position
of the obstacles. Then, an online RHC trajectory planner is
used to plan a path and finally, the robot is controlled using
an MPC controller in order to guide it to the goal waypoint.
The experiment results show that this is a valid approach for
UAV navigation in dynamic environments.

In the future, we will improve the performance of our de-
tection and pose estimation algorithm to reduce the errors in
obstacle pose estimation. An Extended Kalman filter or Un-
scented Kalman Filter will be also used to predict the future
position of the obstacle and used in our trajectory planner
to improve its performance. A real flight will also be im-
plemented to evaluate the performance of the proposed algo-

rithm.
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ABSTRACT

In this work, we address the problem of drone
detection flying nearby another UAV. Usually,
computer vision could be used to face this prob-
lem by placing cameras on board the patrolling
UAV. However, visual processing is prone to
false positives, sensible to light conditions and
potentially slow if the image resolution is high.
Thus, we propose to carry out the detection by
using an array of microphones mounted with a
special array on board the patrolling UAV. To
achieve our goal, we convert audio signals into
spectrograms and used them in combination with
a CNN architecture that has been trained to learn
when a UAV is flying nearby and when it is
not. Clearly, the first challenge is the presence
of ego-noise derived from the patrolling drone it-
self through its propellers and motor’s noise. Our
proposed CNN is based on the Google’s Incep-
tion v.3 network. The Inception model is trained
with a dataset created by us, which includes ex-
amples of when an intruder drone flies nearby
and when it does not. We tested our approach
with three different drone platforms, achieving
a successful detection of 97.93% for when an in-
truder drone flies by and 82.28% for when it does
not. The dataset used for this work will be avail-
able as well as the code.

1 INTRODUCTION

Recently, the autonomous drones have grown in popular-
ity in aerial robotics since they are vehicles with multiples
capabilities, with the help of on-board sensors such as In-
ertial Measurement Unit (IMU), laser, ultrasonics, and cam-
eras (both monocular and stereo). Visual sensors can be used
to generate maps, for 3D re-construction, autonomous nav-
igation, search and rescue, and security applications. How-
ever, these applications face serious problems when attempt-
ing to identify another drone in circumstances where the vi-
sual range is lacking, which can cause collisions, putting by-
standers at risk in public places. Thus, it is necessary to have
strategies that employ other modalities other than vision to

∗Department of Computer Science at INAOE. Email addresses:
{aldrichcabrera, carranza}@inaoep.mx

Figure 1: Classification of audio in two different envi-
ronments. Left: spectrogram of an intruder aerial vehi-
cle nearby. Right: spectrogram without an intruder vehicle
nearby. https://youtu.be/B32_uYbL62Y

ensure the discovery of an intruder drone. One such modality
can be audio.

Audio processing has been a topic of research for years,
which includes the challenge of recognising the source of
an audio signal. In aerial robotics, the signals usually tend
to present noise that disturbs the original signal, making the
recognition an even more difficult task. However, if this is
successful, it can be used to find the relative direction of a
sound source (such as another drone) as well as identify other
sounds in different distance ranges. A useful manner with
which audio is represented in this type of applications is in
the time-frequency domain, in which the spectrogram of the
signal is manipulated as if it were an image. These images al-
low a detailed inspection of the noise of the rotors to analyse
vibration and prevent future failures in the motors. By identi-
fying features inside the spectrogram, sound source identifi-
cation and localisation may be possible over a drone.

Recent works employ deep learning strategies (such as
Convolutional Neural Networks, CNN) to classify sound
sources, and many of these methods aim to learn features
from a spectrogram. We propose to use a CNN to identify
when there is or may not be an aerial vehicle near our drone
from a given input spectrogram (See Fig.1).

We base our CNN-based classification model on the
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Google’s Inception v.3 architecture. The information is sepa-
rated in two different classes: with and without a drone. Each
class has 3000 spectrograms for training. Each spectrogram
is manipulated as though it is an image, with each pixel rep-
resenting a time-frequency bin, and its colour representing its
energy magnitude. Moreover, our approach aims to classify
with a high level of performance over different aerial plat-
forms.

This paper is organised as follows: Section 2 provides re-
lated works which identify sources in the environment with
aerial vehicles; Section 3 describes the hardware used; Sec-
tion 4 provides a detailed description of the proposed ap-
proach; Section 5 describes the analysis of the spectrograms
for each class; Section 6 presents the classification results us-
ing the proposed approach; and conclusions and future work
are outlined in Section 7.

2 RELATED WORK

As mentioned earlier, drones that solely employ vision
may be limited when identifying aerial vehicles in an envi-
ronment near a flight zone. Thus, works with radars have
used the micro-doppler effect to identify a target [1] or dif-
ferent targets [2]. This use, as the basis for classification, the
change of the audible frequency due to changes in the velocity
of the propellers [3,4], as well as other features [5]. Addition-
ally, when this effect is represented by its cadence frequency
(CFS), it can be used to recognise other descriptors like shape
and size, achieving the classification of multiple classes of
aerial vehicles [6].

As for audio processing techniques, they have been used
in aerial robotics for classification, detection, and analysis of
rotors, to analyse annoyances generated by the UAV’s noise
through psycho-acoustic and metrics of noise [7]. Likewise,
they have been used for the localisation of sound sources [8],
reducing the effect ego-noise of the UAV’s rotors and localise
the source in high noise conditions in outdoor environments
[9]. These auditory systems have been used in conjunction
with radars and acoustic sensors, showing good performances
when identifying UAVs in public places [10] and detecting
sound sources in spaces of interest [11]. Even though these
alternatives have been developed, the audio processing area
of research over a drone is a challenging task that still has
considerable room to develop.

On the other hand, good acoustic identification using har-
monic spectrums can help avoid collisions between two fixed-
wing aircraft by increasing the detection range of an intruder
UAV to 678 meters [12]. This localisation range can be fur-
ther improved by 50% (while reducing computational costs)
by using harmonic signals [13]. In [14], a design for position-
ing an 8-microphone array over a drone is presented, aimed
to detect distinct nearby UAVs from a given drone. This de-
sign is useful for detection, localisation, and tracking intruder
drones operating close to undesired areas such as airports or
public environments.

There are several strategies that employ deep learning for
sound classification. For example, the direction of a sound
source was estimated using spherical bodies around a drone
and microphones on-board in [15]. Furthermore, multiple
targets were detected, localised and tracked using audio in-
formation and convolutional networks in [16]. Deep learn-
ing strategies have also been used to identify the presence of
different drones in outdoor environments, by analysing and
classifying their spectrogram-based sound signatures in [17]
or by merging them with wave radar signals in a convolutional
network [18]. However, these strategies are performed from
ground stations. There isn’t much developed when it comes
to identifying a UAV from the audio data captured from mi-
crophones on-board another UAV.

3 SYSTEM OVERVIEW

The primary aerial vehicle from which all test are carried
out is a quad-rotor ”Matrice 100”, manufactured by DJI. This
platform is popular because it can carry multiple sensors for
outdoor navigation and autonomous flight, as it can bare a
load of up to 1000 grams.

The audio capture system is the 8SoundUSB system that
is part of the ManyEars project [19]. It is composed of 8
miniature microphones and an USB-powered external audio
interface. The microphones were designed for mobile robot
audition in a dynamic environment, implementing real-time
processing to perform sound source localisation, tracking,
and separation.

For audio recording and processing, we mounted the mi-
crophones over the same 3D-printed structure used by [14] to
record eight-channel audio in raw format. All of the hardware
was driven by the on-board Intel Stick Computer, with 32 GB
of RAM and Linux Ubuntu 16.04 LTS. The recordings were
carried out in two different environments: with an intruder
drone and without an intruder drone. The intruder drone was
a Drone Bebop 2.0, manufactured by Parrot, which is known
for its stability and ease of control.

The place where the recordings were made was in the
Centre of Information of the Instituto Nacional de Astrofisica,
Optica y Electronica (INAOE), where there is a considerable
large area that is appropriate for flying multiple drones at
once.

The recording process is shown in Figure 2. First, the
microphones are placed in the Matrice 100, with microphones
1, 2, 3 and 4 mounted in the front and microphones 5, 6, 7
and 8 mounted in the back. Then, an expert pilot controls
the drone while the audio is recorded on-board the Intel Stick
Computer.

The specifications with which audios were recorded are:

• The sampling rate is 48 kHz to allow a considerable
amount of original resolution which can later be re-
duced if need be.

• Recording time: 240 seconds in the environment
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Figure 2: General overview to record the audio in two different environments and generate a dataset.

with an intruder drone, labelled as the class ”intruder
drone”; and 198 seconds in the environment without it,
labelled as the class ”no intruder drone.”

• The drones performed different actions while record-
ing in both environments. In the environment ”intruder
drone”, these actions were: on the ground with just the
motors activated, hovering, and manual flight. In the
environment ”intruder drone”, the actions were: the in-
truder drone flying on the side of the drone and over the
top of the drone.

• The audio files were then manually transferred to a
computer in the ground. This was done to avoid latency
issues in the wireless transfer. The audio files were then
transformed to the time-frequency domain, generating
a spectrogram for each microphone (as detailed in the
following section).

4 TRAINING DATASET

The training dataset was created from the spectrograms
generated by the recorded data, and apart from the train-
ing dataset, a testing dataset was created to validate the sys-
tem. Each audio file was segmented in 2-second segments.
The Short Time Fourier Transform was applied to each seg-
ment, with a 1024-sample Hann window (to avoid spectral
leakage) and 75% overlap. The audio files in the negative
class ”no intruder drone” include recordings of the air blow-
ing through the trees, voices, cars, people and the noise of
the Matrice’s motors. The positive class ”intruder drone” in-
cludes the recording of 200 seconds of the intruder drone fly-
ing on the side and over the Matrice 100. The Tables 1 and 2
show the spectrograms generated for each action which make
up the whole of the training data set.

4.1 CNN architecture
We propose a convolutional neural network (CNN) as our

classification model. This network is based on the architec-
ture of the Google Net Inception v.3 (as shown in Figure 3)

Action Time Spectrograms (by mic)

Motor Activation 198.0 sec 98
Hovering 198.0 sec 98

Flight Manual 198.0 sec 98
Flight Manual 2 198.0 sec 98

792.0 sec 3168 (by all mics)

Table 1: Spectrograms of the class ”no intruder drone”.

Action Time Spectrograms (by mic)

Flight over 200.0 sec 100
Flight to the side 200.0 sec 100

Flight over 2 200.0 sec 100
Flight to the side 2 200.0 sec 100

800.0 sec 3200 (by all mics)

Table 2: Spectrograms of the class ”intruder drone”.

using Keras and Tensorflow. We employ a transfer learning
strategy. Meaning, our system uses a model that was already
trained on the ImageNet corpus [20], but we then augmented
it with a new top layer to be trained with our recorded data.
This is done so that the resulting model is focused in recog-
nising the spectrogram-type of images relevant to our appli-
cation: identifying an intruder drone flying near another.

The training data set was arranged in folders, each rep-
resenting one class and baring approximately 3000 images.
The model inherited the input requirement of the Inception
V.3 architecture, receiving as input an image of size 224 x
224 pixels. The network was trained for 4500 epochs. Since
the softmax layers can contain N labels, the training process
corresponds to learning a new set of weights; that is to say, it
is technically a new classification model.
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Figure 3: Schematic diagram of Inception V3.

5 SPECTROGRAM ANALYSIS

It is important to manually analyse the resulting spectro-
grams, to observe (in a preliminary fashion) if both classes
are distinguishable to a human listener. The first analysis was
made with the Audacity software [21] to visualise the audio
data as a spectrogram. Then, the audio files were reproduced
to see if a human listener was able to identify the intruder
drone flight during the recordings. In Figure 4, the possible
positions corresponding to these moments are marked in a
circle.

Figure 4: Comparison between spectrograms of manual con-
trol (top) and intruder drone (bottom).

Once it was shown that a human listener is able to identify
the intruder drone, further analysis was carried out. 2-second
time-frequency spectrograms were generated (as described in
Section 4) for the two classes, and are shown in Figure 5. As
it can be seen, there is an important amount high-frequency
energy present in the ”intruder drone” class that is not present
in the class ”no intruder drone.”

Figure 5: Spectrograms generated of activate motors (left)
and intruder drone flight (right).

6 RESULTS OF THE DRONE CLASSIFICATION

The results shown in this section is that of the trained
classifier. Its aim is to classify between two classes of input
spectrograms. It could be argued that it is actually a verifier.
However, we evaluated it as a classifier for future proofing.

6.1 Validation
We performed two experiments to evaluate the classifi-

cation model. The first experiment shows the overall effec-
tiveness of the model by testing it with 920 images for each
class with an average inference time of 0.4503 sec. Table 3
presents the results of this test, and it can be seen that the class
”intruder drone” is consistently classified correctly, with only
19 wrong classifications out of 920 tests. However, the class
”no intruder Drone” gives a lower accuracy, with 163 images
wrong classifications.

Class Images Incorrect Accuracy

No intruder Drone 920 163 82.28%
Intruder Drone 920 19 97.93%

Table 3: Validation of classification network.

To a better understanding of the performance of the clas-
sifier we considered a binary classification where a nearby
drone is considered as a positive sample in this way we have
the true positive (Tp) = 901, true negative (Tn) = 757, false
positive (Fp) = 19 and false negative (Fn) = 163. In Table 4,
we show the result of Accuracy, Precision and Recall provide
a better understanding of the performance of the classifier.

Accuracy Precision Recall

0.90108 0.97934 0.84680

Table 4: Accuracy, precision and recall result.

The second experiment measures the output of the model
for each class, given a representative spectrograms to test
with. 20 spectrograms were chosen (10 for each class), and
the model outputs of each class are shown in Table 5. Al-
though some outputs are below 70% (which implies some
uncertainty of the model), the final classification is correct
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Class Classification

No intruder Drone 97.82% 93.28% 78.82% 63.80% 76.59%
Intruder Drone 2.18% 6.72% 21.18% 36.2% 23.41%

No intruder Drone 77.54% 85.76% 84.66% 89.57% 82.31%
Intruder Drone 22.46% 14.24% 15.34% 10.43% 17.69%

Intruder Drone 88.23% 90.46% 94.70% 70.50% 91.57%
No Intruder Drone 11.77% 9.54% 5.30% 29.50% 8.43%

Intruder Drone 93.14% 91.10% 75.93% 65.27% 98.89%
No Intruder Drone 6.86% 8.90% 24.07% 34.73% 1.11%

Table 5: Example of classification with CNN using some test images.

in all cases. These results give us a representative view of the
expected performance of the model with the two classes that
are relevant to our application: identifying an intruder drone
flying near another.

7 CONCLUSION

In this paper, we proposed a CNN-based classifier of two
types of environments: with and without an intruder drone,
using only audio captured by a UAV. A time-frequency spec-
trogram was used as an the signal representation, which is
compatible with known CNN-based architectures. We em-
ployed a transfer-learning strategy, with which the top layer
of a pre-trained Google’s Inception V.3 model was modi-
fied and trained, which made the training process very effi-
cient. The classifier was evaluated in two experiments, and
it achieved a good classification performance in most cases.
The work can be further strengthened by using the eight mi-
crophones individually to detect the direction of the intruder
drone. This would allow a fast enough detection, to give
enough time to plan a strategy for collision avoidance.
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ABSTRACT

To investigate how an Unmanned Air Vehicle
(UAV) can detect manned aircraft with a single
microphone, an audio data set is created in which
UAV ego-sound and recorded aircraft sound are
mixed together. A convolutional neural network
is used to perform the air traffic detection. Due
to restrictions on flying UAVs close to aircraft,
the data set has to be artificially produced, so
the UAV sound is captured separately from the
aircraft sound. They are then mixed with UAV
recordings, during which labels are given indi-
cating whether the mixed recording contains air-
craft audio or not. The model is a CNN which
uses the features MFCC, spectrogram or Mel
spectrogram as input. For each feature the ef-
fect of UAV/aircraft amplitude ratio, the type of
labeling, the window length and the addition of
third party aircraft sound database recordings is
explored. The results show that the best perfor-
mance is achieved using the Mel spectrogram
feature. The performance increases when the
UAV/aircraft amplitude ratio is decreased, when
the time window is increased or when the data set
is extended with aircraft audio recordings from
a third party sound database. Although the cur-
rently presented approach has a number of false
positives and false negatives that is still too high
for real-world application, this study indicates
multiple paths forward that can lead to an inter-
esting performance. In addition, the data set is
provided as open access, allowing the commu-
nity to contribute to the improvement of the de-
tection task.

1 INTRODUCTION

More and more UAVs are entering the air every day, both
for professional as well as for recreational purposes. Safety
and regulations are subjects undergoing intense study nowa-
days in the UAV industry, as UAVs form a hazard for people,
other (air) traffic, buildings, etc. For this research, the focus
is on the collisions between UAV and air traffic, which are
still possible to occur. For example, emergency helicopters

∗Email address(es): c.dewagter@tudelft.nl

sometimes fly low in UAV-permitted airspace. Part of this
problem can be solved by establishing (and following) good
rules and laws, but also technology can help out. Technol-
ogy becomes even more important when UAVs have to oper-
ate fully autonomously, as required by many future applica-
tions. A project initiated by Single European Sky ATM Re-
search (SESAR) that aims to increase air traffic safety regard-
ing to UAVs is called Percevite1. Using multiple lightweight,
energy-efficient sensors obstacles should be avoided to pro-
tect UAVs and their environment. One such a sensor is a mi-
crophone, which fulfills the task of ’hear-and-avoid’, mean-
ing that it should detect and avoid air traffic by sound. The
goal of this research is to create a safer airspace by creating
this hear-and-avoid algorithm.

Figure 1: The acoustic camera on the runway of Lelystad
Airport.

The first feasibility study for hear-and-avoid has been per-
formed by Tijs et al [1]. In this research an acoustic vector
sensor is used to detect other flying sound sources. Two co-
authors, De Bree and De Croon [2], have used an acoustic
vector sensor in order to detect sound recorded on a UAV for
military purposes. However, neither works have used deep ar-
tificial neural networks to separate aircraft and UAV sounds.
Moreover, there are two research groups that have tried to
identify the position of other UAVs using sound recorded
from a UAV. Basiri et al. [3, 4, 5, 6] try to determine the po-
sition of a UAV in a swarm of UAVs. The transmitting UAV
sends a chirp sound in the air that has frequencies different
than the UAV’s ego-sound, which can be picked up quite well

1www.percevite.org
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while flying. Also, they do tests with engines of the receiving
UAV turned off and the transmitting UAVs not transmitting
the chirp anymore. Also here, based on the engine sounds
of the transmitting UAV its location can be determined. The
hear-and-avoid algorithm can be seen as a follow up of these
researches, as they have not managed to identify other air
traffic by its original sound while also having the engines
turned on. Harvey and O’Young [7] show that with two mi-
crophones, the detection of another UAV can be performed at
such a distance that is double the distance to prevent head-on
collision. Furthermore, research is performed focusing only
on the UAV sound by Marmaroli et al. [8]. They have created
an algorithm that is able to denoise the ego-sound of the UAV
based on the knowledge about the propellers’ revolutions per
minute (RPM).

One of the reasons that there is not a large amount of re-
search performed on audio analysis for UAVs is that there are
alternatives that provide traffic information, such as ADS-B,
GPS, vision, etc. However, all alternatives have their disad-
vantages and do not fully eliminate the chance of a collision.
For example, ADS-B requires a system in an aircraft that
is not always present or turned on. For vision based sense-
and-avoid its images can be disturbed due to speed, rain, fog,
darkness, objects, etc. Sound, on the other hand, is inevitable
for motorized aircraft, so it is a promising method. More-
over, microphones are lightweight, easy to use, omnidirec-
tional and only weakly influenced by weather. The challenge
that sound brings in this application is that many different
sounds are present, such as the UAV’s ego-noise, wind, air
traffic and environmental sounds.

In this research the following situation is studied: a UAV,
which is carrying a single microphone, flies around and
should detect incoming or passing aircraft based on sound.
The detection of aircraft will be realized by means of a convo-
lutional neural network (CNN) due to their promising perfor-
mance on sound in [9],[10] and [11]. The representative data
set that is needed, which consists of audio recordings taken
on a UAV including aircraft sound, does not exist yet and
therefore needs to be artificially created. The CNN uses three
audio features as input: Mel Frequency Cepstral Coefficients
(MFCCs), spectrograms and Mel spectrograms. Four vari-
ables are changed in the data sets to discover their influence:
the window length, the amplitude ratio UAV/aircraft, the type
of labeling and the use of third party database recordings.

The remainder of the article is structured as follows. The
generation of the data set is explained in section 2, including
how the individual sound recordings are obtained, how those
are processed and mixed to recordings that include both UAV
and aircraft sound. Secondly, the features and the model are
described in section 3. The results for each of the models are
shown in section 4 and discussed in section 5.

2 AUDIO ACQUISITION

This research needs a database that contains audio record-
ings, recorded on UAVs, of the UAV’s ego-sound and closely
approaching aircraft. Such a database does not exist yet and
therefore it is created for this purpose. The database consists
of (preprocessed) sound recordings (of UAVs, aircraft and ro-
torcraft) and labels, which indicate whether only UAV sound
is present or UAV and aircraft sound are present.

2.1 Sound recordings
The laws on UAVs prevent the UAV to come in the vicin-

ity of an aircraft. In order to still have a representative
database of UAV sounds that include passing aircraft, the
UAV sounds and aircraft sounds are recorded separately and
mixed afterwards. Three types of recordings have been used:
self-made recordings using a microphone on a UAV, general
aviation aircraft recordings using a microphone array and air-
craft recordings obtained from a third party audio database.

2.1.1 Recordings of the UAV sounds

The UAV sounds are recorded in the Cyberzoo of the TU
Delft. This is a protected area for UAVs to be safely and
legally flown at the university. An 808 micro camera2 is
placed under a Parrot Bebop UAV, so that its body already
blocks part of the UAV’s ego-sound. Between the UAV and
the microphone, foam is used to absorb the mechanical vibra-
tions. During the recordings, the UAV performed rotations
and movements around its pitch, roll and yaw axes at differ-
ent speeds. After recording, the data is cropped to remove
the silences at the beginning and at the end. These record-
ings are complemented with audio recordings from a mobile
phone that filmed the UAV from a close distance. Effectively
a total of 20 minutes of UAV recordings are used.

2.1.2 Recordings of general aviation flights

Since the most probable group to come in contact with UAVs
is general aviation (GA) rotor- and aircraft, flyover data has
been obtained at the biggest GA airfield of the Netherlands,
Lelystad Airport, in collaboration with the Aircraft Noise and
Climate Effects (ANCE) section of the TU Delft.

As Lelystad airport is expanding to a larger airfield, the
runway is extended, but the new part is not in use yet. This
part of the runway is therefore a perfect place to obtain
recordings as the aircraft would fly straight over the so-called
”acoustic camera”.

The acoustic camera, designed and built by the TU Delft
[12], consists of an array with 8 bundles of 8 microphones3.
The bundles are arranged in a spiral shape for optimal beam-
forming purposes. The microphones are covered in a foam
layer to decrease the noise due to wind. Moreover, the array

2http://www.chucklohr.com/808/
3Model: PUI AUDIO 665-POM-2735P-R
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is covered in foam in order to absorb ground reflections. All
the bundles are connected to a Data Acquisition Box (DAQ)
which samples the data at 50 kHz and sends it to the con-
nected computer. Not only the DAQ is connected to the com-
puter, but also an ADS-B receiver in order to receive aircraft
position information. However, the ADS-B did not produce
useful information as none of the GA aircraft broadcast ADS-
B information. Moreover, a mobile phone camera is placed in
the center of the array to capture the flyover on video, but this
data is not used for this research. The setup of the acoustic
camera is shown in Figure 1.

In total 75 recordings are obtained, which consist of back-
ground noise recordings and flyovers. One recording some-
times consists of more than one flyover. Effectively, 75 GA
aircraft and 9 helicopter flyovers are captured. The back-
ground noise consists of microphone noise, noise due to wind,
distant traffic and a distant motor race track.

For this research only the recording of one microphone
is necessary, so from only one microphone the recordings
are extracted. Every microphone is checked to make sure it
worked correctly. One of the 64 microphones is faulty, so its
data is not used.

2.1.3 Recordings obtained from a third party audio
database

With regard to creating a data set that is representative for the
possible air traffic sounds that a UAV could encounter, it had
to consist of more than only flyover data. For example, other
background noise could influence the detection performance.
Therefore also a (free) audio database4 is consulted to obtain
helicopter and (propeller) aircraft sounds. Only the sound
samples that are of sufficient quality and which are not mixed
with (too much) other background noise are selected.

2.2 Data preprocessing
All the separate recordings are manually modified before

adding them together. Some UAV recordings contained heavy
vibrations of the tape that held the microphone. Those record-
ings are removed from the data set. For both the UAV record-
ings and the third party database recordings the silent/fading
start and end are cut out. The recordings obtained at Lelystad
airport do not require this as the parts that do not include
aircraft sound are used as background noise. Instead, we
manually labelled every second in the recording, indicating
whether it consists of only background noise or include air-
craft sound. The recordings from Lelystad Airport include
noise introduced by the microphones and the wind. A first
order Butterworth low-pass filter is used to remove most of
the noise. Most of the time the aircraft sound information is
in the frequency region lower than 100 Hz. Only during a
flyover aircraft sound information comes above this value. In
order to capture the higher frequency content during a flyover

4https://freesound.org/

but also remove much of the noise during the rest of the time,
the cut-off frequency is set on 2.5 kHz.

All the recordings are resampled to a sample rate of 8
kHz as there is no important information present above the
Nyquist frequency of 4 kHz and it decreases the size of the
data set significantly, which shortens the computational time.
Secondly, the sound recordings are normalized by scaling the
amplitude between -1 and 1, so that the amplitude of two
recordings is similar. Before mixing aircraft and UAV sounds,
also data augmentation is applied to all the separate aircraft
and UAV recordings in order to increase the size of the data
set, which increases the performance of the model. Three
types of data augmentation are applied: addition of white
noise, increase in pitch and decrease in pitch. The white noise
is a randomly generated Gaussian distribution with mean 0
and a variance of 0.005. The pitch is increased and decreased
by two semitones on the 12-tone. An increase of two semi-
tones relates to 12/2

√
2 ≈ 1.12 times the original frequency.

After augmentation, the data set is four times its original size,
one original data set plus three augmented data sets.

2.3 Mixing the recordings

In order to get sound samples that include both aircraft
and UAV sound, the following mixing procedure is used.

First, the whole data set is split up in a test set and in a
training set. All the augmented versions of a sound sample
are always in the same set as their original sound sample to
ensure that the two sets are uncorrelated.

Secondly, each recording from Lelystad airport is com-
bined with a randomly selected UAV recording of the same
set. In some (part of the) recordings only background noise
is present. This background noise is necessary since without
the noise, the model might classify every sound which is not
UAV sound as aircraft sound. Mixing consists of adding a
segment of the Lelystad airport sound sample, which has a
random length, to one of the UAV recordings on a random
starting position. If the starting position plus the length of
the segment is longer than the length of the UAV sound sam-
ple, the added segment is cut off at the end of the UAV sound
sample. The mixed sample therefore never exists of only air-
craft sound. The total length of each mixed sample is equal to
the length of the UAV recording, which is different for each
recording.

Mixing the third party database recordings is done
slightly different than the method described for the Lelystad
recordings because the third party database recordings always
exist fully of aircraft sound. The difference between the two
mixing methods is that not only a part of the recording is
added to the UAV sound sample, but the whole recording is
added instead (at a random starting position).

The detection model in this paper requires the inputs to be
of equal length (more on this in subsection 3.2). As this is not
the case for the combined samples, the third step is to cut the
combined samples to equal lengths. To maximize the amount
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of data in the sets, the cutting length is set on 51 seconds,
which is equal to the length of the shortest combined sound
sample.

The amplitude ratio when mixing the UAV and aircraft
sound is not always 1:1. In this work, four UAV/aircraft am-
plitude ratios will be used, namely 0:1 (which means no UAV
sound), 1:1 (equal amplitudes), 1:4 (aircraft sound amplitude
is four times larger) and 1:8 (aircraft sound amplitude is eight
times larger). Most of the time, a ratio of 1:4 is used. This
ratio is obtained as follows. Assuming the average Sound
Pressure Level (SPL) of a UAV at one meter distance is 76
dB5 and that of an aircraft at 300 meters distance is 88 dB6,
the difference between the SPLs of the two sounds is 12 dB.
Equation 1 shows how the SPL is calculated from the pres-
sure p1 (which is the amplitude in the waveform) of a sound
and a reference pressure p0. Taking the amplitude of the UAV
waveform as reference pressure and the aircraft waveform as
p1, an SPL of 12 is obtained when the aircraft waveform is 4
times larger. If the ratio 1:4 is corresponding to an airplane
on 300 meters distance, 1:1 corresponds to a distance of 1200
meters and 1:8 to a distance of 150 meters, following Equa-
tion 2. In this equation, r2 is the distance of interest, r1 the
original distance, SPL1 the SPL at r1 and SPL2 the SPL at
r2.

SPL = 20 log
p1
p0

(1)

r2 = r1 · 10
|SPL1−SPL2|

20 (2)

2.4 Labels
Each second of a mixed sample is given a binary label,

indicating whether there is other aircraft sound present (1)
or not (0). The recordings from Lelystad airport are labeled
manually before mixing. There are two types of labeling,
called nearby detection labeling and distant detection label-
ing. Nearby detection labeling is partly based on listening
to the sound, and partly on looking at the spectrogram. The
spectrogram, which is shown in Figure 2 and elaborated on
in subsubsection 3.1.2, shows the amount of frequency con-
tent over time. Nearby detection labeling gives label 1 when
a peak is visible in the spectrogram. By ear this is noticeable
as more high frequency content is heard.

Distant detection labeling is purely based on hearing. The
frames in which a human is able to separate noise from air-
craft sounds are labeled 1. This time it cannot be based on the
spectrogram as the aircraft sound is either not visible on the
spectrogram (when it is blended in too much with the back-
ground noise) or it is visible (as a line on a single frequency
caused by the propeller’s rotational speed) but the background
noise is louder than the aircraft sound. An example of the lat-
ter is shown in Figure 3, at which the horizontal line around
100 Hz is also present when no label is given.

5https://www.youtube.com/watch?v=uprXhH6-FNI
6http://airportnoiselaw.org/dblevels.html

Figure 2: Spectrogram of a flyover recording. The exact fly-
over is between 100 and 110 seconds, which can be recog-
nized by a yellow peak and a Doppler shift around 100 Hz.
Also before and after the peak the aircraft sound is present,
which is visible by the horizontal line around 100 Hz.

The time instances that are not labeled one are labeled
zero, so also the background noise from the Lelystad record-
ings is given the same label as when there is no other aircraft
sound present. In Figure 3, the areas in the spectrogram that
are labeled as 1 are indicated in red for nearby detection la-
beling and green for distant detection labeling.

For the third party sound database, the whole aircraft
recording is always labeled as a one, as each of the sound
samples is selected on only having aircraft sounds. Again, all
the time instances in the mixed recording that are not one are
labeled zero.

3 AIRCRAFT AUDIO EVENT RECOGNITION

The aircraft sound will be detected by a framework that
exists of a feature extractor and a classifier. The features
capture important sound information and reduce the dimen-
sionality of the data. They are the inputs for the classifier.
Thereafter the classifier determines whether the sound sam-
ple contains aircraft sound or not.

3.1 Feature extraction
Three features are extracted from the combined sound

samples using Python library Librosa [13]. First there are the
Mel Frequency Cepstral Coefficients (MFCCs) [14], which
are chosen because of their popularity in one of the biggest
domains in machine hearing, Automatic Speech Recogni-
tion (ASR). The two other features, the spectrogram and Mel
spectrogram, are visual representations of the sound samples.
Content-based analysis of images is already quite developed
[15], therefore the image of a sound might be a good starting
point.

For every feature, each frame in the time dimension has a
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Figure 3: Spectrogram showing nearby detection labeling
(red) and distant detection labeling (green).

length of one second. One second is a rather large frame but it
chosen to reduce in dimensionality. The window moves over
the sound sample with a step of one second. All the sound
samples are 51 seconds long, thus from each sound sample
51 separate frames are obtained in the time dimension.

3.1.1 MFCC

The cepstrum is a domain which represents the rate of change
in multiple frequency bands. MFCCs are the coefficients of
which the cepstrum is composed. It has the ability to sepa-
rate convoluted signals in the time domain7. This domain is
therefore often used in speech recognition, to separate the vo-
cal pitch and the vocal tract. The coefficients are obtained by
taking the logarithm of the amplitude spectrum, converting
this to the Mel scale and taking the Discrete Cosine Trans-
form (DCT). The Mel scale, which is expressed as a function
of frequency (f ) in Equation 3, is a scale that approximates
the human perception of frequency. This scale emphasizes
the low frequencies (<1 kHz), which is also the frequency
range in which most of the UAV/aircraft sound information is
present. The full transformation from time domain signal to
MFCC is shown in Equation 4 [16].

M(f) = 2595 log

(
1 +

f

700

)
(3)

MFCC(d) =

K∑

k=1

(logXk) cos

[
d

(
k − 1

2

)
π

k

]

for d = 0, 1, ..., D

(4)

In this equation Xk is the Discrete Fourier Transform
(DFT) obtained in Equation 5 of which the frequency belong-

7http://research.cs.tamu.edu/prism/lectures/sp/
l9.pdf

ing to each k is warped to the Mel scale by Equation 3. D is
the total number of coefficients and N the number of data
point in the time frame. The number of coefficients used in
this research is 20.

Xk =

N−1∑

n=0

Xne
− 2πi

N kn for k = 1, 2, ..., N (5)

3.1.2 Spectrogram

Spectrograms are visual representations of the energy per fre-
quency plotted against time, of which the Mel spectrogram
uses the Mel scale of Equation 3 on the frequency axis. A
typical flyover spectrogram (without UAV sound), is shown
in Figure 2. In this figure the point where the aircraft is pass-
ing the array is between 100 and 110 seconds, which is visible
with the large yellow peak and a Doppler shift (the sigmoid-
shaped line around 1 kHz). It also shows that when the air-
craft is further away, it lacks in high frequency content (due to
atmospheric attenuation). That means most of the time only
the aircraft’s low frequency content is heard by the UAV in
combination with low frequency noise.

The spectrograms are calculated following Equation 6,
which is the magnitude to the power p of the Short-Time
Fourier Transform (STFT). Usually the Power Spectral Den-
sity (PSD) is chosen, for which p = 2. It uses a window
function w[n], in this case the Hann window of one second,
of which m is the index of the position in the window func-
tion with length N , discrete frequency k, signal x[n] at time
n.

Spectrogram =

∣∣∣∣∣
∞∑

n=−∞
x[n]w[n−m]e

−i2πkn
N

∣∣∣∣∣

p

(6)

3.2 Model
The previously described features are the input for a deep

artificial neural network: the convolutional neural network
(CNN). It has shown best performance for sound event recog-
nition tasks in [9],[10] and [11]. The basic CNN used in this
research is shown in Figure 4. The network is created with
the Python libraries Keras [17] and Tensorflow [18].

Even though the features consist of 51 second of
UAV/aircraft sound, the input for the CNN is a smaller time
window which slides over the time axis. The smaller time
window is used as otherwise the detection output of a frame
could be depended on data from later frames, due to the fully
connected layer. Multiple window lengths are used, as shown
in section 4. In the basis, however, the window size is three
seconds. This window slides over the feature’s time axis with
a step of one second.

The first layers of the CNN are convolutional layers.
There are two subsequent sets of layers, each consisting
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Figure 4: Architecture of the CNN. The input is a mov-
ing time window over the spectrogram, Mel spectrogram or
MFCC. The output a binary value indicating whether aircraft
sound is present or not.

Table 1: Model parameters of the CNN from Figure 4.

Parameter CNN
Convolution units first set 32
Convolution units second set 64
Kernel size 3x3
Pooling size 2x2
Dropout probability 1 0.25
Dropout probability 2 0.5

of two convolutional layers, followed by a max pooling
layer. The convolutional layers use the Rectified Linear Unit
(ReLU) as activation function and it applies zero padding to
the input. After the two sets, the output is flattened in order to
be able to connect it with the output layer, a fully connected
layer. For the output, a sigmoid activation function is used,
which scales the output (as a float) between 0 and 1. The bi-
nary discrimination threshold determines whether this output
becomes a 1 or a 0, so whether an aircraft is present or not,
respectively. The network is based on [11] and its parameters
are modified based on preliminary test results.

Training the network is performed by means of a binary
cross-entropy loss function and the Adam optimizer [19]. The
Adam optimizer parameters are the same as in the original
paper, so a learning rate of 0.001, β1 = 0.9, β2 = 0.999,
ε = 10−8, and no decay. After each pooling layer, dropout is
used in order to prevent overfitting of the training data. The
parameters for the CNN are shown in Table 1.

4 RESULTS

Each feature is combined with the CNN, so in total three
models are tested. They are trained and tested on multiple
data sets, which are listed in Table 2. To check the influence
of certain parameters in the data set or in the model, four pa-
rameters are altered during the runs: the window length, the
labeling type, the ratio in amplitude between the UAV and air-
craft sound and whether third party database recordings and
Lelystad airport recordings are used or only the Lelystad air-
port recordings.

There is one basis run, for which the window length
is 3 seconds, the labeling is nearby detection labeling, the
UAV/aircraft ratio is 1:4 and there are no third party database

Table 2: Overview of the variables that are changed for each
run, including their corresponding values and the values of
the standard case, the basis run.

Variables Basis
values Variations

UAV/Aircraft ratio 1:4 0:1 1:1 1:8

Third party
database used No Yes

Labeling type
Nearby detection
labeling

Distant detection
labeling

Window length (s) 3 10 15 20

Table 3: The number of each run with their corresponding
changed variable and the corresponding value.

Run # Variation
1 UAV/Aircraft ratio: 0:1
2 UAV/Aircraft ratio: 1:1
3 Basis run
4 UAV/Aircraft ratio: 1:8
5 Database used: Yes
6 Distant detection labeling
7 Window length: 10
8 Window length: 15
9 Window length: 20

recordings involved. For all the other runs, only one variable
of the basis run is changed each time.

The window length is either 3, 10, 15 or 20 seconds. The
Lelystad airport recordings are labeled manually, in two man-
ners, as explained in subsection 2.4. For distant detection
labeling the training is performed with distant detection la-
beling and the testing is performed with nearby detection la-
beling. The idea behind this method is that the model could
learn aircraft sound when it is not so obviously present, so that
detection when the aircraft is obviously present is outstand-
ing. The amplitude ratio between the UAV and the aircraft is
tested when no UAV sound is present, and for the ratios 1:1,
1:4 and 1:8. Lastly, the third party database sounds are either
added to the data set or omitted.

From here on, each specific run is indicated by the number
of the run given in Table 3. The performance of the models
is compared for each of the variables (window length, label
type, etc.). This comparison is based on the Receiver Op-
erating Characteristic (ROC) curve. The ROC curve shows
the True Positive Rate (TPR) against the False Positive Rate
(FPR) for all possible binary discrimination thresholds. The
area under the curve (AUC) is a measure of accuracy of the bi-
nary classifier. In this research specifically, especially the re-
gion of low FPR is important, as it shows how many times the
UAV would falsely decide to warn the operator or descend.
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For each point on the ROC curve the desirable discrimination
threshold can be extracted, which determines whether the out-
put from the model is classified with label 1 or label 0.

4.1 Influence of the UAV/aircraft ratio
Runs 1, 2, 3 and 4 are simultaneously plotted for the

CNNs in Figure 5. In general, the best performance is
achieved for the cases where there is no UAV sound present
(run 1). If the UAV’s ego-sound is added to the aircraft sound
with an amplitude ratio of 1:1 (run 2), the performance is
the worst in all cases. The figures show that amplifying the
aircraft sound increases performance, however, there is little
increase between the ratio 1:4 and 1:8. The expected result
is that the less UAV content is present, the more the perfor-
mance would converge to the result of run 1. Only for the
MFCC and Mel spectrogram this trend is visible in the lower
FPR region. Looking at the AUC, the MFCC and the spec-
trogram show no convergence to the ratio of 0:1. In the case
of the Mel spectrogram, there is only a difference visible be-
tween the ratio of 1:1 and the others.

4.2 Influence of the third party database recordings
In the basis run, only the recordings from Lelystad airport

are used. This means that all the recordings have (fairly) the
same background noise and types of airplanes and they use
the same recording equipment. In order to check how much
the models rely on these characteristics, they are trained and
tested with the third party database recordings as well for this
run.

Figure 6 shows that for all the models, the addition of
the third party database recordings improves the performance
of the model. Only for the very low FPR (< 0.01), the
basis run performs better for the MFCC-CNN and the Mel
spectrogram-CNN.

4.3 Influence of labeling
The third type of modification made in the data set re-

lates to which labels are used for training. For all cases the
nearby detection labeling is used for testing. For training,
however, one run uses distant detection labeling and one run
uses nearby detection labeling. When an aircraft is approach-
ing, the lower frequencies of its generated sound reach the
ear first. This low frequency content is in the same range as
the background noise. It is therefore expected that for distant
detection labeling a better separation is found in the model
between drone and aircraft and therefore would also better
perform for the nearby cases. Figure 7, however, does not
prove this hypothesis. This time, for all features, the perfor-
mance deteriorates when distant detection labeling is used.

4.4 Influence of the window length
The window length of the CNN determines how many

seconds of history are used to determine whether the sound
contains aircraft sound or only UAV sound. The more history
the sound contains, the better the development of (possible)
aircraft sound can be captured. It is therefore expected that
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Figure 5: ROC curves showing the influence of the
UAV/aircraft ratio for each feature. Best accuracy is achieved
for the ratio 0:1 (no UAV sound present). The more UAV
content is added, the worse the performance.
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(a) MFCC-CNN with and without third party database recordings.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os
iti
ve

 R
at
e

Third party database not used (basis run) (area = 0.91)
Third party database used (area = 0.93)

(b) Mel spectrogram-CNN with and without third party database
recordings.
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(c) Spectrogram-CNN with and without third party database record-
ings.

Figure 6: ROC curves showing the influence of the third party
database recordings for each of the features. For all features,
the performance increases using the third party database
recordings.
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(a) MFCC-CNN comparing the performance for different label
types.
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(b) Mel spectrogram-CNN comparing the performance for different
label types.
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(c) Spectrogram-CNN comparing the performance for different la-
bel types.

Figure 7: ROC curves showing the influence of labeling type
for each of the feature. Each run is tested with nearby detec-
tion labeling. One run is using the nearby detection labeling
for training as well and the other one uses the distant detec-
tion labeling during training.
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with a larger window length a better performance is achieved.
However, eventually the performance of longer time win-
dows are expected to converge as history from long ago does
not give useful information in detecting aircraft sound in the
present.

This hypothesis is confirmed for the CNNs using Mel
spectrogram, spectrogram and MFCC in Figure 8. Improve-
ment in AUC between a three second window and a ten sec-
ond window is shown in each of the subfigures. For window
lengths of more than ten seconds, the AUC hardly changes.
For the spectrogram-CNN there is a clear difference in the
low FPR region between the 10 and 15 seconds.

4.5 Comparison of the features
So far, the results are only shown per feature. In order to

show which feature works best, the features have been com-
pared for the basis run in Figure 9. The results show that the
Mel spectrogram performs best, followed by the MFCC. The
spectrogram performs worst compared to the other two.

Even though the results are only set out for one run, this
is true in general for the other runs. For the runs with a
UAV/aircraft ratio of 0:1, 1:1, and distant detection labeling
(run 1, 2 and 6) the MFCC is equally accurate as the Mel
spectrogram. For the runs with an increase window size (run
7,8 and 9), the spectrogram is slightly better then the MFCC.

Moreover, a ROC curve with the binary discrimination
threshold based on the pure energy of the signal is shown in
Figure 9. This curve is used to see whether the model just
checks the amount of energy in the signal or if it uses more
elaborate features. The AUC gives away directly that the per-
formance is significantly worse than the CNNs, so the model
does not base its outputs simply on the amount of energy in
the signal. Especially in the low FPR region (< 0.1) the TPR
is significantly lower than for the CNNs.

4.6 Visualization of the output
In order to clarify the output of the model, one of the runs

is used to visualize the outputs. In Figure 10, the spectrogram
of one sample of the basis run test set is shown, along with the
expected label (in red), the output of the network (in black)
and the binary discrimination threshold belonging to a FPR
of 0.1 (in purple). This example shows a decent detection
result in which the results in the time window for which the
label is 1 (between 28 and 40 seconds) is correctly above the
threshold (except for the first second). The rest of the output
is always under the threshold and therefore not detected as an
aircraft.

The correctness of the result of Figure 10, however, is not
observed for all cases of the test set. False positives and false
negatives are appearing as well, such as shown in Figure 11.
In this figure the time span between 30 and 45 seconds should
be given a label of 1, but but the model output is still under
the threshold, except for 1 second. Also, the point at second
3 is just above the threshold, whereas it should be labeled 0.
On the other hand, also for the human eye the presence of an
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(a) MFCC-CNN for different window lengths.
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(b) Melspectrogram-CNN for different window lengths.
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(c) Spectrogram-CNN for different window lengths.

Figure 8: ROC curves showing the influence of the window
lengths for each feature. In general, the increase in window
length increases the performance, but it converges to the per-
formance of a window length of 20 seconds.
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Figure 9: ROC curves of each feature for the basis run. Also
the energy of the signal is used as an input for the ROC curve
to show that the model does not base its output only on the
energy in the signal. The Mel spectrogram is the best per-
forming feature, MFCC second best, the spectrogram is the
worst feature and energy performs significantly worse than
all features.

Figure 10: Correct classification example of a sound sample.
In red is the expected label, in black the given output and in
purple the discrimination threshold. The left axis belongs to
the spectrogram only, the right axis belongs to the output, the
label and the threshold lines. As the output is always under
the purple line when the label is 0 and above the purple line
when the label is 1 (except for 1 second), this sample is accu-
rately classified.

Figure 11: Partly wrong classification example of a sound
sample. In red is the expected label, in black the given out-
put and in purple the discrimination threshold. The left axis
belongs to the spectrogram only, the right axis belongs to the
output, the label and the threshold lines. A false positive is
shown at 3 seconds and false negatives between 30 and 45
seconds (except second 40).

aircraft is better visible in the spectrogram of Figure 10 than
in the spectrogram of Figure 11, due to the Doppler shift and
the increase in energy (which can be seen by the increase of
the yellow content) in Figure 10.

In order to confirm that the model can recognize Closest
Point of Approach (CPA) such as shown in the spectrogram,
all the audio samples of the test set of the basis run are cen-
tered around the CPA (if any). For each second in the range
of 10 seconds before the CPA and 10 seconds after the CPA,
the mean values and standard deviation of the model output
are taken. Those values are shown in Figure 12. Each dot
represents the value of the mean, each bar the standard devi-
ation from the mean. This figure shows that at the CPA, the
output value is usually the highest. Furthermore, the larger
the time distance from the CPA, the lower the mean and stan-
dard deviation. There is, however, relatively much spread in
the output of the network.

4.7 Precision and recall

The AUC gives a good overall indication for the accuracy
of the model. However, in order to see how well the model
performs per point on the ROC curve, precision and recall
is used. Precision is defined in Equation 7, in which FP is
the number of false positives and TP is the number of true
positives. For recall, also the false negatives FN are used,
such as shown in Equation 8.

Precision =
TP

TP + FP
(7)
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Figure 12: Means (dots) and standard deviations (bars) per
time distance from the center of a CPA in the spectrogram. It
shows that the closer the aircraft is, the better the detection
performance.

Recall =
TP

TP + FN
(8)

In this research, an important value is 1−recall for the la-
bel 0. This value shows how many false positives are present,
so how often the UAV would falsely perform an avoidance
maneuver. The recall for the label 1 is the second most im-
portant. It shows how well the aircraft is detected when it is
present. The reason that it is less important than the 1−recall
for label 0 is because this value does not say when the false
negatives appear. It is expected that the closer the aircraft
gets, the better the detection performance. Figure 12 shows
that this is actually the case for this model. So if the model
does not detect the aircraft it is probably not too close, so it
would not directly lead to a critical situation. Precision shows
how many of the predicted labels are relevant, which is less
important for this application than the recall.

An example of the precision and recall and the confusion
matrix for the Mel spectrogram-CNN with the window length
20 are shown in Tables 4 and 5 respectively. As a very low
FPR beneficial, but still aircraft should detected, the point on
the curve for which the ROC curve just separates from the Y-
axis is chosen (which is around an FPR of 0.01 and a TPR of
0.7).

Table 4: Precision and recall of the Mel spectrogram-CNN
using window length 20.

Precision Recall
0 0.97 0.99
1 0.85 0.70

Table 5: Confusion matrix of the Mel spectrogram-CNN us-
ing window length 20.

Predicted class

Actual
class

0 1
0 2823 42
1 101 234

5 DISCUSSION

The results shown in section 4 are further discussed in
this section. Starting with the different UAV/aircraft ampli-
tude ratios, Figure 5 shows in the lower FPR region an ex-
pected trend, which is that the lower the UAV amplitude is
compared to the aircraft amplitude, the better the aircraft is
detected. That means, in order to use this model for real-
world application, it is best to diminish the UAV’s ego-sound
as much as possible, for example by means of the method of
Marmaroli et al. [8].

The addition of third party database recordings also im-
proves the performance, such as shown in Figure 6. Those
recordings consist of different background noise, which could
be easier for the model to distinguish from the typical back-
ground noise from the Lelystad recordings. The basis run
performed better in the very low FPR (< 0.01), but the corre-
sponding TPR is to low to be a good detector.

The fact that the different type of labeling performs
worse, which is shown in Figure 7, is unexpected. The la-
bels that are 1 for the distant detection labeling consist of the
ones from nearby detection labeling plus some extra ones be-
fore and after. In other words, the nearby detection labels are
a part of the distant detection labels. As the distant detection
labeling includes the nearby detection labels, it is expected
that training with distant detection labeling at least performs
the same as training with nearby detection labeling. However,
the model performs worse (or equal, for any FPR lower than
0.05) which means that there is no benefit in using the distant
detection labeling. The consequence of using nearby detec-
tion labeling over distant detection labeling is that the aircraft
is closer to the UAV when it is detected.

The trends shown in Figure 8, at which the window length
is increased, are not unexpected. The longer the window
length, the more information the model uses to make a deci-
sion and therefore the performance is better. This only works
up to a certain amount since sound information to far in the
past can have nothing to do with the present sound. Based
on the presented experiments, a window length between 15
and 20 seconds should be used to be as accurate as possible.
Choosing a value above 20 seconds will not increase the per-
formance and makes it computationally more expensive. Of
course, also other forms of memory can be explored, such as
Long Short Term Memory [20] or GRU [21].

In the ideal situation, no false positives or false negatives
are present in the output of the detector. Since the ROC curves
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in Figures 5, 6, 7 and 8 never have an AUC of 1, this is not
possible. Therefore, we aim to have as little false positives
and false negatives. In Table 4 and Table 5 a limit of one
false positive in 100 seconds is set. If after a false positive a
warning is send to the operator, once in 100 seconds he/she
has to check whether there is really other air traffic present,
which is not increasing the workload to much and therefore
once in a 100 seconds is a reasonable limit. If the UAV has
to descend (or even land) after a detection, a false positive
once in a 100 seconds is too much, so for those cases a filter
should be applied, which checks whether multiple positive
detections are found in a short-time frame. The percentage
of missed detections corresponding to a once in a 100 FPR,
is 30%. Luckily, Figure 12 shows that the closer the aircraft
is the better the accuracy, so the missed detections will be
mostly appear in the early stages of the detection.

Alongside the conclusions drawn from the results, there
are a few general comments to be made concerning the re-
search method.

Firstly, the data set should be extended. The data set used
in the basis case (run 3) only contains the recordings from
Lelystad airport. This data set has in total 84 flyovers. The
data augmentation increases the data set times four, so 336
flyovers are available for the data set. This is considered a
relatively small data set for machine learning purposes such
as this research. For comparison, ImageNet8, a famous data
set for image recognition, has 15 million examples in to-
tal. In addition, the ratio of the data set that includes aircraft
sound and that only includes background noise is not 50/50,
due to the fact that the cut-outs from the recordings are ran-
dom. The ratio aircraft/background in this data set is approx-
imately 20/80. The problem with this ratio is that the model
could classify all the sound samples as background noise and
still would have an accuracy of 80%. Another comment about
the data set is that it is artificially mixed, so the UAV and air-
craft sound are individually recorded. In the spectrogram, it
is visible where the aircraft sound is added to the UAV sound
by vertical lines at the stop and start. An example is shown
in Figure 13, at which the aircraft recording part stops at 30
seconds. In order to avoid this effect, recordings should be
taken on a UAV, which flies close to flying aircraft.

So far, the only different scale used is the Mel scale. Two
features use this scale which mimics the way humans perceive
frequency. The comparison of the Mel spectrogram and the
spectrogram in Figure 9 shows that stretching the lower fre-
quencies works well in combination with the CNN. One idea
is to make a scale that stretches the lower frequencies even
more. As most of the distant aircraft sound lies in the low fre-
quency region, further stretching the lower frequencies could
show more important low frequency sound information for
the CNN.

What is more, is that there is not much difference in type

8http://www.image-net.org/

Figure 13: Spectrogram of a mix of UAV and aircraft sound.
The end of the aircraft sound recording is visible on the spec-
trogram at 30 seconds by the vertical line (which is the sudden
decrease in energy).

of background noise. Only two types of microphones are
used, the 808 micro camera microphone and the microphone
from the array. Different microphones could show different
noise content. Further research in the quality of the micro-
phones is demanded. Also, the background noise is pretty
constant during the recordings, whereas on a flying UAV this
could differ considerably. Other background noise, such as
cars, trains, lawnmowers, etc., is not added.

Not only is there one composition of background noise,
but also only one type of UAV sound has been used. In or-
der to make a model for versatile applications, multiple UAV
sounds should be included in the data set. If the model is ap-
plied to only one UAV, it is useful to use its specific model
in training the detection network. In this process it is also
important to check whether the ego-noise of the UAV is in
the same order of loudness as the Parrot Bebop used in this
research.

6 CONCLUSION

Detection of air traffic sounds on a UAVs could increase
the safety of the airspace. This paper builds on existing sound
features and classification methods, but this time applied to
combined UAV and aircraft sound.

The three features used are the MFCC, spectrogram and
Mel spectrogram, which are the input to a CNN classifier.
The best performance of the model is obtained using the Mel
spectrogram, which moves over the sound recording with a
20-second window length. The detection performance in-
creases when the aircraft is closer to the UAV. Longer time
windows give better performance up until a certain window
length, but also decrease the potential reaction time for an
avoidance maneuver. Secondly, the model works best if as
little UAV sound is present as possible. Thirdly, the cur-
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rent method still gives too many false positives for real-world
application. Improvements may be expected from a better
filtering over time (ignoring solitary peaks of the network’s
output), a more extensive data set, and potentially additional
information such as the commanded RPMs of the UAV’s pro-
peller(s). Finally, a more realistic data set should include
sound recordings of aircraft taken from a (moving) UAV.
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ABSTRACT

This work presents a multi-unmanned aerial
vehicle formation implementing a trajectory-
following controller based on the cluster-space
robot coordination method. The controller is
augmented with a feed-forward input from a con-
trol station operator. This teleoperation input is
generated by means of a remote control, as a
simple way of modifying the trajectory or tak-
ing over control of the formation during flight.
The cluster-space formulation presents a simple
specification of the system’s motion and, in this
work, the operator benefits from this capability
to easily evade obstacles by means of controlling
the cluster parameters in real time. The proposed
augmented controller is tested in a simulated en-
vironment first, and then deployed for outdoor
field experiments. Results are shown in differ-
ent scenarios using a cluster of three autonomous
unmanned aerial vehicles.

1 INTRODUCTION

Unmanned autonomous systems, in general, is a topic of
interest that has been growing steadily for some time. This
raises from the diversity of applications in which these sys-
tems can be used. Examples of this are search and rescue
missions [1], inspection of hazardous environments, goods
delivery or object transportation, military and surveillance
purposes, among others. Unmanned aerial vehicles (UAVs)
are of special interest because of advances in technology, that
have reduced cost and boosted the capabilities of all UAVs,
particularly multicopters. This has raised the interest in for-
mation control of multi-agent systems within academic and
industry communities.

The theory used to design the control laws for these ar-
chitectures feeds from different fields, such as game the-
ory [2], biology [3, 4] or classic manipulator kinematic
chains [5], [6]. Techniques derived from these studies include
potential fields [7], behavioral primitives [8], swarm-like
structures [9, 10], and leader-follower configurations [11].

∗Email address: pamoreno@fi.uba.ar

All these techniques control a multi-agent system to op-
erate in a cooperative fashion. Working with multiple un-
manned aerial vehicles, the particular formation used in this
work involves spatial constraints and impose physical limita-
tions, such as communications range. Oh et al. [12] gave a
detailed review on formation control and Yanmaz et al. [13]
analyzed the communication network aspects of a formation.

In [5] Mas et. al. presented a cluster-space formulation
for the coordinated control of a group of robots. The goal of
the cluster-space approach is to promote the simple specifi-
cation and monitoring of the motion of a multirobot mobile
system, exploring a specific approach for formation control
applications. This method considers the multirobot system
as a single entity, or cluster, and desired motions are specified
with respect to cluster attributes, such as position, orientation,
and geometry. These attributes are the state variables that
form the cluster space of the system. The method is flexible
in the sense that these variables can be selected in different
ways, favoring specific tasks or alternative implementations
such as centralized or distributed control architectures [14].
Previous works showed results, both simulated and in real
scenarios, for unmanned ground vehicles (UGVs)[5, 14] and
autonomous surface vessels (ASVs) [15, 16], among others.

In this work we introduce a cluster space controller, where
a feed-forward component is added to modify the trajectory
in-flight. This formulation allows to naturally modify the po-
sition and geometric properties of the cluster in a way that
enables a simple formation tele-operation by a single human
pilot, using an intuitive remote control interface to command
the motion of the formation. An alternative to this approach
would be the specification of the trajectory of each vehicle or
the relative position of each vehicle with respect to a neigh-
bour.

To illustrate the benefits of such an architecture, in a
task where multiple UAVs cooperatively transport a load, as
in [17], if a tele-operated group of vehicles needs to pass
through a narrow passage while keeping the load distribu-
tion constant, it may be of interest to momentarily modify
the distance between vehicles without changing their spacial
relative configuration. A single specification change such as
“change the formation size” that can be commanded by an
operator keeps the operation simple, regardless of the under-
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lying complexity of the individual vehicles’ motions.
Another benefit of a pilot-in-the-loop control arises when

a multi-agent system is used for automated inspection. For
example, electric power distribution lines may be located in
areas of difficult access and unmanned vehicles can be used
for inspection tasks [18]. The tele-operator may need an ad-
ditional detailed view of a portion of a tower or cable, modi-
fying a pre-loaded trajectory in-flight. Oil pipeline inspection
[19] or civil engineering projects such as bridges or skyscrap-
ers may also benefit from this approach.

This work is organized as follows. Section 2 shows the
formation definition while the controller is described in sec-
tion 3. The results of computer simulation and our exper-
imental testbed are shown in section 4. Finally, section 5
draws the conclusions.

2 CLUSTER-SPACE FORMULATION

Cluster-space control [20] represents the state of a sys-
tem as an articulated kinematic mechanism. The cluster is
defined using variables which fully represent the pose and
geometric structure of the formation. First, a cluster frame
{C} to represent the formation pose is defined. Then, each
robot’s pose, ri ∈ Rmi×1, is referenced to the {C} frame.
It is usually desired to define {C} in a physically meaning-
ful way, such as at the formation barycenter and oriented to-
wards a particular vehicle. Additional cluster variables cap-
ture the formation shape and orientation, fully specifying the
total number of degrees of freedom of the group. The for-
mation motion is commonly defined using the cluster-space
variables. Because of this, a formal set of kinematic transfor-
mations relating cluster-space variables and robot-space vari-
ables is needed. A cluster-space controller computes the com-
pensation actions needed for the cluster and, using the defined
kinematic transformations, converts the cluster compensation
actions into robot compensation actions.

Consider an n-robot system, a cluster, where each of the
robots has the same m degrees of freedom (although this is
not necessary1). Let r ∈ Rmn×1 be a state vector comprised
of the n robot poses, and c ∈ Rmn×1 a state vector cor-
responding to the cluster variables. These states are related
through the following forward and inverse position kinemat-
ics transforms:

c = FORWARD KINEMATICS(r) (1)
= [fwd1(r1, . . . , rmn), . . . , fwdmn(r1, . . . , rmn)]ᵀ,

r = INVERSE KINEMATICS(c) (2)
= [inv1(c1, . . . , cmn), . . . , invmn(c1, . . . , cmn)]ᵀ,

where fwdk(r1, . . . , rmn) is the forward position kinematic
equation that relates the kth cluster parameter with the robot
poses, and invk(c1, . . . , cmn) is the inverse position kine-

1Considering an n-robot system where each robot has mi, i = 1, . . . , n
degrees of freedom, then the state vector r has

∑n
i=1 mi components.

matic equation that related the kth robot state parameter with
the cluster parameters.

Now, let J(r) be the jacobian matrix obtained from Equa-
tion 1, and J−1(c), the jacobian matrix obtained from Equa-
tion 2, the mapping between the velocities are ċ = J(r)ṙ and
ṙ = J−1(c)ċ, respectively.

Using generic kinematic transformations it is possible to
envision a diagram of a system being controlled using the
cluster-space formulation. Such an architecture is shown in
Figure 1.

Cluster
Kinematics

Cluster Space
Controller

rc

crReference
Trajectory

ccmd
. rcmd

.

Figure 1: Control architecture for the cluster-space control
method.

2.1 Three-UAV Cluster Space definition
The three-robot cluster state variables can be defined with

the cluster reference frame located at the barycenter of the
robots and the remaining variables describe a triangle with
side lengths p and q and the necessary angles to articulate it
and rotate it. Figure 2 shows all the parameters for the cluster
of 3 UAVs. The equations for the forward position kinematics
that define the cluster space are the following:

xc =
x1 + x2 + x3

3
, (3)

yc =
y1 + y2 + y3

3
, (4)

zc =
z1 + z2 + z3

3
, (5)

θc = − arctan

(
2x1 − x2 − x3
2y1 − y2 − y3

)
, (6)

ρc = − arctan

(
z1 − zc√

(x1 − xc)2 + (y1 − yc)2

)
, (7)

γc = − arctan

(
z2 − z3
|x2 − x3|

)
, (8)

p = 1
2

√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2, (9)

q = 1
2

√
(x1 − x3)2 + (y1 − y3)2 + (z1 − z3)2, (10)

β = arctan

(
(x3 − x1) sinα− (y1 − y3) cosα
(x3 − x1) cosα+ (y1 − y3) sinα

)
, (11)

where α = arctan
(
y2−y1
x2−x1

)
. Also, each UAV heading angle

is a cluster parameter by itself, defined as the heading offset
with respect to the cluster yaw angle. They have been omitted
in the formulation above for simplicity.

Considering the heading angle of the UAVs, there are 12
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cluster state variables for a formation of 3 stabilized UAVs,
each with 4 degrees of freedom.

Figure 2: Cluster parameters definition for a formation of
three UAVs.

3 CLUSTER-SPACE CONTROLLER

As shown in Figure 1, a classic PID controller was added
for trajectory tracking. This controller receives the cluster
state errors (or the cluster state reference and cluster state
pose and computes the error) and generates a cluster state ve-
locity control signal, using different proportional, integral and
derivative gains for each cluster state variable. The PID out-
put control signal is then multiplied by the inverse jacobian
matrix to generate the compensation signal to be applied to
each UAV.

To add the remote control operation, the addition of a
feed-forward controller is proposed. This controller adds an
external signal to the system. The external signal is a veloc-
ity command that can be readily sent to the cluster formation.
It also modifies the trajectory to take into account the com-
manded velocity and integrates its value over time to modify
the cluster space reference trajectory accordingly. Figure 3
shows a complete block diagram of the implemented con-
troller.

Cluster
Kinematics

Cluster Space
Controller

rc

cr

Reference
Trajectory

ccmd
. rcmd

.Operator
RC

cr

cf
.

Figure 3: Implemented control scheme for the cluster-space
control.

4 RESULTS

The proposed system was first validated using a simula-
tion environment. This environment consists of a computer

running the XUbuntu 16.04 operating system with ROS Ki-
netic, the Robot Operating System, and Gazebo 7, a robot
simulator. The multicopters are simulated using the firmware
of the PX4 autopilot—version 1.5.1—, their Gazebo plugins,
and a model of the IRIS drone from 3D-Robotics.

The experimental testbed consists of three commercially
available UAVs built with DJI F450 frames, the Pixhawk 1
autopilot (FCU) from 3DR with the PX4 flight stack, and one
Raspberry Pi 3B (RPi) for a pair of UAVs, the remaining one
uses a 915 MHz link. Figure 4 shows a picture of one the
UAVs with an RPi on top of the FCU. The communications
network was build using a WiFi router, connecting all com-
puter to it.

Figure 4: UAV with onboard computer and wifi link used for
field experiments

The interface with the autopilot was through a mavros
ROS node. The trajectory generator, the cluster kinematic
equations and the controller were developed as ROS nodes,
in the python programming language. The operator remote
control was a gaming joystick with 14 buttons and 2 analog
sticks.

The experiment consisted on a triangular-shaped forma-
tion having a predefined trajectory that would make one or
more of the UAVs collide with objects placed in the envi-
ronment. For this situation, two scenarios were proposed to
overcome the conflict:

1. the formation changes it shape, becoming a line as it
passes between the object, and

2. the formation scales down its size, maintaining its tri-
angular shape as it moves between the obstacles.

In neither case, a collision avoidance maneuver is in-
cluded a priori in the trajectory to evade the obstacles, nor an
inter-vehicle collision avoidance; obstacle negotiation solely
depends on the operators’ commands executed on run-time.

Considering a position estimation error from the pix-
hawk’s estimator of about 1.5m, with a standard deviation
of 0.8m, a similar error is expected for the cluster’s centroid,
while it could be greater for the distance-based parameters.
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If, for a test, the reference trajectory is followed with an er-
ror within the expected parameters, the result of the test is
considered to be successful.

4.1 Simulation results

In both simulation scenarios the cluster has the same ini-
tial position: zc = 5m, p = 7.1m, q = 7.1m, β = 60◦ and
all other parameters with a zero value. The obstacles, of 20m
height, are placed at (−4m, 6m, 0m) and (−4m, 6m, 0m).

To evade the obstacles by switching from a triangle to a
line, the varying parameters are p and β, while yc vary just to
go through the obstacles. This variation is shown in Figure 5.
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Figure 5: 3 UAV cluster varying parameters while evading
obstacles by switching from a triangle to a line formation.

The obstacles positions and the cluster motion, on an XY
plane, for the aforementioned cases are shown in Figure 6 and
Figure 7. The first figure shows the trajectory while switching
from a triangle to line, while the latter shows the formation
while changing the triangle size.
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Figure 6: XY movement of the simulated 3 UAV cluster
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Figure 7: XY movement of the simulated cluster maneuver-
ing through the obstacles reducing the area of coverage of the
formation

Figure 8 shows the cluster state errors while maneuver-
ing as a line formation. It can be seen that as soon as β ap-
proaches 0, the error of the roll parameter, γc, increases as
there is a singularity when the agents are co-linear. Another
error of importance can be seen for yc near t = 160 s, which
is due to fast varying parameters and a relative slow system
response.

Figure 13 shows the cluster state errors while maneuver-
ing as a triangle formation. It can be seen that the formation
goes between the obstacles, staying further away of the sin-
gularities. This property gives the controller a better perfor-
mance.

4.2 Experimental results

In these scenarios the cluster has the initial position: zc =
3m, p = 7.1m, q = 7.1m, β = 60◦ and all other parameters
with a zero value. The obstacles were at (−6m,−7m, 0m)
and (2m,−7m, 0m).

As in the simulation, for the first scenario the varying pa-
rameters are p and β, while yc vary just to go through the
obstacles. This variation is shown in Figure 9.

The obstacles positions and the cluster motion, on an XY
plane, for both scenarios are shown in Figure 10 and Fig-
ure 11. The first figure shows the trajectory while switching
from a triangle to line, while the latter shows the formation
while changing the triangle size.

Figure 12 shows the cluster state errors while maneuver-
ing as a line formation. It can be seen that β again approaches
0 and γc error increases as in the simulation case.
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(a) Cluster position (xc, yc, zc) error
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(b) Cluster orientation (γc, ρc, θc, β) error
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Figure 8: Cluster errors of a simulation using a joystick to
control the formation (line shape obstacle avoidance)
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Figure 9: 3 UAV Cluster varying parameters while evading
obstacles as a line formation during a field experiment.

The cluster state errors while maneuvering as a triangle
formation, shown in Figure 14, present analogous results to
those of the simulation.
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Figure 10: 2D movement of the real cluster evading the ob-
stacles by switching the formation shape into a line
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Figure 11: XY movement of the cluster maneuvering through
the obstacles reducing the area of coverage of the formation
(field experiment)

5 CONCLUSION

This work presented a cluster space controller with pilot-
in-the-loop capability to allow for run-time actuation at the
formation level, which provides the ability to modify a prede-
fined trajectory to execute maneuvers such as collision avoid-
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(b) Cluster orientation (γc, ρc, θc, β) error
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Figure 12: Cluster errors for an outdoor experiment using a
joystick to control the formation (line shape obstacle avoid-
ance)

ance. The proposed architecture was applied to a formation
of three UAVs. By means of computer simulations and out-
door experiments the controller was shown to work and to be
adequate for the case study applications. It was also shown
that the multi-UAV formation could be intuitively operated
using a single remote control, meaning that the operator can
command the cluster as a whole in an abstracted manner that
does not require to focus on the motions of the individual
vehicles. Although the specification shows adequate results,
this approach could be improved by adding an inter-vehicle
collision avoidance mechanism, such as restrictions to cluster
parameters or collision avoidance at the vehicle level.
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(b) Cluster orientation (γc, ρc, θc, β) error
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Figure 13: Cluster errors for a simulation experiment using
a joystick to control the formation (triangle shape obstacle
avoidance)
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Model Reference Adaptive and Gain Scheduling Control
for variable payload UAV Quadcopters
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ABSTRACT

This work addresses the flight control of a UAV
subject to an important and sudden modification
of its dynamics during the flight. Namely a UAV
Quadcopter with variable payload during a mass
drop mission is considered; at least 30% of the
nominal weight of the drone is dropped. The
control objective is to guarantee the same level
of performance whatever the configuration of the
UAV: loaded or unloaded. Two adaptive strate-
gies are considered: Direct Model Reference
Adaptive Control and Gain Scheduling Control.
A feasibility study between both strategies is car-
ried out, alongside a detailed comparison on the
relative efficacy and ease of implementation of
each. Finally, both controllers are integrated on
ISAE-SUPAERO simulation facilities and tested
in real flight. The superiority of Model Ref-
erence Adaptive Control is proven, not only in
terms of dynamic behaviour, but also for its sim-
plicity and robustness. The properties of auto-
tuning and adaptation towards an unknown and
disturbed flight make it a valuable solution for
the flight control of UAVs.

1 INTRODUCTION

Quadcopters applications are growing since many years
and the variety of application cases is increasing. In particu-
lar load transportation and mass dropping represent new chal-
lenging applications and can be used in many fields as res-
cue [1], delivery, medical assistance [2], agriculture, army...
Thanks to the high payload and easily balanced center of
mass, quadcopters are often used for transport missions [3].
Many others applications are focused on the use of multiple
UAVs [4], a way of carrying heavy payloads with several
small UAVs, mainly because of the actual regulation about
maximum weight of UAVs.
Variable payload dropping has been addressed in [5] and re-
mains a field with various interesting control problems.
Even if control and guidance of UAVs is an active and open
domain of research, non standard configurations generate
new needs in terms of performance keeping, recovery and
safe flight guaranty. Although classical control methods are

∗Email address(es): jorge.diaz-luengo@student.isae-supaero.com,
joel.bordeneuve@isae-supaero.fr, francois.defay@isae-supaero.fr

generally favoured, the need of more specific schemes able to
”adapt themselves” becomes real.
This project is born from the interest of the ISAE Micro
Drones Team to implement Adaptive Control algorithms on
its competing UAVs, especially in those tasks involving a sig-
nificant change in mass and/or payload of the UAV. The aim
is to design an adaptive controller which is strong enough to
properly cope with a drastic change of mass and inertia, while
at the same time being flexible enough to be implemented in
multiple UAVs.
Over the years, various controllers have been implemented
for quadcopters as backstepping [6], Model predictive con-
trol [7], adaptive control [8] for different applications. In this
paper it has been decided to compare Model Reference Adap-
tive and Gain Scheduling Control which are two possible can-
didates to solve the problem.
MRAC is a well known direct adaptive scheme, where the
controller parameters are updated without any estimation of
an open loop system model, like in indirect adaptive con-
trol. MRAC has proven to be very efficient and robust against
model mismatches and uncertainties. Morevover it turns out
that its implementation is very easy and adapted to demand-
ing real time applications. Besides its adaptibility, the MRA
controller can also be designed with a focus on autotuning[9].
On the other hand, gain scheduling control is very popular
because basically the overall structure of an existing con-
trol scheme is preserved; only the controller parameters are
scheduled as a function of an external variable. Many flight
control systems rely on this solution. Obviously gain schedul-
ing control belongs to the family of adaptive control.
This paper is organized as follows: in the first section two
techniques of adaptive control are briefly presented: direct
model reference adaptive control and gain scheduling control.
Among their differences, the common factor between both
techniques is the willingness of keeping the baseline con-
troller structure already usually used for UAVs flight control.
Then a detailed modelization of UAV dynamics is presented
together with the global simulation and real-time control en-
vironment. The adopted methodology is also detailed and the
flight results are shown and analyzed.

2 ADAPTIVE CONTROL

2.1 Direct Model Reference Adaptive Control

An adaptive system can be thought as having two loops
(Figure 1): The first one being a classical feedback loop that
includes the process and the control law, and the second one
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being a parameter adjustment loop which makes it possible
to compute the right parameters for the control law. Model
Reference Adaptive Control is based on the parametrization
of the controller as to obtain a plant whose behaviour mimics
that of a reference system [10]. Therefore, the mechanism
for adjusting the controller parameters is based on the
comparison between the behaviour of the controlled system
and of an explicit model reference, as seen in Figure 1 below.

Figure 1: Block diagram of a MRA Controller

Considering the system output y and the reference model
output ym, the adaptive control law will explicitly be based on
the output error e = y − ym. For instance, the basic control
law for a first order system can be written:

u(t) = θ1uc(t) + θ2y(t) (1)

where the controller gains θ1 and θ2 are being updated as:

dθi
dt

= −eγ ∂θi
∂e

i = 1, 2 (2)

where γ is an adaptation gain for the so called MIT Rule [11].
For a detailed proof of the convergence, especially Lyapunov
Stability, please refer to [11]

2.2 Gain Scheduling
Gain Scheduling consists on designing a controller whose

parameters change according to the operating conditions, but
in a pre-programmed manner. This way, GS controllers
provide a quick system reaction, whilst being reasonably
straightforward to be implemented [11].

The general block diagram of a Gain Scheduling con-
trolled process is seen in Figure 2 below:

Basically, the design of such a controller is performed
through two main steps [11]:

1. Identification of the auxiliary variables. These are
the variables whose dynamics change, affecting the be-
haviour of the system and demanding flexibility from

Figure 2: Block Diagram of a Gain Scheduling Controller

the controller. In our case, appropriate variables could
be the mass and inertia of the drone, since they quan-
tify the difference between the 2 possible states of the
plant: loaded and unloaded.

2. Gain Scheduling tables: These tables gather the dif-
ferent controller tunings, each controller being ”opti-
mized” for one state of the system.

3 UAV MODELIZATION AND SIMULATION

The following modelization was based on [7], by using
the general equations proposed by [12] as the general
equations of Flight Dynamics. The UAV is modelled as
an unalterable (rigid) body. Solving its dynamics means
computing, for each time instant t the attitude and position
of its body frame with respect to an inertial frame (Figure 3).

Figure 3: Inertial and Body frames

The aim is hence to compute the attitude vector ~ηB and
angular velocities vector ~̇η

B
expressed in the Body Frame

(B), and the position vector ~XI expressed in the Inertial
Frame (I ).

~XI = (x, y, z) ~ηB = (φ, θ, ψ) ~ωB = (p, q, r) (3)

Now, applying the Rigid Body equations proposed by [12]
and [7] and taking I symmetric in all 3 axis, it comes:

ṗ = I−1
x (Mφ + qr(Iy − Iz)) (4)
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q̇ = I−1
y (Mθ + pr(Iz − Ix)) (5)

ṙ = I−1
z (Mψ + pq(Ix − Iy)) (6)

The corresponding equations for the position vector in the
inertial frame are then:

ẍ = Fm(sin(φ)sin(ψ) + cos(φ)sin(θ)cos(ψ)) (7)

ÿ = (−sin(φ)cos(ψ) + cos(φ)sin(θ)sin(ψ))Fm (8)

z̈ = Fm(−g + cos(φ)cos(θ) (9)

The core structure of the Matlab/Simulink environment
is depicted in Figure 4. This 8-block structure, suitable for
integration with ROS/OROCOS, enables the environment to
feature:

1. Guidance and navigation indoors (data given by an
Optitrack system), and outdoors (GPS, Wifi or simi-
lar).

2. Real time simulations.

3. Identical structure for all drone models.

4. Same environment for simulations and flight tests
(easy and quick switch between both).

Concerning the controller core design, the adopted strat-
egy is driven by the following principles:

• Decentralized controllers for each axis (no cross cou-
pling).

• Two cascade loops for each axis: PI controller for
the position error, P controller for the velocity error.
Derivative terms will not be considered due to Opti-
track Noise effects. Hence 3 gains have to be tuned
(KP , KI , KPv) per axis.

• Attitude compensator: the yaw angle will be kept null
at all times.

4 CONTROL DESIGN METHODOLOGY

The mission defined to test and compare each controller
covers a 120s flight composed of a first phase with a 400g
extra mass (take-off, stabilization, vertical step changes), a
second phase (horizontal circular motion) during which the
mass is dropped, and a last phase with various vertical step
changes and a final landing.

4.1 Model Reference Adaptive Controller

The 3 gains per axis are then adapted using the classical
MRAC procedure: we first consider an initial rough tuning
of the gains KP , KI , and KPv. Then the applied gains are
computed as:

KPa = θPKP KIa = θIKI KPva = θPvKPv

(10)

where θP , θI , θPv iare updated using (2).
As for the reference model, the dynamics on each axis

have been modelled as a 2nd order system, with the follow-
ing requirements: Natural frequency: 4.5rad/s, to enable a
fast response and overdamping (ζ = 0.95) to remove oscil-
lations.

4.2 Gain Scheduling Controller

We have considered two models for the UAV: one with
the extra load (before dropping it) and one without it. Thus
two controllers have been designed independently in order to
reach the aforementioned closed loop 2nd order behaviour.
Consequently the total mass of the UAV is the ”switching”
parameter between both controllers. Then it is critical to
estimate in real time the mass of the drone, in order to
identify the time at which the mass drop takes place, hence
the appropriate switching time between both controllers.

The mass change is estimated from the following:

1. Vertical velocity Vz: this will be differentiated to com-
pute the vertical acceleration.

2. Throttle coefficient: by using the motor model,
the throttle enables calculation of the propeller
speeds w(rad/s), and hence, propulsion force
F (Newtons) = Pw ∗ w2. The values for the thrust
coefficient Pw are known.

The mass estimation is based on the following equation:

m(z̈ + g) = F = 4Pww
2 (11)

where there are 2 approaches:

1. Naive: divide the force estimation by the (z̈+g) signal.
We obtain a very reactive estimation, but prone to er-
ror (e.g. the steps in Z are interpreted as mass changes).

2. Recursive Least Squares: with forgetting factor λ =
0.98. We obtain a slower but more stable estimation.

The actual estimation combines both ideas, in order to ensure
both fast identification of the mass drop and error detection.
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Figure 4: Full Control and Guidance drone model (MRAC)

5 FLIGHT TESTS RESULTS WITH MRAC AND GAIN
SCHEDULING

The results are exposed respectively in Figures 5 and 6
for both MRAC and Gain Scheduling controllers. Apart from
a good tracking in the trajectory and each individual axis, it
is extremely desirable to have a damped throttle behaviour,
especially to save battery life. Notice that mass drop takes
place after about 60s. Also included are the evolution of
the adaptation gains and the mass estimation during the
trajectory.

• Loaded performance: It is observed that the MRAC
suffers from a slower take-off. This is due to the fact
that around 5s are needed for the parameters to con-
verge, because the initial gains KP , KI , and KPv are
clearly badly tuned. Once in the air, the performance
is very satisfactory, with a maximum 6 cm overshoot
during the step sequence, and almost negligible static
error during the circle/ellipse trajectory.

The GS controller however, offers a better performance
in terms of reactivity (faster take-off), as it is not sub-
jected to the convergence of the MRAC parameters.
Nevertheless, this greater reactivity comes at the price
of a 30 cm oscillation in XY, corrected only 5s after
take-off.

• Unloaded performance: As expected, once the pa-
rameters have converged again after the mass drop, the
MRAC performance is almost identical to the loaded
state, and follows that of the reference system.

On the other hand, the GS controller offers a less
impressive performance, characterized by 6 cm over-

shoots. This is due to the high integral gain present
in the unloaded state. Unfortunately, this high gain is
essential to ensure a fast convergence after the mass
drop. An optimum had to be found between a fast con-
vergence after the drop and a proper unloaded perfor-
mance, resulting in the displayed trajectory.

• Drop performance: Both controllers prevent the
drone from gaining more than 30 cm of altitude af-
ter the drop. However, while the GS takes 9s to bring
the drone back to its original altitude, the MRAC only
takes 6s. This 3s advantage is a great feature of the
MRAC.

• MRAC parameters convergence: As a rule of thumb,
it takes 10s for the parameters to converge, either at the
beginning of the mission and after the drop. The use of
more noisy trajectories or higher adaptation gain would
decrease the convergence time, but it would also result
in a greater stress on the engines.

• Mass estimation: This is the main drawback of the
GS. The ”naive” estimation proved to be extremely
volatile, usually inducing false mass changes during
the step trajectories. On the other hand, the RLS es-
timation, whilst better, resulted too slow.

As of today, the GS controller requires a precise knowledge
of the drone mass and payload, only to deliver a performance
that is only superior to that of the MRAC during the loaded
segment of the mission. On the other hand, the MRAC offers
a good performance throughout the entire mission, including
better convergence after the drop, without any initial informa-
tion about the drone mass or payload. Moreover, tests at very
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Figure 5: Circle mission results with MRAC (400g payload)

low altitude (subjecting the drone to ground effect) were also
achieved with success, highlighting the flexibility and adapt-
ability of the MRAC.

6 ANALYSIS OF THE ADAPTATION PROCESS

In order to highlight the potentialities of adapting the
controller parameters, two experiments have been conducted.
During the first one the adaptation has been frozen after some
time to evaluate the expected loss of performances. For the
second one, the initial UAV has been replaced by a com-
pletely different one but keeping the same controller.

6.1 Freezing the adaptation
The performance with full adaptation has already been

presented in Figure 5. In the new test recorded in Figure 7,
the convergence of the adaptation parameters is voluntarily
frozen after 40s. Thus, convergence to the unloaded state
will never be achieved.

By comparing Figures 5 and 7:

1. Mass drop performance: As expected, with the

frozen adaptation the recovery is much slower, taking
18s in comparison with the 6s achieved with the full
adaptation. Nevertheless, in both cases the drone only
climbs 33 cm before starting the recovery.

2. Unloaded performance: Due to the slow convergence
from the mass drop, the drone does not have enough
time to perform the full step sequence (since the mis-
sion is fixed at 120 s for battery reasons). However,
on the final steps it can be seen that the behaviour of
the drone is slightly better than the one recorded in the
fully adapted case (Figure 5).

It can be concluded that the dynamic adaptation allows
the drone to better deal with the extreme disturbance
caused by the mass drop. The initial adaptation (after the
take-off) provides however a better tracking.

6.2 Replacing the UAV
The formerly UAV (Mikrokopter Mk.6) has been re-

placed by a Parrot AR drone. The previous structure of the
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Figure 6: Circle mission results with GS (400g payload)

Specifications Parrot AR Mikrokopter Mk.6
Weight (kg) 0.713 1.360

Arm length (cm) 18 22.5
Propeller �(inch) 8 10

Table 1: Parrot AR vs Mikrokopter Mk.6

controller is not modified, the initial tuning of the controller
gains either. As seen in Figure 8, even when using a
completely different drone, the MRAC ensures convergence
of the controller gains, and a safe flight is possible.

A summary of the differences between the Parrot AR
used in this flight and the Mikrokopter Mk.6 used elsewhere
is given in Table 1 to illustrate the huge differences between
the 2 drones; highlighting the MRAC convergence.

7 CONCLUSION

The objective of this work was to demonstrate that an
adaptive controller represents a real alternative for the con-

trol of UAVs subject to severe changes of their dynamic be-
haviour. Model Reference Adaptive Control has proven to be
a convincing and reliable solution. Indeed it allows to enrich
a baseline controller with two important properties:

• autotuning of the controller gains from poor initial con-
ditions.

• adaptation of the controller gains when needed.

Besides, the MRAC also proved itself very flexible, and may
be used to control different drones which are forced into mis-
sions characterized by extreme perturbations. Future work
may include more intensive testing of the behaviour of the
current MRAC Controller for coping with specific conditions
related to UAVs flight, like ground effect disturbances or en-
gine failure.
Another interesting axis concerns the adaptation gains: Even
if they represent an extra degree of freedom to improve the
overall closed loop behaviour, their thin tuning may result
time consuming. This is why we are actually working on the
design of L1 type adaptive controllers, which belong to the
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Figure 7: Fixed Adaptation Parameters with MRAC

same family while exhibiting interesting convergence proper-
ties when very high tuning gains are applied.

Finally, the Gain Scheduling controller also offers new
windows of research. Since its performance is very sensible
to the mass estimation, more elaborate methods of systems
identification, like Kalman filtering, would be a great addition
to the existing controller.
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ABSTRACT

The use of Unmanned Aerial Vehicles (UAVs)
is becoming more common in many fields. The
application spectrum varies from civil to military
field, comprising environmental monitoring, bor-
der patrol, search and rescue operations, disaster
relief, among others. In the next years, UAVs
market is expected to provide an incoming of
billions of dollars since it is rapidly growing in
a lot of civilian and commercial industries such
as agriculture, energy, utilities, mining, construc-
tion, real estate, news media and film production.
Many of these applications require small and ag-
ile UAVs, capable to fly at low altitudes with a
certain degree of maneuverability, controllabil-
ity and stability, which requires well-tuned con-
trollers. The most widely used controller for
these applications is the PID (Proportional, Inte-
gral Derivative) controller. However, the tuning
of this kind of controller can be very challeng-
ing. The objective of this paper is to present the
development of a controller based on fuzzy logic
to control the attitude angles and the altitude of
a quadrotor UAV and compare its performance
with a traditional PID control. The achieved re-
sults are shown and carefully discussed through-
out the paper.

1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have become an op-
tion to perform activities that would require a lot more ef-
fort when performed in traditional ways. The use of rotating
wing UAVs have provided several benefits since they do not
require a take-off and landing runway, with a VTOL (Vertical
Take-off and Landing) vehicle system, and provide hovering
capabilities. Also, the ease of control represents an advantage
when compared to fixed-wing aircrafts. Furthermore, when it
comes to financial value, the use of drones usually provide a
viable alternative when compared to the traditional methods
that are employed in the market[1].

Fixed-wings UAVs come in different geometries and
sizes, that can be selected according to application and pay-
∗Email address: renandelima95@gmail.com
†Email address: edusilva@ele.puc-rio.br

load requirements. This paper discusses the modelling and
control techniques for a quadrotor UAV in X configuration.

Figure 1: Quadcopter Representation

The principle of operation of multicopter vehicles con-
sists in having their propellers generating enough lift to keep
the vehicle in the air. To control the vehicle altitude, the
amount of lift is increased or decreased, according to the de-
sired movement. The position control in the xy plane is cou-
pled with the roll and pitch angles, which means that a change
in position is performed by changing the vehicles attitude. Fi-
nally, it is possible to control the heading of the vehicle with
its yaw angle, that makes the drone rotate around its z-axis.
Therefore, the vehicle dynamics can be described by changes
in four main movements: altitude and roll, pitch and yaw an-
gles.

The basis of the quadrotor dynamics consists in keeping
the propellers spinning, aiming to generate enough lift to keep
it in the air. Figure 1 shows a representation of a quadro-
tor configuration and will be used for a detailed explanation,
throughout the paper. The pair of motors 1 and 3 spin on
clockwise direction while motors 2 and 4 spin on counter-
clockwise direction. All four propellers generate thrust in the
same direction, which requires inverted pitch in the blades at-
tached to motors 1 and 3 in relation to the pitch of the blades
connected to motors 2 and 4. The difference in the spinning
direction is to counter balance the torque generated by the
rotating propellers[2].

To increase/decrease altitude, all four propellers in-
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crease/decrease their rotation speed to increase/reduce the
generated thrust, resulting a change in altitude. To change
the roll angle, the pairs of motors 1 and 2 increase/decrease
the rotation in comparison to the pair 3 and 4, generating a
disbalanced thrust, and therefore changing the roll angle. To
change the pitch angle, the process is analogous to the roll
angle, however the pair of motors that changes the rotation
speed are 1 and 4 or 2 and 3. On the other hand, to change
the yaw angle, the pair of motors 1 and 3 changes its rotation
in comparison to motors 2 and 4, increasing or decreasing the
resultant torque applied to the vehicle.

2 QUADROTOR MODELLING

The quadrotor dynamic movements described in Section
3 are modelled based on Newton-Euler equations for 3D mo-
tion of rigid bodies and described in [3] and shown in Equa-
tion 1, where m is the drone‘s mass, I is a diagonal matrix
with the drones inertia parameters around the x, y and z axis
( Ixx, Iyy, Izz), vB is the vector with the drones velocity in
the body-fixed reference system, ωB is the vector with the
drones angular velocity in the body-fixed reference system
and fB and mB are the vectors with the external forces and
moments, respectively, applied to the drone.





m(v̇B + ωB ∧ vB) = fB

Iω̇B + ωB ∧ (IωB) = mB

(1)

The forces and moments generated by the rotation of the
motors are described as in Equation 2 where l is the distance
between the propeller and the vehicle CoG (center of gravity),
b is the thrust coefficient of the motor-propeller setup, d is the
aerodynamic drag coefficient, the Ωn represent the rotation
speed of the n-th motor, fBx, fBy and fBz make up the fB
vector andmBx,mBy andmBz make up the mB vector, both
from Equation 1.





fBx = −mg sin θ

fBy = mg cos θ sinφ

fBz = mg cos θ cosφ+ b(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

mBx =
√
2
2 lb(Ω

2
1 + Ω2

2 − Ω2
3 − Ω2

4)

mBy =
√
2
2 lb(Ω

2
1 − Ω2

2 − Ω2
3 + Ω2

4)

mBz = d(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4)

(2)

The system kinematics is modelled using a ZYX Euler
Rotation from the body fixed reference system to the inertial
reference system.

Given both the dynamics and kinematics, the system
equations can be arranged to form the state-space vector
x = [ẋ ẏ ż φ̇ θ̇ ψ̇ ]T ∈ R6. Taking into con-
sideration the simplification for small angles of movement,
[φ̇ θ̇ ψ̇]T = [p q r]T [4], where p, q and r make up the
vector ωB, the state-space equations are described in Equa-
tion 3.





ẍ = −(sinψ sinφ+ cosψ sin θ cosφ)
fBz
m

ÿ = −(− cosψ sinφ+ sinψ sin θ cosφ)
fBz
m

z̈ = (g − cos θ cosφ)
fBz
m

φ̈ =
Iyy − Izz
Ixx

θ̇ψ̇ +
mBx

Ixx

θ̈ =
Izz − Ixx
Iyy

φ̇ψ̇ +
mBy

Iyy

ψ̈ =
Ixx − Iyy

Izz
φ̇θ̇ +

mBz

Izz

(3)

3 TYPICAL CONTROL STATEGY

The quadrotors stability is achieved by using a closed
loop control system, based on feedback from inertial mea-
surements. Typically, UAVs have an embedded 9DOF IMU
(9 Degrees of Freedom Inertial Measurement System), with
three-axis accelerometers, three-axis gyroscopes and three-
axis magnetometers that provide the attitude angles used to
control its stability.

Since attitude estimation requires numerical integration
based on measured angular velocities, the systems are sub-
jected to cumulative errors due to noisy measurements.
Therefore, control systems include fusion filters that merges
data from multiple sensors, such as linear complimentary fil-
ters and Extended Kalman Filters [2].

Nested PID controllers are the most widely used strategy
for stability control of rotating wing UAVs. They actuate on
the desired moments of the vehicle, based on feedback from
the sensors and attitude commands. The attitude commands
can be given directly by the pilot or be provided by an au-
tonomous trajectory control algorithm, that relies on other
ways to measure the vehicle position (i.e GPS) and provide
the specific attitude commands for the desired trajectory.

Since this paper is not focused on trajectory control, but
on stability and altitude control, it will be based on the case
of a manual flight mode,as highlighted in red in Figure 2.
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Figure 2: Overall Control Block Diagram

The altitude control, also known as altitude hold, is based
on a PID controller actuating in the altitude error, that pro-
vides the base command for the motors in order to keep the
quadrotor in hovering mode. Figure 3 shows the block dia-
gram for altitude control.

Figure 3: PID for Altitude Control

The stability control is based on a nested PID controller
that actuates on the error of the attitude angles to provide the
reference angular velocities and then actuates on the error of
the angular velocities to provide a normalized actuation com-
mand for the motors. Figure 4 shows the block diagram for
yaw angle control. Similar block diagrams are used for roll
and pitch angles, varying only the inputs and controller gains.

Figure 4: Nested PID for Yaw Control

4 FUZZY CONTROL

A fuzzy control system consists of 4 basic elements,
shown in Figure 5. First, the fuzzification module, that is
responsible for converting specific input values to fuzzy sets.
The knowledge base is composed by the rules that define the
control strategy for the system, which are usually extracted
from a specialist. The inference system process the fuzzified
inputs according to the rules from the knowledge base to infer
the actions of the fuzzy controller. Finally, the defuzzification
module converts the fuzzy sets, generated by the inference
system, back to exact values that are used in the control pro-
cess [5].

Figure 5: Fuzzy System Diagram

The fuzzy controller for the altitude control was devel-
oped based on the altitude error and the derivative of the al-
titude error. Figure 6 shows the block diagram of the fuzzy
altitude controller.

Figure 6: Fuzzy Control for Altitude Control

For the attitude angles, the same method of calculating the
derivative of the error was used and only the first PID in the
nested approach (Figure 4) was substituted for a fuzzy con-
troller. Figure 7 shows the block diagram for the yaw angle
fuzzy-PID controller. The same approach is used for roll and
pitch angles as well, changing only the fuzzy controller.

SEPTEMBER 29th TO OCTOBER 4th 2019, MADRID, SPAIN 175



IMAV2019-22 11th INTERNATIONAL MICRO AIR VEHICLE COMPETITION AND CONFERENCE

Figure 7: Nested Fuzzy-PID for Yaw Control

5 IMPLEMENTATION

The model was implemented in Simulink/Matlab, using
the Simscape toolbox. The parameters used for the drone
were extracted from the Crazyflie 2.0 Nano drone, a small
quadrotor with open source software that allows the user to
personalize its firmware and implement different control ap-
proaches. Therefore, developing the fuzzy control for this
drone is a first step to implement it in a real setup.

The physical drone parameters were extracted from [6]
and the PID gains, used during the initial simulations, were
extracted from Crazyflie firmware. The Simscape toolbox
creates a 3D simulation environment that allows proper vi-
sualization of the vehicles movements.

Fuzzy membership functions and rules were implemented
by using the Fuzzy Logic Design toolbox, that provides visual
interfaces for easy tuning of the parameters.

Sections 5.1, 5.2 and 5.3 shows the tuned membership
functions and rules for the controllers developed. For all
controllers, the centroid was used as defuzzification method
while minimum was used as implication method.

5.1 Altitude Hold

The error in altitude input was divided in 5 membership
functions: Negative Big (NB), Negative (N), Zero (Z), Pos-
itive (P) and Positive Big (PB). Its derivative was divided in
3 membership functions: Negative (N), Zero (Z) and Posi-
tive(P)
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Figure 8: Input Membership Function - Z Error
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Figure 9: Input Membership Function - Derivative of Z Error

The output for the altitude controller was divided in 5
membership functions: Down Big (DB), Down (D), Maintain
(M), Up (U) and Up Big (UB).
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Figure 10: Output Membership Function - Rover

Table 1 show the set of rules used in the knowledge base
of the fuzzy inference system for the altitude controller.

XXXXXXXXXXDerivative
Error

NB N Z P PB

N DB D D M U
Z DB D M U UB
P D M U UB UB

Table 1: Fuzzy Rules for Altitude Control

5.2 Roll/Pitch Angle

Since the model being used is symmetrically in the x and
y direction, the roll and pitch movements presents the same
dynamic. Therefore, the same controller was capable of con-
trolling both angles.

The error in the roll and pitch angle input was divided in
5 membership functions: Negative Big (NB), Negative (N),
Zero (Z), Positive (P) and Positive Big (PB). Its derivative
was divided in 3 membership functions: Negative (N), Zero
(Z) and Positive(P)
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Figure 11: Input Membership Function - Roll/Pitch Error

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Derivative of Roll/Pitch Error (rad/s)

0

0.2

0.4

0.6

0.8

1

D
e

g
re

e
 o

f 
M

e
m

b
e

rs
h

ip

N Z P

Figure 12: Input Membership Function - Derivative of
Roll/Pitch Error

The output for the roll/pitch derivative reference was di-
vided in 5 membership functions: Negative Big (NB), Nega-
tive (N), Zero (Z), Positive (P) and Positive Big (PB).
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Figure 13: Output Membership Function - Reference for
Derivative of Roll/Pitch

Table 2 shows the set of rules used in the knowledge base
of the fuzzy inference system for the roll and pitch controller.

XXXXXXXXXXDerivative
Error

NB N Z P PB

N NB NB N Z P
Z NB N Z P PB
P N Z P PB PB

Table 2: Fuzzy Rules for Roll and Pitch Control

5.3 Yaw Angle

The error in the yaw angle input was divided in 5 member-
ship functions: Negative Big (NB), Negative (N), Zero (Z),
Positive (P) and Positive Big (PB). Its derivative was divided
in 3 membership functions: Negative (N), Zero (Z) and Posi-
tive(P)
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Figure 14: Input Membership Function - Yaw Error
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Figure 15: Input Membership Function - Derivative of Yaw
Error

The output for the yaw derivative reference was divided
in 5 membership functions: Negative Big (NB), Negative (N),
Zero (Z), Positive (P) and Positive Big (PB).
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Figure 16: Output Membership Function - Reference for
Derivative of Yaw

Table 3 shows the set of rules used in the knowledge base
of the fuzzy inference system for the yaw controller.
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XXXXXXXXXXDerivative
Error

NB N Z P PB

N NB NB N Z P
Z NB N Z P PB
P N Z P PB PB

Table 3: Fuzzy Rules for Yaw Control

6 RESULTS

After completing the tuning for the Fuzzy membership
functions and rules, simulations were performed by giving
reference values for the 4 variables simultaneously. The val-
ues given for reference were selected considering reasonable
maneuvers for a quadcopter. Figures 17, 18, 19 and 20 shows
the results obtained.

To provide a benchmark to evaluate the performance of
the designed fuzzy controller, simulations were performed
using the traditional PID controller with gains set accord-
ing to the standard values that come out-of-the-box with the
Crazyflie 2.0 Nano.

0 5 10 15 20 25 30

Time(s)

0

1

2

3

4

A
lt
it
u
d
e
 (

m
)

Altitude

Reference

Fuzzy

PID

Figure 17: Altitude Control
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Figure 19: Pitch Angle Control
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Figure 20: Yaw Angle Control

7 DISCUSSION AND CONCLUSION

The implementation of the fuzzy controller in the altitude
and attitude control of a quadrotor UAV was successful, out-
performing the standard PID controller, used as benchmark,
in several cases.

For the altitude controller, there was a reduction in the
over/undershoot performance compared to the PID controller.
The roll and pitch controllers provided very good results, re-
gardless of being based on PID or fuzzy control techniques,
with different reference derivatives however. The yaw fuzzy
controller obtained a significantly better performance com-
pared to the PID performance, reducing the error during the
whole control process.

As a future work, still in the stability control, it is possi-
ble to substitute the second PID controller for the derivative
of the attitude angles for Fuzzy controllers. Also it is possi-
ble to expand this work to enable a full Fuzzy autonomous
trajectory control. Besides, considering the good results pre-
dicted by the performed simulations, a next step would be to
implement the fuzzy controller in the real Crazyflie 2.0 Nano
quadcopter, aiming to evaluate its experimental behavior and
also compare to the results obtained in the simulations.

Aiming to further enhance the simulation, a proper mod-
elling of the sensors can be performed to analyze the influ-
ence of the sensor noise in the controllers performance. Also,
one thing that needs to be taken into consideration when it
comes to hardware performance is the implementation of the

SEPTEMBER 29th TO OCTOBER 4th 2019, MADRID, SPAIN 178



IMAV2019-22 11th INTERNATIONAL MICRO AIR VEHICLE COMPETITION AND CONFERENCE

fuzzy controller, since it normally requires more calculations
than the PID controllers.

ACKNOWLEDGEMENTS

We would like to thank the Brazilian funding agencies
CNPq, FAPERJ and CAPES for continued support and sup-
plied resources.

REFERENCES

[1] S. Maharana. Commercial drones. IJASCET, 5:96 – 101,
2017.

[2] Q. Quan. Introduction to multicopter design and control.
Springer, Singapore, 2017.

[3] F. Sabatino. Quadrotor control: modeling, nonlinear
control design, and simulation. PhD thesis, 2015.

[4] A. Das, K. Subbarao, and F. Lewis. Dynamic inversion
with zero-dynamics stabilisation for quadrotor control.
IET Control Theory Applications, 3(3):303–314, March
2009.

[5] A. C. Gomide, F. Gudwin, and R. Tanscheit. Conceitos
fundamentais da teoria de conjuntos fuzzy, logica fuzzy
e aplicacoes. 12 2018.

[6] J. Forster. System Identification of the Crazyflie 2.0 Nano
Quadrocopter. PhD thesis, 2015.

SEPTEMBER 29th TO OCTOBER 4th 2019, MADRID, SPAIN 179



IMAV2019-23 11th INTERNATIONAL MICRO AIR VEHICLE COMPETITION AND CONFERENCE

UAV control costs mirror bird behaviour when soaring
close to buildings
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ABSTRACT

Small unmanned aerial vehicles (SUAVs) are
suitable for many low-altitude operations in ur-
ban environments due to their manoeuvrability;
however, their flight performance is limited by
their on-board energy storage and their ability to
cope with high levels of turbulence. Birds ex-
ploit the atmospheric boundary layer in urban en-
vironments, reducing their energetic flight costs
by using orographic lift generated by buildings.
This behaviour could be mimicked by fixed-wing
SUAVs to overcome their energy limitations if
flight control can be maintained in the increased
turbulence present in these conditions. Here the
the control effort required, and energetic ben-
efits, for a SUAV flying parallel to buildings
whilst using orographic lift was investigated. A
flight dynamics and control model was devel-
oped for a powered SUAV and used to simu-
late flight control performance in different tur-
bulent wind conditions. It was found that the
control effort required decreased with increasing
altitude and that the mean throttle required in-
creased with greater radial distance to the build-
ings. However, the simulations showed that fly-
ing close to the buildings in strong wind speeds
increased the risk of collision. Overall, the re-
sults suggested that a strategy of flying directly
over the front corner of the buildings appears to
minimise the control effort required for a given
level of orographic lift, a strategy that mirrors the
behaviour of gulls in high wind speeds.

1 INTRODUCTION

The high manoeuvrability of small unmanned aerial ve-
hicles (SUAVs) makes them particularly suitable for many
low-altitude operations in urban environments. They have ap-
plication in many different fields [1], such as border control,
search and rescue, surveillance [2, 3, 4, 5], medical supply
or parcel delivery [6, 7], and natural disaster response [8, 9].
Limited on-board energy [10, 11] and the effect of the atmo-
spheric turbulence at low altitudes [12, 13, 14, 15] are two

∗Email address: ana.guerra-langan@bristol.ac.uk

challenges that have a major effect on flight performance of
SUAVs.

On-board energy storage is limited due to the size and
weight constraints of SUAVs. Batteries can constitute up
to 40% of the vehicle’s mass, giving a nominal flight time
of approximately 60 minutes for small fixed-wing vehicles
[10, 16, 11]. This restricts the endurance and range of these
aircraft, which may compromise their missions. Therefore,
energy management constitutes an important challenge in the
design of these vehicles.

SUAVs typically operate at low altitude, in the atmo-
spheric boundary layer (ABL). The challenge of this resides
in the increase in turbulence intensity closer to the ground,
where the flow is dominated by horizontal transport of at-
mospheric properties and wind speeds increase because of
the pressure gradients caused by buildings and obstacles [13].
This can result in wind disturbances that are the same order
of magnitude as the vehicle’s flight speed. As the flight of
these vehicles is characterised by low Reynolds number, low
inertia, low flight speed and low stability [17], this creates a
substantial challenge for flight control in some conditions.

One method for reducing the energetic cost of flight is to
make use of environmental wind flows. When wind is de-
flected upwards by the presence of obstacles, such as hills
or buildings, this creates opportunities for orographic soar-
ing, where the sink rate of the aircraft is offset by the verti-
cal motion of the air. Langelaan et al. [18] designed a path
planner for UAVs which could make use of orographic soar-
ing through optimising a particular cost function based on
knowledge of the wind field. Simulations were conducted
for two unmanned aircraft, showing improvements for both
optimal minimum time and optimal maximum energy trajec-
tories compared to a constant speed trajectories. White et al.
[19] studied the feasibility of SUAV soaring in urban environ-
ments based on wind-tunnel experiments with scaled model
buildings. The aim of this testing was to measure the rela-
tionship between the vertical component of the wind and the
oncoming mean wind speeds, showing values between 15 and
50%. A further study, [20], measured the sink rate of a soar-
ing MAV and concluded that depending on the wind strength
and direction, it is feasible for a MAV to exploit orographic
soaring next to buildings. A MAV platform and control sys-
tem was later designed to try to mimic the kestrel’s ”wind-
hovering” strategy, holding the MAV’s longitudinal and lat-
eral position [21]. Flight tests were conducted around two
locations: a hill and a building. The former resulted in consis-
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tently successful soaring flights while tests around the latter
could not be sustained for over 20 seconds, which was at-
tributed to gustiness. A CFD model to simulate the turbulent
wind flow conditions surrounding buildings was designed by
Mohamed et al. in [22], with the aim of providing the poten-
tial energy available for harvesting. This model was used to
locate suitable areas of lift, which were then tested in flight
trials [23].

Birds fly in the same conditions as SUAVs and face simi-
lar challenges in energy management and flight control. Birds
frequently reduce their energy expenditure by exploiting en-
vironmental wind fields such as tailwinds, wind gradients
and updraughts. Of particular interest for SUAV flight con-
trol is how birds exploit orographic updraughts generated by
man-made structures, with birds being observed soaring on
the upwind side of ferries [24] and buildings [25]. Shepard
et al. [25] studied gulls exploiting orographic updraughts
by soaring parallel to the face of buildings. The two main
findings of this work were that birds used the updraughts to
maintain height rather than to gain it and that they positioned
themselves in specific regions of the wind field depending on
the strength of the wind. It was hypothesised that the gulls
flight control requirements in gusty conditions were reduced
in these specific regions of the wind field.

Following the work from Shepard et al. [25], the aim
of this study is to investigate the control requirements for a
powered SUAV to take advantage of orographic soaring when
flying along a row of buildings. This is done by simulating
a SUAV holding position relative to buildings whilst flying
through different wind fields measured in [25]. Control ef-
fort is used to compare the control demand of different sim-
ulations and ultimately, of flights in different regions of the
wind field. First, a flight guidance, navigation and control
(GNC) framework is described in Section 2. The specific at-
mospheric conditions, a description of the SUAV and an over-
all view of the metrics and simulations used is then given in
Section 3. Results are shown and discussed in Section 4; and
conclusions drawn in Section 5.

2 FRAMEWORK

Simulations were carried out using a 6 DOF flight GNC
framework implemented in Simulink (MathWorks, MA,
USA). This model was used to simulate the behaviour of a
powered SUAV flying in gusty, windy conditions.

2.1 Guidance

The flight guidance system calculated the changes in pitch
and yaw angle required to follow a predefined trajectory
based on the SUAVs inertial position.

• Altitude control - Pitch angle desired

Altitude was controlled by means of a pitch controller
adjusting the elevator. The desired pitch angle was cal-
culated following the block diagram in Figure 1.

PI

h

+
+

+ -
h desired ? desired

P

Controller

Controller

Figure 1: Altitude controller block diagram. h is the altitude,
ḣ is the vertical speed and θ is the pitch angle of the aircraft

• Lateral control - Yaw angle desired

The lateral position was controlled by means of the
ailerons and rudder. The desired yaw angle required
to follow the path was calculated following the block
diagram in Figure 2.

y desired

y

+ -
PI

Controller

+

+

?  desireddesired

Figure 2: Lateral position controller block diagram. χ is the
course angle, y is the lateral position of the vehicle and ψ is
the yaw angle of the aircraft

The course angle was defined as the angle between
North and the direction of movement of the vehicle.
The desired course angle was obtained by looking at a
point in the trajectory which was at a distance L1 from
the vehicle. L1 was set as 25 m in this study. Under
no wind perturbations, the course angle is equal to the
heading angle (yaw angle). However, to counteract the
wind effects, a PI controller was used with the lateral
position error to correct the drift caused by the wind.

2.2 Navigation

Following the work of Langelaan et al. [26] and Depen-
busch [27], the 6DOF flight dynamic equations used in this
work are presented in Appendix A. Figures 3 and 4 show the
general structure used to model the flight dynamics.

x and u are the state and control vectors defined in Equa-
tions 1 and 2 below. Va is the airspeed, α is the angle of
attack, β is the sideslip angle, [p, q, r] are the roll, pitch and
yaw Euler angle rates respectively and [φ, θ, ψ] are the cor-
responding Euler angles. δi for i = ail, ele, rdd and thr is the
deflection angle of the aileron, elevator and rudder and the
commanded value of throttle, respectively.

2
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x = [Va, α, β, p, q, r, φ, θ, ψ] (1)

u = [δail, δele, δrdd, δthr] (2)

Forces and 
moments

Inertial to 
Wind 

reference 
frame

u +

+

Wind 
components 

Gravitational 
forces

Figure 3: Block diagram of the flight dynamic equations

Wind to 
inertial 

reference 
frame

Wind 
components 

+

+

y

x

z

Figure 4: Block diagram of the inertial position of the aircraft

[x, y, z] represented the position of the aircraft expressed
in the inertial NED reference system fixed to the ground.

2.3 Control

The flight control framework was composed of a series
of controllers which allowed the aircraft to keep steady-level-
flight and hold its lateral position. Block diagrams of the con-
trollers are presented in Figures 5-7. These controllers were
designed following [28].

Kff

P

P

q

 
required

?

? desired
+

+
+

+ -

Controller

Controller

Figure 5: Pitch controller block diagram

Note that U0 is the equilibrium airspeed in stability axes
and τψ and τr are time constants.

PI
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+

+ -
Va desired

 
required
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ControllerControllerController

Figure 6: Airspeed controller block diagram
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Figure 7: Course controller block diagram

2.4 Limitations

The model did not account for some of the physical limits
of the aircraft or the environment. Phenomenon such as stall
and ground effect were not taken into account. The aircraft
was modelled as a point mass, with the distribution of the
wind across the wing span not being considered in the flight
dynamics of the aircraft.

3 SIMULATIONS

The ultimate goal of this work was to study the control
costs of a SUAV when soaring close to buildings, determining
if there was a benefit to flying in particular regions of the wind
field. This was investigated by simulating a SUAV flying
close to a simulated row of buildings in a range of different
wind conditions. The aircraft’s controllers were set to hold
airspeed, height and lateral position. In particular, the desired
airspeed was kept constant and equal to 12.7 m/s throughout
the simulations and the 26 combinations of desired height and
lateral positions studied are defined in Figure 8.

3.1 Wind field

The urban wind field used in this study was generated by
Shepard et al. [25] for periods of onshore winds in Swansea
Bay, UK. Here the wind came in over the open sea before
meeting a row of four-storey buildings, which deflected the
air upwards causing orographic lift. Shepard et al. found that
the total number of gulls observed soaring by the sea-front in
this area increased with wind strength and varied with wind
direction. There was a peak in the total number of birds ob-
served for winds from around 150◦ (SE), which coincided
with the wind being perpendicular to the front face of the
buildings.

3
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The wind field data were simplified for the simulations
by averaged along the direction of flight. This simplifica-
tion allowed the simulation to run indefinitely, modelling the
SUAV flying parallel to a long row of buildings. The two
wind fields used in this study had considerably different nom-
inal wind speeds at 20 feet (W20), W20 = 2.26 m/s and
W20 = 9.34 m/s, but similar wind directions, 140.8◦ and
137◦ respectively. Figures 8a and 8b show a cross section of
the wind fields used along with the desired SUAV positions
tested.

The Dryden model was used to add a continuous level of
disturbance to the steady state wind field already described.
This mathematical model representing the frequency spec-
trum of continuous gusts was integrated into the flight dy-
namic equations of motion as an atmospheric disturbance. In
this work, the MIL-F-8785C [29] specification was applied
through the "Dryden Wind Turbulence Model (Continuous)"
block in Simulink for low-altitude applications. The input re-
quired in each simulation was the nominal wind speed at 20
feet (W20) and the wind angle with respect to North. The
equations defining the model can be found in Appendix B.
Three low-altitude disturbance levels are studied, defined as:
WFDi with i = 75, 100 and 125% of W20 = 2.26 m/s
and W20 = 9.34 m/s. Figures 8c and 8d show the variation
of the wind field due to the Dryden disturbance model on its
own. The Dryden model does not take into consideration nat-
ural or artificial obstacles in the environment. Because of that,
the disturbance level and standard deviation are only affected
by the vertical distance from the ground. The standard devi-
ation of the disturbance added by the Dryden model reaches
values of up to 20% of W20 for u and v, and up to 10% of
W20 for w.

3.2 Control effort
In this work, control effort (CE) refers to the amount of

control necessary to keep steady-level-flight whilst holding
a specific lateral and vertical position parallel to the build-
ings. This term is used as a parameter to compare the control
demand of different simulations and ultimately, of flights in
different regions of the wind field.

Considering the rate of change in the control surface de-
flection and in the throttle demand as a measurement of how
much these are being used to control the vehicle, Equations
3-5 define the control effort parameter used in this study.

The deflection angle for the three control surfaces and
the demanded throttle value are normalised by their max-
imum achievable value. Deflection limits are gathered in
Appendix C.

δinorm =
|δi|

max{δ} (3)

δirate =
d

dt
δinorm (4)

The deflection rate is defined as a timeseries and its root-
mean-square (RMS) is reported here.

CEi = RMS(δirate) =

√√√√ 1

n

n∑

i=1

δirate
2 (5)

3.3 SUAV platform
A non-linear flight dynamic model of an instrumented

WOT 4 Foam-E Mk2+ (Ripmax, Enfield, UK) (Figure 9) has
been derived from outdoor flight tests using the output error
method and has been integrated in the model. This vehicle is
1.345 kg and has a 1.205 m span with an aspect ratio of 4.85.
It has three control surfaces: elevator, rudder and ailerons.

Figure 9: Ripmax WOT 4 Mk 2 UAV

The servo motors and the electric engine responses have
been simplified and defined as a linear second-order transfer
function:

G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

(6)

The main physical and aerodynamic characteristics of this
platform, the control PID gains for each one of the controllers
and the natural frequency (ωn) and damping ratio (ζ) of the
transfer functions are given in Appendix C.

4 RESULTS AND DISCUSSION

In this section, results are presented for the different at-
mospheric effects described in Section 3. Flights under these
conditions were simulated for a desired airspeed of 12.7 m/s,
and for 26 different paths.

The results showed that the CE required to maintain
steady-level-flight and lateral position strongly depended on
the height at which the SUAV was flying. Figure 10 shows
the trend of this parameter for the three control surfaces and
the commanded throttle. The CE with respect to the im-
posed height is presented for the six different atmospheric
conditions studied. The control effort required decreased as
the imposed height increased for all control surfaces and the

4
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(a) (b)

(c) (d)

Figure 8: Contour plots of lateral (v) and vertical (w) components of the wind together with the imposed vertical and lateral
positions studied (’x’ symbols). 8a and 8b give the distribution of the v and w wind vector components in relation to the
buildings for W20 = 9.34 m/s. The strength of the wind components is illustrated with the colour scale, with a resolution
of 0.2 m/s between contour levels. 8c and 8d show the distribution of the v and w wind vector components of the Dryden
disturbance model for W20 = 9.34 m/s. These are given as 2 × σv and 2 × σw respectively, which corresponds to the 95%
confidence interval range for the change in wind speed. The strength of the Dryden noise wind components is illustrated with
the colour scale, with a resolution of 0.1 m/s for v and 0.02 m/s for w.

throttle in all wind conditions. The slight difference in the
pattern shown for the elevator for the most turbulent wind
field (WFD125 9.34) was due to the aircraft crashing for
some paths close to the buildings. There are two factors that
could have an important role in the explanation of this trend.
Firstly, the disturbance intensity was correlated with the in-
verse of the height (Figures 8c and 8d) and more control ef-
fort is required at higher disturbance intensities. Secondly,
the mean wind fields close to the buildings had a greater hor-

izontal variation at lower heights (Figures 8a and 8b), which
would also have increased the wind gradient experienced by
the UAV if it moved laterally. Figure 10 also shows that as
the wind speed increased (W20), the control effort required
also increased. This was as expected because the disturbance
intensities of the Dryden model is proportional to the mean
wind speed.

Comparing two points in the wind field at the same radial
distance to the buildings, Shepard et al. suggested that the

5
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Figure 10: Control effort pattern for the control surface and throttle command versus the imposed flight height for six different
atmospheric conditions: WFDi for i = 75, 100, 125 is the wind field with the Dryden noise, i being the percentage of W20 used
for the simulation. Dashed lines represent the data for W20 = 2.26 m/s and solid lines, W20 = 9.34 m/s. The mean CE value
at each imposed height is shown in these figures. Figures 10a and 10c on the left-hand side show the effects in the longitudinal
dynamics while Figures 10b and 10d present the patterns in the lateral dynamics.

birds’ flight control requirements may be reduced at higher
angle positions than at lower angles. It is important to high-
light the fact that as the angle decreases for a constant ra-
dial distance, so does the height. Their hypothesis was that
at higher angles, birds find a position with a greater veloc-
ity stability: lateral displacements do not have a strong effect
because they remain in the same contour level and vertical
displacements could appear to be self-stabilising. The results
shown in Figure 10 are consistent with this hypothesis.

The CE definition used in this work takes into consider-
ation the rate of change of the control surfaces and throttle
input. This parameter allows for different paths and wind

fields to be compared from a control point of view. How-
ever, it is important to note that the throttle value at which
the SUAV is flying is also an important factor in the energy
consumption of the vehicle and hence, a meaningful param-
eter to consider to improve SUAV flight performance. Un-
like the control effort trends, the mean throttle value shows a
strong dependency with the radial distance to the buildings.
This trend indicates that there is an effect caused by the oro-
graphic lift (Fig. 8b). Figure 11 shows this trend for the six
different wind conditions studied. These curves have been
obtained by curve fitting the data from the successful paths:
where the SUAV has not crashed against the ground or the

6
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buildings during simulation. Because of this, the data points
used to fit the curves in the case of W20 = 9.34 m/s are lim-
ited in close proximity to the buildings. Note that the throttle
command is defined in the limits [0, 1]. The curves in this
figure suggest that the SUAV required less throttle input the
stronger the wind field and the closer it was to the buildings.
For the slower mean wind speed the level of disturbance had
no significant effect on the mean throttle, but for the stronger
wind field, a greater level of disturbance correlated with a
lower mean throttle. However, as shown in Figure 12, for the
faster wind field the closer the SUAV path was to the build-
ings the greater the risk of collision with increased levels of
turbulence, with positions 16 and 17 crashing for WFD75 of
9.34 m/s, positions 12, 16 and 17 for WFD100 and positions
11, 12, 16, 17 and 21 crashing for WFD125. These failed
flights indicate the risk of flying close to the buildings under
strong wind conditions.
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Figure 11: Mean throttle value respect to the radial distance to
the buildings for six different atmospheric conditions: WFDi
for i = 75, 100, 125 is the wind field with the Dryden noise, i
being the percentage of W20 used for the simulation. Dashed
lines represent the data for W20 = 2.26 m/s and solid lines,
W20 = 9.34 m/s.

Figure 13 is a visual representation of what has been
shown and described above in Figures 10 and 11. Because
all control surfaces show the same CE trend with the alti-
tude, only the aileron parameter is presented in Figure 13b.
These colour maps have been obtained as an interpolation
of the successful flights for WFD100 of W20 = 9.34 m/s.
The comparison with Figure 8 suggests that the mean throttle
value is strongly dependant on the orographic updraughts in-
duced by the buildings and that the CE of the control surfaces
is mostly affected by the Dryden noise and the wind gradi-
ents in v at low altitudes and close around the buildings. A
comparison between flight paths in Figure 13a indicates that
flying at a short radial distance from the buildings could re-
duce the throttle command to up to 15% if compared to the
farthest path studied, in the top left of the figure. However,

as was stated previously, the closer the SUAV is flown to the
buildings, the higher the chances of losing control and crash-
ing. This probability is higher the stronger the wind field and
the greater the level of turbulence (Figure 12).

Shepard et al. discussed the behaviour of gulls flying at
different angles with the same radial distance to the build-
ings. Figure 14 presents two examples of this for WFD100.
The resolution of the contour is 0.2 m/s in all sub-figures and
the colorbar is kept constant for both wind fields, which is
important to correctly interpret the results. The pairs A and
B are situated at the same radial distance to the buildings, at
different angles. These points correspond to positions 7 and
22 from Figure 8, respectively.

The comparison between the top and bottom figures
(W20 = 2.26 m/s and W20 = 9.34 m/s respectively) high-
lights the difference between the spatial variation of the paths
for the two wind fields. The wind gradient due to the hori-
zontal displacement in the wind field is lower for the weakest
wind field. This is due to the Dryden disturbance intensi-
ties being low. Therefore, the control effort required to fly
in this wind field is lower than the one required with W20 =
9.34 m/s. However, the wind gradient is proportional to the
nominal wind speed, meaning that the wind field will have the
same effect on the wind gradient in both cases but at different
scales.

Figures 14c and 14d together with the discussion above,
suggest that position A requires more control effort to hold
lateral and vertical position, in comparison to position B.
The contour figures show that the lateral position of the
SUAV moves into more levels when flying at lower angles
compared to at a higher altitude. This variation in the contour
levels results in a greater wind gradient which is added to
the Dryden disturbance model in the flight dynamics model.
These results suggest two things. Firstly, they confirm that
flying at a lower altitude and under stronger wind conditions
requires more control effort. Secondly, the magnitude of the
wind components in the top figures compared to the bottom
indicate that there is little benefit in terms of the required
control effort to flying in any specific region of the wind field
at weaker nominal wind speeds, which was also shown in
Figures 10 and 11 when looking at the magnitude of the CE
required.

Shepard et al. [25] hypothesised that the gulls were flying
at higher angles relative to the building in stronger winds in
order to reduce their control effort. This hypothesis is sup-
ported by the results of this study, with the control effort
required for the SUAV reducing with altitude and the mean
throttle required increasing with radial distance from the front
corner of the building. With this pattern of effects the best
compromise between reduced control effort and reduced re-
quirement for thrust production is to fly directly above the
front corner of the building where the altitude is maximised
for a given radial distance. However at lower wind speeds
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(a) (b)

WFD125 collision WFD100 collision WFD75 collision

Figure 12: Contour plots of lateral and vertical components of the wind for W20 = 9.34 m/s with the imposed vertical and
lateral positions studied (’x’ symbols) and the red circles symbolise the flights that crashed against the ground or the buildings
during simulation.

(a) (b)

Figure 13: Contour plot of the mean throttle command and the CE of the aileron for WFD100 of W20 = 9.34 m/s. The colour
maps are based on the interpolation of the successful flights. The red circles represent the flights that crashed against the ground
or the buildings during simulation.

the gulls flew at lower angles out in front of the buildings and
this behaviour is not explained by this optimisation. When
looking at the simulation results it is apparent that in absolute
terms there is not much of a change in control effort required
with height at lower wind speeds so it may be that the gulls
flew at lower angles to forage by the seafront, exploiting oro-
graphic lift whilst gaining a better view of the ground and find
possible sources of food. This strategy may then become in-

creasingly energetically costly as wind speed increases, along
with having an increasing risk of collision with the buildings
at higher wind speeds.

5 CONCLUSIONS

The work presented investigated the control effort re-
quired for a SUAV to fly parallel to buildings whilst affected
by orographic soaring. The aim was to assess if there are
any energetic benefits to flying in specific regions of the
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(a) (b)

(c) (d)

Figure 14: Positions A and B are given with the distribution of the lateral (v) and vertical (w) wind vector components in relation
to the building. Positions A and B are at the same radial distance from the buildings. Red error bars indicate the horizontal and
vertical flight range of the SUAV during the simulation; the white bars show the standard deviation of the position error during
flight. 14a and 14b present the effects of WFD100 of W20 = 2.26 m/s with a resolution of 0.2 m/s between levels. 14c and
14d show WFD100 of W20 = 9.34 m/s with a resolution of 0.2 m/s between levels.

wind field. The WOT 4 Foam-E Mk2+ SUAV was simu-
lated in Simulink to fly parallel to buildings by the seafront in
Swansea. A range of different flight paths were imposed for
a constant airspeed, and the control effort and path displace-
ment were calculated and discussed for two different wind
fields affected by the Dryden disturbance model. Overall, the
findings of this study indicate that:

• The control effort is correlated with the nominal wind
speed and the level of disturbance added with the Dry-
den model.

• The control effort is mostly correlated with the inverse
of the height at which the SUAV is flying.

• Both strong and weak wind fields show a trend between
the control effort and the imposed height; however, at

9
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stronger nominal wind speeds, there is a greater advan-
tage to flying at higher altitudes.

• The mean throttle command varies with the radial dis-
tance to the buildings, showing a benefit of up to 15%
in the throttle command when flying next to them as op-
posed to flying in the farthest path defined in this study.
However, the simulations have shown that flying in this
region of the wind field for strong nominal wind speeds
increases the risk of collision with the buildings.

• A strategy of flying directly over the front corner of
the buildings appears to minimise the control effort re-
quired for a given level of orographic lift and mirrors
the behaviour of gulls seen at higher wind speeds.
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APPENDIX A: FLIGHT DYNAMIC EQUATIONS AND
PARAMETERS

The flight dynamic equations used in this work are pre-
sented below expressed in the wind reference system and fol-
lowing the nomenclature in [30] with the exception of the
roll moment components which are discriminated with a caret
(L̂).

V̇a =− qw − vr
Va

+
Tcos(α)cos(β)−D

m
+ g1 (7)

− dwx
dt

d1 −
dwy
dt

d2 −
dwz
dt

d3

β̇ =
pw − ur
Va

− −C + Tcos(α)sin(β)

Vam
+
g2
Va

(8)

−
dwx
dt d4 +

dwy
dt d5 + dwz

dt d6

Va

α̇ =− pv − uq
Va

− Tsin(α) + L

Vam
+
g3 − dwx

dt d7

Va
(9)

−
dwy
dt d8 + dwz

dt d9

Va

ṗ =
IzzL̂+ IxzN − (Ixz(Iyy − Ixx − Izz)p)q

τ
(10)

+
((I2xz + Izz(Izz − Iyy))r)q

τ

q̇ =
M − (Ixx − Izz)pr − Ixz(p2 − r2))

Iyy
(11)

ṙ =
IxzL̂+ IxxN + (Ixz(Iyy − Ixx − Izz)r)q

τ
(12)

+
(I2xz + Ixx(Ixx − Iyy))p)q

τ

φ̇ = p+ (qsin(φ) + rcos(φ))tan(θ) (13)

θ̇ = qcos(φ)− rsin(φ) (14)

ψ̇ = (qsin(φ) + rcos(φ))sec(θ) (15)

The transformation matrix from body reference system
to an inertial (NED) reference system and the transformation
matrix from wind to body reference systems are defined in
Equations 16, 17 respectively.
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Lib =



cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ




(16)

Lbw =



cαcβ −cαsβ −sα
sβ cβ 0
sαcβ −sαsβ cα


 (17)

sk and ck are the sine and cosine of k, where k can be an
Euler angle: roll φ, pitch θ and yaw ψ or angle of attack or
side-slip, α and β respectively.
The transformation matrix from the NED inertial system to
the wind reference frame:

Lwi = LTbw · LTib =



d1 d2 d3
d4 d5 d6
d7 d8 d9


 (18)

Parameters d and g in the flight dynamic equations of motion
(Eqs 7 - 9) are defined in Eq 18 and 19.



g1
g2
g3


 = Lwi ·




0
0
g


 (19)

Airspeed expressed in the body reference system:



u
v
w


 = Lbw ·



Va
0
0


 (20)

The position of the aircraft expressed in the inertial NED ref-
erence system is defined as:



ẋ
ẏ
ż


 = LTwi



Va
0
0


+



wx
wy
wz


 (21)

The aerodynamic forces [L C D] and moments [L̂ M N]
and thrust (T) are defined as:



L
C
D


 =

1

2
ρV 2

a S



Cl
CY
Cd


 (22)

T =
1

2
ρSCtkCt (23)



L̂
M
N


 =

1

2
ρV 2

a S



b · Cl̂
c · Cm
b · Cn


 (24)

The aerodynamic coefficients:

Cl = Clα(α+ α0) + Clq
c

2Vm
q + Clδe δele (25)

CY = CYββ + CYδa δail + CYδr δrdd (26)

Cd = Cd0 + Cdαα+ Cdα2
α2 (27)

Ct = Ctdt2 δ
2
thr (28)

Cl̂ = Cl̂ββ + Cl̂p
b

2Vm
p+ Cl̂r

b

2Vm
r + Cl̂δa

δail (29)

+ Cl̂δr
δrdd

Cm = Cm0
+ Cmαα+ Cmq

c

2Vm
q + Cmdeδele (30)

Cn = Cnββ + Cnp
b

2Vm
p+ Cnr

b

2Vm
r + Cndaδail (31)

+ Cndrδrdd

where Vm is the equilibrium velocity used to estimate the co-
efficients.

APPENDIX B: DRYDEN WIND DISTURBANCE
EQUATIONS

Dryden Model MIL-F-8785C [29] equations for low-
altitude are defined as:

• Power spectral densities:

Φug (Ω) = σ2
u ·

2Lu
π

1

1 + (LuΩ)2
(32)

Φvg (Ω) = σ2
v ·

2Lv
π

1 + 12(LvΩ)2

(1 + 4(LvΩ)2)2
(33)

Φwg (Ω) = σ2
w ·

2Lw
π

1 + 12(LwΩ)2

(1 + 4(LwΩ)2)2
(34)
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• Turbulence intensities:

Lw = h (35)

Lu = Lv =
h

(0.177 + 0.000823 · h)1.2
(36)

• Turbulence scale lengths:

σw = 0.1 ·W20 (37)

σu/σw = σv/σw =
1

(0.177 + 0.000823 · h)0.4

(38)

• Transfer function of the Dryden Model

Gug (s) = σu

√
2Lu
πV

1

1 + Lu
V s

(39)

Gvg (s) = σv

√
2Lv
πV

1 + 2
√
3Lv
V s

(1 + 2Lv
V s)2

(40)

Gwg (s) = σw

√
2Lw
πV

1 + 2
√
3Lw
V s

(1 + 2Lw
V s)2

(41)

APPENDIX C: WOT4 CHARACTERISTICS

The simulation parameters and aerodynamic coefficients
used in this work are gathered in this section in Tables 1 and 2,
respectively. Table 3 and Table 4 contain the control gains and
the servo and electric motor natural frequencies and damping
ratios.

• Pitch and control surfaces maximum and minimum an-
gle permitted.

−40◦ ≤ θ ≤ 40◦

−15◦ ≤ δele ≤ 15◦

−18◦ ≤ δail ≤ 18◦

−29◦ ≤ δrdd ≤ 29◦

Table 1: WOT 4 simulation parameters

Physical constants
Parameter Value Units
g 9.81 m/s2

ρ 1.225 kg/m3

Aircraft model parameters
Parameter Value Units
Vm 18 m/s
S 0.3 m2

c 0.254 m
b 1.206 m
m 1.345 kg
Ixx 5.1 ×10−2 kg m2

Iyy 7.8×10−2 kg m2

Izz 1.12×10−1 kg m2

Ixz 1.5×10−3 kg m2

Table 2: WOT 4 aerodynamic coefficients

Parameter Value Parameter Value
Ctk 5 Ctdt2 10.60
Cd0 0.03 CYβ −4.31 ×10−1

Cdα 0.48 CYδa 2.03 ×10−2

Cdα2
1.26 CYδr 3.71 ×10−2

Cα0
4.44 ×10−3 Cm0

4.22 ×10−3

Clα 3.89 Cmα −1.01 ×10−1

Clq 1.04 ×10−1 Cmq −4.84
Clδe −4.24 ×10−1 Cmδe −3.02 ×10−1

Cl̂β −7.74 ×10−3 Cnβ 4.04 ×10−2

Cl̂p −5.09 ×10−2 Cnp −1.26 ×10−2

Cl̂r 3.13 ×10−2 Cnr −1.65 ×10−1

Cl̂δa
−2.11 ×10−2 Cnδa −6.39 ×10−4

Cl̂δr
−2.54 ×10−3 Cnδr −4.13 ×10−2
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Table 3: WOT 4 PID gains

Altitude guidance
Parameter Value
Kph 0.3
Kih 0.3
Kpḣ

−0.1455

Lateral guidance
Parameter Value
Kpy 0.03
Kiy 0.03

Pitch angle controller
Parameter Value
Kpθ −3
Kpq 1
Kff −0.09

Velocity controller
Parameter Value
KpV 0.4118
KiV 0.0343

Lateral controller
Parameter Value
Kpφ −4.896
Kiφ −1
Kpp −2
Kpr 0.0912

Table 4: Servo and electric motor characteristics

Parameter ωn [rad/s] ζ
Aileron servo 100 0.9
Elevator servo 23 0.9
Rudder servo 23 0.9
Electric motor 15 0.9
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Aerial Interaction Control Using Gain-Scheduling and
PID for a Drone with a 2-DOF Arm

Aaron Lopez Luna∗, Jose Martinez Carranza, and Israel Cruz Vega
National Institute of Astrophysics, Optics and Electronics

ABSTRACT

One of the significant challenges of unmanned
aerial vehicles (UAV) is the physical interac-
tion with an object or a rigid structure. There
are numerous potential benefits of physical in-
teraction with the environment. However, the
process of approaching a UAV to an object or
a surface also brings challenging control prob-
lems. This paper addresses the control problem
of a UAV endowed with a robotic arm to phys-
ically contact a rigid structure. The proposed
control technique is based on a Gain-Scheduled
Proportional-Integral-Derivative (GS-PID) algo-
rithm. Our previous work [1] based on a sim-
ple Gain-Scheduling (GS) approach for the sta-
bility of the robotic aerial system is insufficient
to counteract the disturbances during the interac-
tion successfully. Therefore, the proposed GS-
PID control can respond to the disturbances in-
duced by the wall-effect, the arm’s movement,
and the contact with the rigid structure. Exper-
imental testing results demonstrate satisfactory
performance of the proposed control strategy.

1 INTRODUCTION

Aerial manipulators (robotic manipulator arms attached
to aerial vehicles) research has grown in recent years due to
the importance and potential applications of this useful sys-
tems in industrial and commercial fields. [2, 3]. Nevertheless,
this new configuration represents a new problem in the stabil-
ity control of the aerial vehicle. The movements of a manipu-
lator attached to a UAV during flight mode are considered as
disturbances, which can cause instability and the loss of the
entire system. New models and control algorithms have been
proposed to prevent this situation [4, 5]. The UAV physical
interaction may provide excellent solutions as well as reliable
operations, e.g., the inspection of a surrounding environment.
Moreover, the concept called flying hand is a unique and lead-
ing technology. However, the interaction control imposes in-
herent nonlinearities due to not only the dynamic behavior of
the UAV but also the interaction between the surface and the
system [6, 7]. In all the situations in which contacts between
the aerial vehicle and the environment occur, the dynamics of

∗Email address(es): aaron.eleazar@inaoep.mx

the system may dramatically change, and the development of
a robust control law able to handle all the possible interactions
becomes a challenge [7, 8].

In this work, we consider the proposal of taking into
account dynamical changes in the UAV due to three essential
factors. i)The movement of the arm attached to the aerial
vehicle, ii) the wall-effect disturbance when the system is
approaching the rigid structure, and iii) the effect of the
contact with the surface. We also propose an experimental
study to determine the variation in plant dynamics with
the three factors and establish a set of controllers which
allows approximating the real trajectory of the system to the
desired trajectory. Therefore in this work, we employ a novel
manipulator arm of two degrees of freedom (DOF) especially
developed for a commercial quadcopter parrot bebop-2. We
also propose to incorporate a GS approach to the Classical
PID control to ensure the stability of the proposed aerial
manipulator. We determine the gain values of a set of PID
controllers by the experimental study; this represents a novel
technique to deal with the drawbacks of perturbations in the
aerial manipulation systems.

This paper is organized as follow: In section 2, the pro-
posed system is described. The GS-PID control technique
developed for this work is presented in section 3.1. To prove
the effectiveness of the proposed strategy, a set of experi-
ments are implemented and are described in section 4; the
experimental results are also shown in this section. Finally,
the main contribution, conclusions, and future direction are
described in section 6.

2 DESCRIPTION OF PROPOSED SYSTEM

Nowadays exist different configurations of UAV systems
used for several missions in commercial and industrial tasks.
Each configuration has distinct advantages and disadvan-
tages according to its design. Vertical Take-Off and Land-
ing (VTOL) vehicles have been taken into account especially
for aerial manipulation due to specific aspects of their flight
mode which are used to achieve the primary goal of maintain-
ing a manipulator robot in the desired point. In this work, we
designed an aerial, consisting of two main subsystems: The
aerial vehicle of four rotors and a robotic arm of two DOF.
In the following subsections, each one of this system is pre-
sented.
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2.1 ROBOTIC ARM

For manipulation and interaction task, robotic arms
can provide the necessary degrees of freedom to achieve
the objective [9, 10]. In contact with the environment, for
example, an n-DOF arm could supply the stiffness and
versatility to the vehicle to accomplish the goal involving
contact with a rigid structure. The n-DOF arm could also
provide a safe distance between the aerial system and the
structure.

Figure 1: CAD model of proposed robotic arm.

The robotic arm of Fig. (1) was developed thinking in
two main aspects - first, the physical task. The task consists
in to exert a force on a rigid surface. For this objective, the
robotic arm must provide the movements necessaries to con-
tact the surface successfully and also must provide adequate
distance between the vehicle and the surface to reduce the
disturbances induced by the proximity of the rigid structure
with the rotors of the aerial vehicle. Second, the dimensions
of the proposed design must maintain a relationship with the
physical capabilities of the system in order to guarantee the
ideal performance in flight mode. Even with this considera-
tion, the behavior of the robotic arm can alter the efficiency
of the vehicle, for this reason, a control technique considering
the perturbations of the robotic arm must be implemented to
achieve the proposed task. The length of the extended arm
designed for this work provides sufficient distance between
surface and the aerial system to maintain a safety flight and
reduce the wall effect disturbance. the arm structure is light
enough to allow the aerial system to take off suitably and keep
a stable flight, however, the poor stiffness of the arm it must
be considered in the control design to prevent exceed sup-
ported force of the arm. In the following sections, the prob-
lem of perturbations and the proposed solution is handled.

2.2 END EFFECTOR

To prove the satisfactory performance of the interaction
control, we proposed an experimental scenario in which the
aerial manipulator marks the points where the end-effector of
the arm and the surface are in contact. A set of pieces were
designed, allowing the arm to hold a pencil and mitigate the
friction and contact forces. Fig. (2) shows the proposed end-
effector for the experimental task. The design of the contact
end-effector permit to reduce the interaction area to a three
simple points, reducing at the same time the friction in the
contact phase.

Figure 2: CAD model of end effector for contact whit a sur-
face.

2.3 PHYSICAL SYSTEM

Due to the four rotors, the quadcopter has more lifting
power than a helicopter of the same size, allowing carry a
more massive payload. The interest in this kind of config-
uration comes not only from its dynamics, which represent
an attractive control problem but also from the design issue
[11, 12, 13, 14]. The rotors of a quadcopter work together to
lift the weight of the quadcopter airborne. Quadcopters have
being used in search and rescue missions, surveillance, in-
spection, mapping, and law enforcement [15]. Fig. (3) shows
the complete physical system, the bebop-2 with the 2-DOF
arm.

Figure 3: Aerial manipulator, physical implementation.
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3 AERIAL INTERACTION CONTROL
In this work, the PID control and the Gain-Scheduling ap-

proach are developed to design and implement an interaction
control for a bebop-2 vehicle with a 2-DOF arm. The follow-
ing section describes the architecture of the controls and the
system structure.

3.1 PID CONTROL

A PID controller continuously calculates an error value
e(t) as the difference between the desired set point and the
measured process variable and applies a correction based on
proportional, integral, and derivative terms, (sometimes de-
noted P, I, and D respectively). The following equation (1)
describes the PID algorithm:

u(t) = kpe(t) + kI

∫
e(τ)dτ + kD

d

dt
e(t) (1)

where kp, kI , kD are the PID control gains, u(t) is the control
signal and e(t) is the error signal. The integral, proportional,
and derivative parts are interpreted as control actions based
on the dynamics of the signal. The PID gains can be designed
based upon the system parameters with a certain precision. In
this work, a PID controller is designed for the x and y position
and yaw orientation of the aerial vehicle.

3.2 GAIN SCHEDULING CONTROLLER

To compensate the disturbances of the robotic arm, we
incorporate the Gain-Scheduling technique into the PID con-
trol, enhancing the performance of the flight vehicle with a
robotic arm. The gain-scheduling method uses measurable
variables correlating changes in the dynamic process to de-
fine controller parameters. The gain schedule technique is an
acceptable approach to control nonlinear systems using a set
of linear controllers, providing adequate control responses to
various operational points of the system. To tune the con-
troller, we need to select one or more adjustment variables.

After the selection of these variables, the regulator param-
eters are calculated for several operation points. In this work,
for the designing of the GS-PID controller, a set of pre-tuned
gains are applied to the controllers. No rule specifies the num-
ber of zones or operation points for the division in the range
of operation of the plant, the designer decides in this respect
[16, 17, 18]. To implement the GS-PID controller, we follow
the next steps: first, to chose auxiliary variables. In this work,
these variables are the angles of the links of the robotic arm
(θ1, θ2). Second, after choosing the auxiliary variables, the
operation points Pn are determined. These operation points
are the position Pe in (X,Y, Z) of the end effector of the
arm which depends on the values of θ1 and θ2 (More detail
in [1]). The controller actions readjusted for each operating
condition. The calculated parameters are the gains Kp, KI ,
and KD of the PID control, which now depends on the val-
ues of θ1 and θ2. The equation (1) with the gain-scheduling
method now is rewritten as follow:

u = kp(θ1,2)e+kI(θ1,2)

∫
e(τ)d(τ)+kD(θ1,2)

d

dt
e(t) (2)

where kP (θ1,2), kI(θ1,2), kD(θ1,2) are the PID control gains
for every operational condition Pn. The following section de-
scribes the implementation of GS-PID controller for the aerial
vehicle.

3.3 WALL-EFFECT AND CONTACT DISTURBANCE
When a UAV in flight mode is close to a wall (vertical

rigid structure) a disturbance force induced by the propellers
of the aerial vehicle affects the stability of the system, this
disturbance increase when the distance between the vehicle
and the surface is smaller. Due to the length of the arm, it
is not sufficient to maintain the aerial vehicle far enough to
decrease the wall-effect, so such disturbance must be consid-
ered to achieve the interaction task satisfactorily. The con-
tact with the surface also generate a rejection force affecting
the flight stability; this rejection force depends on the contact
force exerted by the arm. To simplify the interaction control,
the contact force of the arm is considered to stay at a min-
imum value. We conducted experiments to obtain both the
wall-effect and the contact rejection force.

4 EXPERIMENTAL SETUP
The proposed control strategy was proved via experimen-

tal tests in a controlled environment. The manipulator incor-
porated to bebop-2 is composed of 2 links with a dimension
of 10 cm (L), 0.3 cm (W) and 4 cm (H), each one with 0.12
kg (m). In order to compensate the disturbance of the arm
with the GS-PID controller for the position (X,Y, Z) of the
system, a set of ten operation points were chosen carefully
for each controller. Fig. ( 4) shows the operation points of the
system depending on the angles of the links.

Figure 4: Representation of operating points of the system
[1].

Just like in the previous work [1] the VICON cameras
were used to get the actual position (X, Y, Z) of the system
continually and monitoring the variables θ1 and θ2 of the links
of the robotic arm.
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Fig. (5) depicts the block diagram for this research. In this
representation E(t) is the error between the desired position
and the actual position, Y (t) represents the control signals
sent to the aerial vehicle to control the (x, y, z) position. The
real position of the aerial vehicle during flight mode is taken
from the VICON system providing information used to calcu-
late E(t). The different positions of the robotic arm produce
different disturbances which can be calculated using the error
as a reference to the displacement of the system; this instabil-
ity is represented as noise in the block diagram affecting the
position of the vehicle directly. The objective is to compen-
sate for this displacement to maintain the aerial vehicle in the
desired position.

Figure 5: Block diagram of the proposed system with GS-PID
control [1].

A set of gains were obtained experimentally to compen-
sate the disturbances and upgrade the performance of the con-
trol maintaining the system in the desired position. Table 1
shows the value of Kp, KI and KD for each operating point.

θ1/θ2 KP KI KD

0/0 0.22 0.12 0.03
30/0 0.45 0.37 0.09
30/30 0.92 0.64 0.17
60/30 1.3 0.9 0.22
90/30 1.6 1.2 0.56
120/30 1.72 1.34 0.78
150/30 2.1 1.66 1.05
150/90 2.22 1.79 1.12
150/120 2.45 1.89 1.2
150/150 2.52 1.98 2.31
near to wall 4.56 2.02 2.62

Table 1: set of gains for the operating points

Additionally, to the gains obtained in the previous work
[1], a set of experiments were made to calculate the wall-
effect affecting the stability of the system. Fig. (6) shows the
experiment where the system is near to a vertical surface.

Figure 6: Representation of desired interaction task.

5 RESULTS
This section contains the experimental results of the pro-

posed system. Three different experiments were designed, to
demonstrate the effectiveness of the GS-PID interaction con-
trol. First, analyzing the behavior of the system when it is
trying to approximate the surface employing a standard PID
control. The x-axis of the graph represents time in millisec-
onds (ms), and the y-axis of the graph represents the posi-
tion in millimeters (mm). The desired position of the system
is (15,0, 1), at 20 cm near the surface. Fig. (7) shows the
response of the system. The system is unable to reach the
references in the x-axis due to the wall-effect.

Figure 7: Behavior of the aerial vehicle carrying the robotic
arm with standard PID control.

In the second experiment, GS-PID control is implemented
[1]. This time, the control includes the set of gains required
to attenuate the wall-effect, Fig. (8) shows the behavior of
the system, the GS-PID control can lead the system to the
reference.

In the third experiment, the end-effector is now in contact
with the rigid surface, and the system executes a horizontal
movement to follow a linear trajectory in the surface. The
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Figure 8: Behavior of the aerial vehicle with the robotic arm
extended near to rigid surface, GS-PID control

GS-PID control maintains the system at the required distance
to the surface to achieve the task. Fig. (9) shows the success-
ful contact of the system with the surface.

Figure 9: Sequence of successful contact of the aerial manip-
ulator with the rigid surface.

Fig. (10) shows the response of the system in full contact
with the surface. The proposed control maintains a constant
distance between the system and the surface while the manip-
ulator moves in the y-axis, drawing the continuous line over
the surface.

The final result proves the effectiveness of the proposed
control to interact with the environment. For quantitatively
compare the control performance, we defined the following
function:

mse =
1

n

n∑

i=1

(pd − pr)2 (3)

this equation describes the mean squared error (mse) between
pd, as the desired position, and pr the real position of the sys-
tem in the step time i. The quantitative results for each con-
troller are given in Table 2. We can observe an upgrade in the
performance and response in comparison with the classical
PID control.

Figure 10: Behavior of the aerial manipulator in full contact
with the rigid surface, GS-PID control.

mse PID control GS-PID control.
X 42.56 2.12
Y 26.44 1.23
Z 7.65 0.17

Table 2: Mean squared error.

In Figure 11 a line drawn by the drone is shown. The line
proves the effectiveness of the proposed control to maintain
the system in constant contact with the structure. We aim to
upgrade the drawn line as future work.

Figure 11: Line drawn by the drone.

6 CONCLUSIONS
This paper presents results regarding a control strategy

to maintain a stable flight of the vehicle during the interac-
tion task. The present work focuses on dealing with the sta-
bility problem of the arm, the wall-effect, and the contact
with a surface. The strategy involves the use of GS- PID
controller, where a set of operating points are carried out to
create a group of controllers designed to eliminate the dis-
turbances induced on the vehicle by the arm’s motion. The
conducted experiments prove that wall-effect degrades the ef-
ficiency of the GS-PID control, but the proper measure of
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these dynamic changes are considered in the control scheme
to upgrade the performance of the system. The results indi-
cate that the proposed approach is an improvement step to-
wards the development of specific tasks of aerial manipula-
tion systems. The main contribution of this work is the de-
sign of a GS-PID control technique for aerial interaction. The
next step is to achieve a complete trajectory over the surface
and replicate the results in outdoor scenarios. A video with
the experiments and results is available the following link:
https://youtu.be/mOFIo2YJJTE,
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ABSTRACT

Flight coordination of Micro Air Vehicles
(MAVs) has become an essential task in the au-
tonomous fight of swarms of drones. In re-
cent years, we have seen demonstrations per-
formed by giant companies such as Intel, where
hundreds of drones perform a coordinated flight
in the open sky. Although impressive, these
demonstrations strongly depend on the use of
GPS in order to effectively deploy MAVs in a co-
ordinated fashion. In contrast, in this work, we
present an approach for GPS-denied scenarios
where localisation is resolved by using a well-
known technique in robotics: visual simultane-
ous localisation and mapping. For this tech-
nique to be utilised, a single camera is mounted
onboard the MAV, and even when a monocular
camera is used to perform visual SLAM, if the
camera angle w.r.t to the base of the drone and
altitude are known, then the scale of the MAV’s
pose can be estimated. Rather than having a cen-
tral controller, we have implemented a single in-
dividual controller for each drone involved in the
coordinated flight. Thus, each drone knows its
current drone’s position as much as the position
of its partner. This information is used in a PID
controller with a consensus strategy to perform a
coordinated flight defined by a set of waypoints.
We showcase the effectiveness of our approach
in an application where two drones have to carry
an object from one location to another in a coor-
dinated manner.

1 INTRODUCTION

Currently, MAVs are employed for the acquisition data
from image areas with the purpose of generating 3-D models
of an environment to evaluate infrastructures or contribute to
cartographic information. There are some works that focus
on complex tasks, where one MAV is insufficient to complete

∗Department of Computer Science at INAOE. Email addresses:
{oyukirojas, carranza}@inaoep.mx

Figure 1: We present a methodology to perform an au-
tonomous coordinate flight indoors using the same controller
for both MAVs. We use the onboard monocular camera
to metric localisation. A video of this work is found at
https://youtu.be/Tcox2MpRGrY

an assignment such as exploration and inspection in vast ter-
ritories, transportation of heavy loads or dangerous material.
The latter calls for the use of more than one MAV, but also
that such MAVs can cooperate during a mission flight.

The implementation of multiple MAVs requires the inter-
action between them to perform tasks in a coordinated man-
ner. In this sense, MAV localisation is essential for cooper-
ative tasks. For this reason, a research topic is that of esti-
mating the drone’s pose in 6D, which can be done by the use
of GPS. However, GPS may not be accessible or reliable in
some environments namely in urban canyons, forest environ-
ments or indoor scenes. [1], [2]. Motion capture systems are
an alternative to GPS in terms of external localisation sys-
tems, however, this is not a general solution and therefore,
there have been many efforts to develop systems to localise
the drone via processing of sensor data acquired from on-
board cameras, laser or similar sensors. The set of techniques
relying on visual data for localisation are known as visual
Odometry or visual Simultaneous Localisation and Mapping
(SLAM), meaning that localisation is resolved while a map
of the scene is also built.

Recently, visual SLAM has been used in the context of
collaborative flight [3], where the authors present a coopera-
tive system, a first drone navigates and maps the scene, while
a second drone flies over the same place and recognises the
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scene using the shared map by the first drone. In the other
hand, the authors of [4] propose a method to fuse the IMU
data and the monocular camera to build sub-maps for each
MAV to get a robust communication between MAV’s to per-
form efficient data exchange.

Motivated by the above, we present an autonomous sys-
tem for multiple MAVs that uses a visual SLAM system to
obtain the camera pose estimates with scale in centimetres for
each MAV. The pose estimates are used by a PID controller
with a consensus strategy to perform a coordinated flight de-
fined by a set of waypoints.

The processing is carried out off-board since the MAV
transmits the image and altimeter data in real time to a ground
control station. Each MAV generates an individual metric
map of the environment and shares its current position. For
the flight, a predefined path in 3-dimensional coordinates is
given, this path is followed by the coordinate MAV. We per-
formed a series of experiments in indoor environments for the
autonomous flight at 1.5 metres in height to transport a load
in a straight line and for formation flight following a series of
reference points, see the example in the Figure 1.

To present our proposed approach in detail, this paper
has been organised as follows: section 2 describes the re-
lated work; section 3 describes our proposed methodology;
4 describes our experiments; finally, our conclusions are dis-
cussed in section 5.

2 RELATED WORK

The problem of collaborative or coordinated flight has
been studied for several years now. One of the most com-
mon techniques is based on a leading-follower architecture.
Some works have proposed the use of geometric relation-
ships, speed ratio, minimum turning radius or potential fields
as main strategy to implement the coordination [5]. Some
works [6] present simulation experiments of the control of
multiple unmanned aerial vehicles using the relative position
of the leader, where two controllers modify the behaviour of
the vehicles, the first one controls the trajectory that the vehi-
cles must follow and the second controls the height of flight
[7]. However, the vehicles maintain the formation under cer-
tain conditions, for example, constant speed and trajectory
angle not greater than 20◦[8].

Flight training has also been implemented based on global
positioning and telemetry [9]. In its control station, informa-
tion is monitored individually by the telemetry of each vehi-
cle, which allows changing the parameters of the system to
keep them aligned with their neighbours. Vehicles fly in two
predefined courses at separate altitudes, where MAVs wait for
others to join. When all the MAVs are in the arena, they fly
to the predefined area [10]. Regarding the control algorithms,
the leading vehicle receives commands of speed and angles
of orientation and trajectory, while the follower follows the
manoeuvres of the leader maintaining a distance of separa-
tion to avoid collisions, where the system of coordinates are

centred in the leading vehicle[11, 12]. In [13], the authors
use a pilot to control the leading vehicle remotely, the control
scheme consists of having to follow the leader under a sepa-
ration distance. The primary condition of these works is that
of maintaining the global position to remain in the formation.

On the other hand, the authors of [14], presage coordi-
nated flight in interiors making complex trajectories. How-
ever, they depend on an external location system so that the
vehicles stay aligned [15, 16, 1, 17, 18]. Besides, these works
depend on the size of the arena to be able to carry out the
training. In the works mentioned above the responsibility of
the formation rests directly on the leading vehicle and this
only receives information from the work station to update the
trajectory, for the adjustment of parameters each follower ve-
hicle receives updates individually.

In contrast to the works described before, in this work,
an autonomous system is proposed to perform coordinated
flight without dependency on the GPS. A strategy of consen-
sus governs the proposed system. This enables the vehicles to
make the flight without depending on a leader. Both vehicles
receive the same parameters of speed and trajectory, as well
as the same control system.

3 METHODOLOGY

The proposed autonomous system for multiple MAVs
is based on two main components: (1)a metric monocular
SLAM [19, 20] to obtain the camera pose estimates with scale
in centimetres for each MAV;(2) and a Controller for Flight
Coordination. Figure 2, shows the pipeline processing of our
approach. The processing is carried out off-board since the
MAV transmits the image and altitude data in real time to a
Ground Control Station (GCS). Each MAV generates an in-
dividual metric map of the environment and shares its current
position. For the flight, a predefined path in 3-dimensional
coordinates is given, this path is followed by the MAVs.

Figure 2: Schematic representation of our proposed approach.
Two MAVs localise themselves by using our metric monocu-
lar system, where the camera looks down at the ground, while
the camera images are processed to obtain the MAV’s pose
estimates.

3.1 Visual Metric Localisation

The Metric monocular SLAM is a modified version of
RGB-D of ORB-SLAM. This method generates a synthetic
depth image based on the line-plane intersection problem by
formulating a geometric configuration where it is assumed
that the ground is plane. The Bebop’s altimeter is used to ob-
tain an estimate of the camera’s height h in centimetres and
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the camera angle is obtained through the SDK is used to cal-
culate the angle at which a vector n would be located with
respect to the origin in the camera’s coordinate system with
length h. This vector n is perpendicular to the planar ground;
therefore, it can be used to know a point lying on this planar
ground with normal n. Figure3 illustrates a side view of this
geometric configuration when the bebop’s camera is foveated
to the angle of -30 ◦ with respect to the horizon. The line-
plane intersection equations are used to find α , depth corre-
sponding to the pixel x, y.

Figure 3: Geometric configuration used to generate a syn-
thetic depth image to be used by ORB-SLAM in its RGB-D
version, to obtain a pose estimation with metric. Image taken
from [19].

3.2 Controller for Flight Coordination
The proposed controller uses rotation matrices to calcu-

late the orientation of the current point with respect to the
reference point, for which control commands are sent in yaw.
The translation is calculated using the vector generated be-
tween the current point towards the reference point and to
reach the desired point, and control commands are sent in
pitch. To achieve a coordinated flight, the controller receives
the position of the vehicle on the left and the one on the right,
later a consensus strategy is implemented, which allows them
to moderate their speed to keep them aligned during the flight.
Once the vehicles arrive at the reference point, they are ori-
ented towards the next one and later they are moved to the
designated point. This will be calculated depending on the
number of points of reference. The Robotic Operating Sys-
tem (ROS) communication system allows both vehicles to use
the same control, under the same conditions, speed and path
flight.

4 EXPERIMENTS

We present three different sets of experiments where we
evaluated the performance of our proposed methodology. In
these experiments, the vehicles take off and perform au-
tonomous flight in an indoor environment by following a tra-
jectory defined by a user. We evaluated the accuracy of the
coordinate flight, for these, we used the motion capture sys-
tem Vicon to obtain the measurements of the MAV’s position.

For our experiments, we used two Parrot Bebop 2.0 Power
Edition. We used the images captured with the onboard
camera transmitted via WiFi with a resolution of 640 x 368
pixels at 30 Hz and the altimeter data transmitted at 5 Hz.
Communication is possible using a router to communicate
both vehicles to the GCS. For the programming of the con-
troller, we used the Software Development Kit (SDK) known
as the bebop autonomy SDK. This package run on a GCS:
an Alienware-Dell Laptop with Intel Core-i7, with 16 GB in
RAM. We used the ROS, Kinetic version, for implementation
of our approach and communication with the other nodes; the
Bebop driver, metric monocular SLAM and our controller.
Figure 5, shows a scheme of our software architecture. Our
approach uses the same flight controller for both MAVs. For
the latter we exploited the capabilities of node reconfigura-
tion offered by ROS through the use of the launcher files. In
addition, ROS also facilitated the communication, transmis-
sion and consumption of all the data involved in our system,
which led to carry out coordinated successful flights.

Figure 4(a), shows three plan flights: Line, Square and
Octagon. The first trajectory is composed of three waypoints,
the second trajectory is composed of four waypoints and the
third trajectory has eight waypoints. The vehicles start 1 me-
tre apart. After takeoff, each vehicle confirms if its partner is
ready to start the flight. First, each vehicles changes heading
in the direction of the next waypoint, once oriented, the PID
controller calculates the error w.r.t. the next waypoint and
sends control commands to pitch in order to fly towards this
waypoint. For the consensus strategy, the controller receives
information about the position of its partner and calculates
the difference in the X coordinate (front axis). This differ-
ence value is added up to the pitch controller in order to reg-
ulate the speed of each drone in order to wait for each other
or speed up, aiming at maintaining the same distance towards
the waypoint. When the waypoint is reached, the controller
turns the vehicle in the direction of the next waypoint. This
will continue until each MAV reaches the last waypoint and
then each one will land. Figure 4(b), shows the trajectories
performed by the MAVs, the trajectories demonstrate that the
vehicles follow the path symmetrically.

Ten runs of each trajectory were made. Table 1 shows
that, on average, vehicles maintain the initial separation dis-
tance. The evaluation made of the trajectories with the VI-
CON motion capture system was divided into two tables, ta-
ble 2 corresponds to the vehicle on the left and table 3 cor-
responds to the vehicle on the right. In them, it can be seen
that the error of the line path is high, due to the disturbances
that are generated between them. However, in the square and
octagon trajectories, it can be seen that the average error is
less than 2%.

Figure 6, shows the trajectories generated with the coor-
dinated flight controller, first shows the results of the vehicle
on the left, followed by the results of the vehicle on the right.
The first two columns show 5 line trajectories, column three
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(a) Tracks designed to evaluate the autonomous coordinate flight.

(b) Trajectories performed by the MAVs evaluated using VICON.

Figure 4: Tracks predefined to perform coordinate flight, the blue line represent the left MAV trajectory and the red line
correspond to the right MAV.

and four show 5 square trajectories and the last two columns
show five octagon trajectories. The red line indicates the tra-
jectory followed by the vehicle and the green line indicates
the ground truth (VICON). Although there are disturbances
generated between them, the vehicles are able to carry out the
desired trajectory successfully.

Finally, the Figure 7 external views of the autonomous
flight execution are displayed using the coordinated flight
controller. The first row shows the performance of the line
trajectory. The second row corresponds to the square trajec-
tory; the third row shows the performance of the octagon tra-
jectory. Finally, an example of cooperative flight is shown
using the coordinated flight controller proposed in this work,
Figure 8.

Figure 5: The architecture of the processing of our approach
using ROS as a communication channel. Each PID con-
trollers know the metric position of the partner to compensate
the differences of the current pose to the reference point, this
allows the flight are coordinate.

Table 1: Average Distance Between MAVs During
Coordinated Flight.

Trajectory Average distance [m] Std [m]
Line 1.032 ±0.110
Square 1.084 ±0.197
Octagon 1.002 ±0.171

Table 2: Left MAV

Trajectory
Average

Error [m] Std [m]
Average
traversed

distance [m]

Error
in %

Line 0.120 ±0.067 5.825 2.532
Square 0.159 ±0.089 13.111 1.213
Octagon 0.218 ±0.110 11.636 1.871

5 CONCLUSION

We have presented the implementation of a single individ-
ual controller for each MAV involved in a coordinated flight.
So each MAV knows its current position as well as the posi-
tion of its partner. This information is used in a PID controller
with a consensus strategy, which commands each drone to
follow a flight plan made of a set of waypoints. The results
of the evaluation show that the average error of the estimated
trajectories followed by each MAV is, in average, below 2%
of the total trajectory, this in comparison to ground truth ob-
tained with a motion capture system. In addition, we have
presented an illustrative application where two MAVs are co-
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Figure 6: Examples of the trajectories generated. The green line represents the ground truth (VICON), and the red line is the
path travelled by the vehicle. First, the graph of the vehicle placed on the left is shown, depending on the vehicle placed on the
right.

Table 3: Right MAV

Trajectory
Average

Error [m] Std [m]
Average
traversed

distance [m]

Error
in %

Line 0.155 ±0.080 5.662 2.732
Square 0.179 ±0.107 12.008 1.493
Octagon 0.162 ±0.078 11.156 1.456

ordinated, using our approach, to carry out a collaborative
flight to transport a load without risk of collision. We believe
that the obtained results are promising and we will continue
working on expanding the control for more than two MAVs,
improving the communication system between them and the
control algorithm.
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ABSTRACT

In this paper, the technical approach to achieve the objectives for the indoor and outdoor missions of the Inter-
national Micro Air Vehicle (IMAV) competition are presented. The ARCC team plans to utilize a single drone
for the indoor competition and multiple drones to achieve the outdoor mission objectives. A scaled up version of
the indoor drone would be utilized for the outdoor competitions to increase endurance and carry a larger sensor
payload. A fully autonomous and primarily vision focused approach was taken for both missions with all computa-
tions being performed on-board excluding the 2D mapping which is performed off-board for the outdoor mission,
whereas the indoor mission leverages off-board computing to reduce vehicle mass. Computer vision tasks are per-
formed using a combination of the ZBar library for QR codes, semantic segmentation using the UNet architecture,
object recognition using an RCNN, and classical image processing techniques such as ORB features and Hough
transforms.

1 INTRODUCTION

The Autonomous Robotics Competition Club (ARCC) is
a student run organization formed in the spring of 2018 and
advised by Dr. Eric Johnson. The club consists of gradu-
ate and undergraduate students from the Pennsylvania State
University. The club was founded with the purpose of par-
ticipating in autonomous aerial vehicle competitions. The
club consists primarily of students studying in the fields of
acoustics, aerospace engineering, mechanical engineering,
and electrical engineering but is open to anyone interested
in such activities. A detailed description of the organisa-
tion and prior work can be found at the the club’s website:
https://sites.psu.edu/arcc/.

In this paper the previous work of Penn State’s ARCC
team, the technical approach for the indoor and outdoor com-
petitions, and hardware and software specific elements are
outlined.

2 PREVIOUS WORK

Thus far, the ARCC organisation has participated in the
Vertical Flight Society’s 2019 Mico-Aerial Vehicle Challenge
(videos related to the competition are available on the club’s
website). The competition required the vehicle to pickup a
package, navigate a course avoiding obstacles while flying
over certain zones, and finally drop off the payload at a spec-
ified location while staying within the arena boundaries. The
problems addressed were localisation, image recognition, and
decision making. Initially an optical flow device paired with a
Lidar was used to aid in localisation, but the mono-chromatic
competition floor was featureless and thus we adopted a vi-
sion based approach using the Intel RealSense. A downward-
facing camera was used to detect targets marked by April
Tags. The images were transferred to a ground station via
WiFi for processing. For obstacle detection a sonar sensor

Figure 1: Vehicle used for the Vertical Flight Society’s com-
petition with the optical flow (later replaced by RealSense).

was used. The total weight of the vehicle was 500 grams.
For package retrieval a pick-up mechanism was 3D printed
doubling as the legs of the vehicle. To pick up the pack-
age the vehicle would hover above the package, lower it-
self, and close its servo actuated legs. The vehicle followed a
pre-programmed flight path which was fine-tuned during run
time through visual identification of landmarks reactionary
behaviour to the world state. For example, if the vehicle was
set to go straight but the sonar detected an obstacle, it would
perform an obstacle avoidance maneuver prior to continuing
on its path. An image of the vehicle is shown in Fig. 1.

3 HARDWARE

Since the competition is split into an indoor and outdoor
portion separate drones have been built for the two missions.

1
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This section outlines the hardware components chosen for
each mission along with an estimate for the component and
total weight.

Due to the increased image processing requirements of
the outdoor competition, in addition to the Aaeon compute
board, the outdoor drones will be outfitted with a much more
capable Jetson Nano board, which is equipped with a GPU
allowing us to speed up CNN inference. The specific com-
ponents are outlined in Table 1. Since the outdoor vehicle is
larger, the frame, power train, gripper, and battery are sized to
reflect this. We chose to reuse the rest of the sensor payload
from the indoor vehicle on the outdoor one. The indoor ve-
hicle currently weighs about 470 grams whereas the outdoor
vehicle weighs about 931 grams.

The open source px4 flight stack was chosen for this com-
petition and thus the Pixhawk flight controller was utilized.
The device has an on-board magnetometer and external GPS
module, but these are disabled/removed on the indoor flight
vehicle. The GPS sensor is removed to reduce weight and the
magnetometer was disabled due to the potential of magnetic
interference indoors. The flight controller is used to stabilise
the vehicle whereas the Intel Realsense, Lidar, and camera
make up the perceptual system.

4 INDOOR MISSION

The indoor mission requires the drone to navigate a ware-
house environment autonomously. The mission profile in-
volves recognition of key features (QR codes, flags, land-
ing pad, etc), avoidance of obstacles (e.g. shelving), pack-
age retrieval and delivery. In order to accomplish these tasks
autonomously several problems need to be addressed and
solved. These are the problems of localisation, image recog-
nition, control, path planning, communication, and package
delivery. Prior to addressing the problems an overview of the
hardware components and how they interact is presented in
the next section.

4.1 Architectural Overview
The control architecture of the vehicle is comprised of

three modules as shown in Fig. 2. The first module is the
manual control. The manual control sends commands di-
rectly to the fight controller on the vehicle via a human con-
trolled transmitter operating in the 2.4GHz band. This link
allows us to take over manual control or disable the vehi-
cle in case of emergencies. The second module is the ve-
hicle. The vehicle is comprised of on-board computer and
micro controller, 5GHz WiFi data link, flight controller, In-
tel realsense, and a camera used to identify mission elements
using computer vision. The inertial sensors and motors are
connected to the flight controller which forwards telemetry
data to the on-board computer. The camera feed is sent to
the on-board computer which transmits it over the data link
to a ground station for processing. The on-board computer
receives control commands from the ground station to be for-
warded to the flight controller which executes the commands.

Figure 2: Overview of sub systems and how they are con-
nected. Red links represent wireless communication. Grey
dashed boxes are specific to the outdoor vehicle only.

In the event of a loss of connection with the ground station,
the on-board computer is able to maintain static stability of
the craft while it tries to reconnect to the ground station. The
micro-controller is used to actuate the pickup mechanism and
read/write to any sensor payloads that may be used.

4.2 Localisation

Localisation will be performed visually using the Re-
alSense T265 camera. Since the camera does not provide a
map, we will be post processing camera images to generate a
map. This map could help us correct deviations in local po-
sition estimates if the ground truth locations of the static en-
vironment are known or estimated during flight using stereo
vision/distance sensor.

In order to effectively command the Micro Aerial Vehicle
(MAV), its current position in inertial space must be known
within some degree of accuracy. Inside a warehouse environ-
ment, the drone is likely denied a GPS signal, and hence must
look towards other sensors to provide the pose measurements
required to estimate the vehicle’s state. To this end, visual Si-
multaneous Localisation and Mapping (V-SLAM) is used, in
the form of the RealSense T265, a camera-CPU suite capable
of performing V-SLAM.

SLAM algorithms estimate vehicle pose by identifying
features in a camera image plane, and tracking it frame-to-
frame. The movement of the feature in the image between
frames, coupled with knowledge of camera movement pro-
vided through accelerometer and gyroscope sensors, allow
for the estimation of the location of that feature point in 3D in-
ertial space with-respect-to the camera. Simultaneously, the
accelerometers and gyroscopes can be used to estimate the
camera’s pose via some filtering technique such as a Kalman
Filter in this case. This estimate is subject to accelerometer
bias and gyroscopic drift. The feature point state estimates
are then used to correct for these sensor drifts. The result
is an accurate estimate of both the camera and feature point

2
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Component Quantity Weight - Indoor (g) Weight - Outdoor (g) Description
Frame 1 80 150 Composite
ESC 4 10 10 4 in 1

Motor 4 16 16 Emax motors
Flight Controller 1 10 70 Outdoor incl. GPS

Onboard Computer 1 60 N/A Aaeon Up
GPU Compute 1 N/A 130 Jetson Nano
Intel RealSense 1 60 N/A T265

Lidar 1 12 N/A Range sensor
Camera 1 N/A 15 Downward facing

Propeller 4 5 8 APC
Payload Gripper 1 40 30 3D printed

Battery 1 120 300 LiPo
Miscellaneous N/A 50 100 Wires, connectors,...

Total 470g Approx. 931g Approx.

Table 1: Vehicle components and weight. N/A represents components not applicable to that version of the vehicle.

state. A LIDAR distance sensor is used for accurate altitude
measurement and as is common for UAV applications, an Ex-
tended Kalman Filter is used to combine the measurements
from these sensors, with vehicle state equations, to yield an
estimate of the vehicle state (position and pose).

4.3 Image Recognition
QR code recognition will be done using the ZBar library.

This library requires a cropped image containing the QR code
in order to recognise it. We trained a Regional Convolu-
tional Neural Network (R-CNN) using the inception v3 back-
bone on synthetically generated images containing various
QR codes superimposed on a wide variety of indoor back-
grounds. It is hard to quantify accuracy as our synthetic data
set is not standardised, but we obtained an accuracy of ap-
proximately 92% on the held out test set. The bounding box
generated was then cropped out and recognised using ZBar.
A similar strategy was employed to detect the boxes and the
flag.

To circumvent the issue of being unable to predict the ef-
fectiveness of the RCNN in the actual competition environ-
ment and since we have ample computing power due to off-
board processing, we validate our results by performing se-
mantic segmentation using the UNET architecture [2]. The
goal of a segmentation problem is to section the pixels of
an image into the classes that the network has been trained
on. The data for these classes would be obtained from an
image search on the internet thereby augmenting our dataset
with labelled data that represents the classes we are interested
in such as the shelves, mailboxes and other objects of inter-
est. The segmented pixels would then be extracted and then
cross-validated against the CNN classifier to confirm that the
correct class has been detected. A weighted average of the
the R-CNN and UNET prediction would be considered as the
final result.

For the boxes on the shelves we had to train a regional
network as the architecture we used for semantic segmenta-
tion does not segment multiple objects of the same class, only
providing a blob that contains all the objects. Since there are
many boxes on the shelf, we are training a faster-RCNN [3] to
draw bounding rectangles around them. The boxes are non-
descript and of various shapes with the identifying factor that
they contain QR codes. The training dataset for this particu-
lar case was generated from images of cardboard boxes that
were super imposed with a QR code and warped, rotated, and
skewed using classical image processing techniques.

In the case of the flag, during take off we hope to detect
the flag pole and store the image of the flag as a ground truth
image. When we encounter the image during the drop-off
phase, we would compare it to the ground truth image using
ORB [4] features. A backup plan is to use transfer learning
to quickly train a CNN in the 2 training days preceding the
competition when we are made aware of the flags that would
be used as these would only be a subset of all the flags in the
world.

Finally, to detect the landing zone which has an ’H’ on
it, we will reuse code from our previous competitions where
we use probabilistic Hough transforms to identify the 3 lines
which are oriented in a known geometric shape.

4.4 Controls
Control of the MAV must be robust enough to handle the

coupled dynamics of the MAV and payload package slung
load; to this end, control is provided by the PX4 firmware run-
ning atop the Pixracer flight controller. As the lion’s share of
vehicle control is being provided by the PX4 firmware, only
a brief treatment of the controller software will be presented.
The PX4 firmware estimates the state of the vehicle (from ac-
celerometer, gyroscope, LIDAR, V-SLAM, and GPS sensors)
via an Extended Kalman Filter (EKF). It then compares the

3
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Figure 3: Illustrates the difference between image segmen-
tation and object recognition, the two approaches adopted in
our algorithms. [1]

vehicles current state estimate (position, velocity, pose, and
pose rates) to that which is commanded by trajectory plan-
ning. Error between current and desired state, prompts the
controller to send signals to the four motors, eliciting collec-
tive, lateral and longitudinal cyclic (governing pitch, roll, and
yaw of the vehicle - φ, θ, ψ - and body angular rates p, q, r)
response of the vehicle.

The magnitude to which this state error influences the
motor inputs is regulated via a simple proportional-integral-
derivative (PID) controller.

U(s) = (Kp +
1

s
Ki +Kds)E(s) (1)

Here, E(s) is the tracking error, in the Laplace domain, Kp

gain minimises tracking error, where the higher the gain value
the faster the response; Kd gain dampens the response of the
vehicle, reducing overshoot; Ki gain aids in reducing steady-
state error.

PID controllers are used to control the vehicle’s rate,
attitude, velocity, and position command. Despite the dy-

namics of the system changing after the package pickup,
the PX4 controllers are assumed robust enough (with large
enough margins), as to observe minimal controller perfor-
mance degradation. These gains are tuned for our particular
flight needs, and will likely be slightly different for indoor
and outdoor missions.

4.5 Path Planning

A feature point in the camera image plane is defined as
a point which may correspond to an obstacle in the envi-
ronment. The process of tracking a feature point involves
identifying a point of interest within the camera image frame
and then tracking those points between frames (correlating a
measured feature point with its counterpoint in a database of
tracked features). The first step is to identify which objects
within a frame are of interest. Two methods being utilised
aboard our vehicle are classical image processing techniques
(Harris Corner and Canny Edge detection algorithms)[5] as
well as more contemporary/deep-learning techniques (train-
ing CNNs to identify objects likely to be encountered by the
drone). Once these features are found within the image plane,
these measurements need to be corresponded to those features
seen in prior frames (stored in a database) in such a way that
the same features are tracked between frames. To this end,
the statistical Z-test is employed; a method which, when pre-
sented a new image of measured features/objects, can match
measurements with objects stored in the database, with high-
est probability[6]. It is necessary to store these observed fea-
tures in a database (and subsequently estimate their state - i.e.
position), so that we can track their relative location, even in
their absence from camera frames. To this end, the vehicle’s
state (i.e. pose), and the feature point’s movement within the
image plane, is used to estimate the object’s location[7]. This
is done using an EKF, whereby the vehicle’s state equations,
the feature’s state equations, and the entire suite of vehicle
sensors are fused to provide an accurate estimate of its lo-
cation relative to the vehicle[8]. These estimates can then
be used to avoid (and in some cases track towards - c.f. us-
ing image recognition to identify points of interest) objects
within field of view of vehicle.

Figure 4: The feature point (fp) tracking EKF process. N.B:
this flowchart is invariant of the image processing method.

4
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4.6 Payload Delivery

For the indoor vehicle, an alternative, weight-saving ap-
proach for the pickup mechanism will be considered since
the package weighs 25 grams for vehicles weighing under
500 grams. The proposed mechanism will be a small hook
like device which can be extended to secure the loop on the
package. The hook will be mounted on a pivot such that it
minimises visual interference during flight, and allows the
vehicle to land on its ’belly’ eliminating the need for landing
gear. A common 3.5 gram micro servo actuates the hook the
device and is capable of moving 60 degrees in 0.05 seconds.
The servo arm is approximately 15cm and exploits the struc-
tural strength of the 3D printed plastic in tension to lift the
package. This minimises the load on the servo compared to a
gripper design which uses servo torque to hold the package.
This allowed us to reduce weight and power consumption.

4.7 Communication

This section outlines how the vehicle and ground station
communicate with one another. Two types of data formats
are sent and received by both the vehicle and the ground sta-
tion. The data formats are Mavlink messages and video. The
vehicle transmits telemetry data to the ground station, and
the ground station logs the information along with displaying
the current state for purposes of debugging and testing. The
ground station sends commands to the vehicle via user input
during testing. Both the telemetry and commands are sent as
Mavlink messages. The other data format is that of video.
Video is transmitted from the vehicle to the ground station,
where the ground station displays the feed and uses it to feed
the object detectors.

The communication protocol used for Mavlink data trans-
mission is TCP/IP and for video is UDP/IP. Bo protocols uti-
lize WiFi at 5GHz for data transmission, but the TCP and
UDP have differing structures. The benefit of TCP is that
it performs rigorous checking to ensure the data transmitted
is received and in the format which it was sent. While UDP
streams data are connection less meaning there is no acknowl-
edgement that a package has been successfully transmitted.
Therefore TCP is better suited for sending telemetry and
commands where the transmission of a corrupted message or
missing a message all together can prove fatal, and UDP is
adequate for video transmission where missing a frame is not
detrimental to the vehicle. When setting up socket communi-
cation a server and client must be specified. In this case the
ground station serves as the server which waits for a client,
the vehicle, to connect.

Apart from the vehicle and the ground station, a transmit-
ter is also able to communicate with the vehicle in order to
take over manual control. The transmitter operates at a fre-
quency of 2.4GHz. In order to minimize interference and in-
crease available bandwidth, Wi-Fi communication will utilize
the 5GHz band.

5 OUTDOOR MISSION

For the outdoor competition, we plan to use a GPS mod-
ule to obtain the current position of the drone in addition to
fusion of vision data. As time is a crucial factor, three drones
would be utilized to simultaneously deliver the three pack-
ages. As the location of the houses and post boxes are not
provided, a random grid search would be performed to lo-
cate these targets. Similar to the indoor approach, we will
leverage R-CNNs to identify the targets, namely the houses,
post boxes, the crashed drones, and the missing parcels. The
system will be equipped with a Raspberry Pi camera for use
with mapping and target detection. From pixel coordinates,
aircraft attitude and altitude, along with the GPS information,
the pinhole camera model would be used to estimate the lo-
cation of the detected objects in the world coordinate system.

Finally, the task of generating a 2D map of the area would
be done using a Geographic Information System library, in
our case GeoPython as our off-board computational stack is
coded using python 3. Features in the images would be iden-
tified and tagged with global positioning information to stitch
them together to generate a 2D map of the area. The process
of feature tracking and determining the latitude and longitude
in the images is automated such that the on-board computer
tags each image taken with the current GPS location at cap-
ture so that the stitching of the images can be completed in
the 20 minutes duration provided at the end of the mission.
Further, vision would be used to detect the balloons in the
takeoff and landing area but since a quad-rotor affords verti-
cal take off and landing, with careful flight planning we do
not anticipate an encounter with the obstacles.

In contrast to the indoor mission, the outdoor vehicle will
communicate with the ground station using a 2.4GHz wire-
less broadcast link with a 900MHz control link for emer-
gency manual control. These frequencies provide adequate
range and bandwidth for video and control signals respec-
tively. This would allow for the transmitting of camera data
from the vehicle to the ground station for 2D map generation.
The vehicles would still be autonomous with all processing
done off-board, so loss of link would only restrict its ability
to map the environment and send telemetry data.

The decision to perform all computation on-board the ve-
hicle unlike the indoor competition is driven by the risk of
connection loss on the 2.4GHz band at the allowed 25mW
power limit at maximum operational range. As the vehicle all
up weight is not as critical in the outdoor mission, we chose
to include a more powerful compute board on-board for ro-
bustness and safety reasons.

5.1 Architectural Overview

The proposed approach to the outdoor competition is to
use two identical 500 gram quadrotors similar to the indoor
competition mainly for package drop off with a larger (ap-
proximately 1Kg) vehicle that identifies drop off locations,
and maps the environment. This is to optimize the weights of
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the vehicles to maximize the weight multipliers while creat-
ing a vehicle which will be powerful enough to lift the avion-
ics as well as a post box package with a reasonable endurance.

The on-board avionics system for the two smaller vehi-
cles will be the same as the indoor vehicle with the addition
of a GPS module. The larger vehicle will use the Pixhawk 2.1
flight controller which supports autonomous waypoint track-
ing, as well as compatibility with all other avionics peripher-
als. To localize the system in the global coordinate frame, the
team will use the Here GNSS GPS system, which is compat-
ible with the Pixhawk and has been found to be accurate up
to 3.7 meters of the desired destination [9]. Additionally for
communication, the team will utilize 915MHz transmitters
with a common ground station. All antennas will be circular
polarized (2-5 dBi gain) to ensure uniform converge regard-
less of azimuth angle.

The vehicles have been designed to optimize the scoring
system of the competition. The weight has been selected as
an ideal point for a high weight scale factor, as well as allow-
ing sufficient vehicle weight to support the proposed avionics
set. Additionally, the system is optimized for target detection
over mapping because the scoring system of the outdoor com-
petition heavily favors detecting the points of interest over
creating a high quality map.

5.2 Localization
The plan to localize each identical system is using the

Here GNSS GPS system which is compatible with the Pix-
hawk 2.1 flight controller.

5.3 Object Detection
A Regional Convolutional Neural Network (R-CNN) is

trained with synthetic databases generated to identify the
house, mailboxes, lost packages and crashed drones similar
to the indoor mission. As the mailboxes and lost packages

Figure 5: Example of an image for training the neural net-
work. The superimposed mailbox can be seen in yellow.

Characteristic Value
f 1.14 mm

X0 0.507 mm
Y0 0.395 mm
k1 -0.013
k2 0.1764
k3 -0.6391
p1 -0.0032
p2 -0.0072

Table 2: Raspberry Pi camera parameters.

are of unique colors, color identification schemes can also be
used to identify these objects. However, owing to the ground
color being a possible mixture of yellow and green, identifica-
tion of the yellow mailbox using color detection schemes may
yield false positives. Further, as the same network architec-
ture can be trained to identify different objects using different
databases, it is more convenient to use the same deep learn-
ing approach for detection of all objects. Transfer learning
approach will be used to train the RCNN at a lower computa-
tional cost.

The CNN is fed images from a Raspberry Pi camera
mounted on-board for inference. Since the multirotors will
be flying at a height of 25 [m], it is possible to determine the
ground dimensions of the image since the internal parameters
of the camera is known. The internal parameters of the cam-
era is not available from the manufacturer and hence the same
needs to be determined through camera calibration. A simi-
lar approach is adopted by Piras et al [10] where the camera
parameters have been determined using camera calibration.
The camera internal parameter as determined in the cited pa-
per have been used. The parameters are listed in table 2.

In order to train the neural network, a database of images
is generated. These images are generated by superimposing a
colored box over an image of the outdoor competition’s ter-
rain in a random location. This colored box is scaled to be of
the correct size relative to the predetermined height of flight
of 25 [m]. An example of one of the training images can be
seen in Figure 5. From this example we observe that the size
of the objects are much smaller than the overall image which
prompted us to use an R-CNN over other architectures such
as YOLO [11] as emperical tests have confirmed that it has
superior performance for smaller objects with careful tuning
of anchor size and aspect ratio hyper parameters.

5.4 2D Mapping
Two approaches are proposed to generate the 2D map of

the area. In the first approach, multiple images with suffi-
cient overlap as explained in the Path Planning section are
obtained. Image stitching is then performed based on key-
points generated and using the RANSAC algorithm. This ap-
proach is currently implemented in the ground station. Figure

6
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Figure 6: 2D mapping using image stitching.

Figure 7: Predetermined path of each outdoor quadrotor.

6 illustrates the same based on multiple overlapping images
obtained of an area from an elevation.

While the image stitching approach might yield accept-
able results, there exists a possibility of artifacts in the
stitched image owing to 3D objects. Thus, the alternative ap-
proach proposed is to generate orthomosaics. The orthomo-
saics are then geo-referenced using tools such as Open Drone
Map, etc. This will generate the required 2D map of the op-
erational area of the outdoor mission.

5.5 Path Planning
The path design for the outdoor competition will take

advantage of all three quadrotors at the same time. The
two smaller vehicles will transmit their image data to the
ground station for off-board identification of targets whereas
the larger drone will perform this on-board. The common
ground station ensures all vehicles will be kept in sync re-
garding recognised targets. Using this approach, the area will
be mapped in the shortest time possible.

The default path for the vehicles will imitate the ”mow-
ing of a lawn” by starting at the starting location and sweep-
ing back and forth within the competition area, moving in
one direction until the boundary of the area is reached, and

then shifting some distance horizontally while rotating 180◦

to move back toward the starting area. This behavior can be
seen in the Figure 7 In case of a failure in Wi-Fi link at range,
the two smaller drones will be unable to perform this task.
In this scenario, the larger drone will be commanded to com-
plete this behaviour slowing down the search, but still retain-
ing the capability of using the smaller drones to deliver pack-
ages using GPS as this is not dependent on a high throughput
Wi-Fi link.

In order to ensure that the entire area is mapped, suffi-
cient overlap between images need to exist so that the image
stitching can be performed correctly. Based on the geome-
try as detailed in Kraus [12], the percentage overlap in the
forward direction is set to 60% and 30% in the sides. This
will ensure that there are sufficient DoG and Harris keypoints
available to ensure effective image stitching. The homogra-
phy matrix for the matched vectors is determined using the
RANSAC algorithm. With the desired percentage overlap,
images in the forward direction need to be captured at every
40 m and the distance between two parallel paths should not
be greater than 30 m.

5.6 Payload Delivery
Time is a crucial factor in scoring of the outdoor phase of

the competition. Each of the three multirotors will be loaded
with a single package. Once one of the multirotors locates a
post box, this information will be sent to the ground station
and relayed to the multirotor with the corresponding package.

After the multirotor is aware of the location of the cor-
rect postbox, it will use the onboard Pixhawk 2.1 flight con-
troller along with the Global Positioning System (GPS) loca-
tion of the post box to navigate to the post box and deliver
the package. Given the competition’s requirement of land-
ing the package within a 5 meter radius of the post box and
the accuracy of the Here GNSS GPS module being reported
to be within 3.7 meters we did not employ any additional vi-
sion correction. As the competition does not require the pack-
age to be picked up by the drone autonomously, the payload
mechanism used is a mainly a package drop mechanism as
shown in figure 8

Figure 8: Package Drop Mechanism.
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As can be seen in figure 8, the drop mechanism is in the
retracted position. This ensures that the drop mechanism does
not obstruct landing of the drone. The mechanism will be
extended after takeoff and the package can be attached to the
hook when the vehicle is hovering. The package is dropped
at a desired location by retracting the mechanism.

5.7 Communication

The method of communication is similar to the indoor
portion with the major difference being the transmission fre-
quencies. Due to the range required of the outdoor vehicle,
the WiFi operates at 2.4GHz as opposed to 5GHz. The man-
ual control transmitter is operated at 915MHz to ensure it
does not interfere with the WiFi communication.

6 CONCLUSION

The details presented in the paper is a brief insight into
the technical approach that the team has envisioned to suc-
cessfully complete the IMAV 2019 challenge. With many
modules already implemented and ready, the team is on track
to fly, test and validate all modules well in advance of the ac-
tual competition. With the feature tracking methodology, the
warehouse mission can be successfully completed consider-
ing the fact that the real sense module provides localization
with tolerances of within 3cms observed during testing. Fi-
nally, the deep learning framework proposed will enable real
time target detection and identification owing to CNN infer-
ence being computationally efficient compared to classical vi-
sion processing.
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ABSTRACT

The objective of this project is developing the
computer vision tools for efficient inventory
management of packages of a warehouse. Pack-
ages are identified by unique QR-codes(Quick
Response codes) and are required to be matched
with the alphanumeric codes of the shelves
on which they are kept. Dimensions of the
shelves are pre-known. Figure 1 shows the
setup available to us at the competition. QR
codes are pasted on the body of the packages
and alphanumeric codes are put on the shelves.
QR-code identification relies on OpenCV(Open-
source computer vision) library ZBar which pro-
vides quite reliable and robust output. Cor-
responding alphanumeric code identification is
done using deep learning text detection library
Tesseract. All modules were integrated into a
ROS(Robot Operating System) architecture and
the output preserved in a CSV file. In addition to
it, we developed an algorithm for robust and pre-
cise warehouse management. The novelty of our
approach lies in the detection of text in Tesseract
computationally inexpensively using pre-known
information. In general, this paper can be used as
a working guide for text detection using Tesser-
act under similar conditions. All libraries used
are explained in detail.

1 INTRODUCTION

Real-time text detection from visual input is a useful as-
pect for the development of autonomous robots. Most of the
information that we receive from our surroundings is in the
form of images. And a major part of those images is text.
Text identification and decoding is thus essential for the de-
velopment of fully autonomous drones. This project concerns
with text identification part only. It also concerns with the de-
coding of another kind of visual input, QR codes which are
comparatively in more machine recognizable format, given
the standardized representation of these codes. As already ex-
plained, the problem which we are concerned with involves a
warehouse containing boxes on shelves. We need to make an
∗Email address(es): sahadebjoy10@gmail.com
†Email address(es): balajiatvizag@gmail.com
‡Supervising professor

inventory, listing QR-codes pasted on the objects and match-
ing it with the alphanumeric codes pasted on their respective
shelves. The last part of this paper deals with the algorithm
for warehouse management. The warehouse management is
done using a quadcopter autonomously with an attached gim-
bal for image stabilization, implementation similar to [1]. We
produce all the steps that we took to improve the performance
of our algorithm, the test inputs and their results. A basic flow
chart of the developed algorithm is shown in Figure 2.

Figure 1: Sample shelf (Source: www.imav2019.org)

2 PRIMARY PRE-PROCESSING FOR QR-CODE
DETECTION

Images obtained from the video feed is from a fish-eye
camera. A fish-eye camera is used owing to the wide-angle
that it captures. The images obtained from this camera are
distorted. To utilize the data and properly decode QR-codes
and text in the image we have to undistort the images. We use
camera calibration package of ROS [2] and OpenCV [3] to
calculate the camera matrix, distortion coefficients and other
parameters using multiple checkerboard images at different
positions, scale and skew angles.
Having calculated all the intrinsic and extrinsic components,

SEPTEMBER 29th TO OCTOBER 4th 2019, MADRID, SPAIN 214



IMAV2019-27 11th INTERNATIONAL MICRO AIR VEHICLE COMPETITION AND CONFERENCE

Figure 2: Flowchart for the algorithm

we undistort the images and publish them for further usage.
An example of the undistortion process is given in Figure 3.
Some more pre-processing steps are used on the undistorted
images using information extracted from QR codes, which
are explained in section 4. For now, we skip the remaining
pre-processing steps, since they are computationally expen-
sive and not necessary for QR code detection. So, unless
QR codes are observed from camera feed, we do not perform
those steps.

3 QR-CODE DETECTION

We use the OpenCV ZBar library [4] to detect QR-codes.
We pass the images obtained from the undistorted image
feed(as referred to in section 2), to the ZBar class object cre-
ated [5]. It scans the two-dimensional image to produce a
stream of intensity samples. The decoder searches a stream of
intensity values obtained by processing the images from the

(a) Input

(b) After undistortion

Figure 3: Image before and after undistortion

video feed for recognizable patterns and produces a stream
of completely decoded symbol data from which the QR code
text are decrypted. We store the obtained QR-code data and
its coordinates for further usage and move on to Alphanu-
meric code detection.

4 ALPHANUMERIC CODE DETECTION

The most challenging hurdle to the task was detecting
the alphanumeric codes accurately. For this task we used
Google’s open-source library Tesseract[6]. Tesseract is an
OCR(Optical character recognition) engine with support for
Unicode and the ability to recognize more than 100 lan-
guages. It can be trained to recognize other languages.
Tesseract is efficient only in the case of extremely well de-
fined text in a page (like we obtain for a .pdf (portable docu-
ment format) file). It shows quite poor performance for detec-
tion of text from noisy images, such as those obtained from
a drone camera. Parameters need to be properly tuned and
images properly pre-processed to produce optimal output. To
obtain this, we follow a step-by-step approach. First, using
information extracted from the QR-code (center and dimen-
sions), we attempt to further process the input image and cre-
ate more identifiable images. Then we apply Tesseract text
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recognition on it. We list the various parameters that we mod-
ify to obtain perfect solution. Finally, we propose a method
to further improve the result obtained using Tesseract.

4.1 Secondary Image pre-processing for alpha-numeric
code detection

After the initial pre-processing step (section 2), further
processing needs to be done on input feed for better detection
of alpha-numeric characters. The methods mentioned below
helped improve performance.

• Rescaling: Tesseract gives useful results with specific
text size in the image. To improve the result obtained
by Tesseract, we need to resize the image appropriately.

• Cropping desired area: Cropping reduces the
ROI(Region of interest), thus improves the text
detection by increasing confidence in the prediction.

• Blurring: The noise in the image gets reduced and re-
sults thus get better.

• Thresholding: It can be used to binarize the image to
improve the performance and eliminate shadows. [7].

• Rotation / Deskewing: The image could be rotated to
align the text which helps gain better results. [8].

Out of the listed methods, only rescaling and cropping im-
proved output quality, so we developed algorithms that used
those methods appropriately.

4.1.1 Cropping the image

For the text recognition to work well we observed that the re-
sults are better when the domain on which search for the text
has to be done is smaller. The sides of the image is cropped
to reduce the search area. We intend to crop our image with
respect to the QR-code. We do not crop the image from top
or bottom as this may lead to loss of information of the text
and QR-code. Our cropping assumes the following:-
1. Both the QR-code and the alpha-numeric code occur in the
same frame.
2. The QR-code is positioned along the left or right edge of
the shelf and the alphanumeric text is positioned at the center
of the shelf.
3. Only one shelf was detected per image.

Assumptions 2 and 3 were taken as limiting cases of the
alphanumeric detection problem. Our objective is to ensure
that the qr code and text both appear in the final cropped im-
age irrespective of their relative separation. Since we know
the alphanumeric text is placed at the center of the shelf, the
position of maximum separation is if the QR-code is near the
edge. Also, the maximum separation in pixels can only be
obtained if we consider one shelf per image.
Consider the length of the label of the alpha-numeric code be
a and the length of the shelf be L. Position of the center of

the QR-code label be x. And the length of the QR-code is
lq . The part of the image in between the position x. (refer to
Figure:4)

Figure 4: Showing the parameter of the shelf

Distance between farther ends of QR-code and alphanu-
meric code -

d = ((L+ a)/2)− x (1)

When x = 0 (The extreme case),

d max = (L+ a)/2 (2)

This implies that in a d max neighbourhood of the QR-
code, the alpha-numeric code exists. Now, since the image is
undistorted, we can directly compare the ratio of distances to
obtain the part of the image we need to retain. The ratio we
obtain is

k = (L+ a)/(2 ∗ L) (3)

In our current problem, we find this ratio to be 0.56 which
we approximately 60%. So we crop of 2/5th of the distance
of both ends of the image, measured from the center of the
QR-code. So, in the final cropped image, we retain 60 % of
the frame on either side of the QR-code. Using this we can
be sure that the alphanumeric text is detected and at the same
time reduce the region of interest considerably.

4.1.2 Re-scaling the image

The image obtained after cropping does not always yield
good results. This reason is attributed to the size of the the
text in the image, which has to be close to a particular value
for best results. For proper detection, therefore, we need
to estimate the text size before-hand to scale the image ac-
cordingly. There are many machine learning frameworks for
detection of text regions but usually, they are computationally
very expensive. We observed that the text recognition occurs
optimally at a particular text size in the image (174 X 74
pixels using the test drone). This text size in the image occurs
at a particular distance of the camera (here the drone) and the
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object that contains text (here the shelf). When the camera is
at some other distance, the text size in the image is different
from the optimal size and the output is not desirable. We
propose a method for text size approximation in the image
that resizes the image using the information from the camera
matrix [9] (obtained through camera calibration) [10, 11]
and the distance of the shelf from the drone. The drone is
maintained at a constant distance from the shelves using
a depth estimate from a stereo camera mounted on parrot
bebop drone. We make use of known text frame size (on the
shelf) and the depth at which it occurs. Our objective in this
method is to find the scaling factor by which we would scale
our image.

Camera matrix =


fx 0 cx
0 fy cy
0 0 1




where fx and fy are focal-length times a scaling fac-
tor.

fx = f ∗mx (4)

fy = f ∗my (5)

(where mx and my are the scaling factors along correspond-
ing axes). In the camera we used, the scaling factors along
both axes are the same hence we take the focal length f as
the average of fx and fy.

y′ = y ∗ f/z (6)

y′′ = y′ ∗m (7)

where,
y′ = object size in image sensor
y = object real size
f = focal length of camera
z = distance from object containing text
y′′ = object size in pixel
m = pixels per millimeter

Final step is re-scaling by a factor such that the final out-
put image used for detection has optimal text pixel size. Scal-
ing by:

k = a/y′′ (8)

a = optimal text size in image(in pixels) = 74 px
k = scaling factor

To re-scale, we use OpenCV’s [3] built-in re-scaling function
and the obtained ratio k. The representation of the algorithm
is provided in Figure 5.

Figure 5: Re-scaling : The image (a) shows the actual rep-
resentation of the object in 3-dimensions. The image b(i)
shows the projection of object on the image. And the char-
acter recognition at this distance of the object is optimal. (ii)
shows the projection of object on image at another distance
that is not the optimal distance for character recognition. Our
objective is to process this image so that it gives optimal out-
put for character recognition, i.e. achieve situation(i).

Figure 6: Sample testing image

4.2 Improving Tesseract performance

Furthermore, Tesseract contains many intrinsic parame-
ters whose values can modify output results as well as its
frequency. In the following section, we list those parame-
ters and their observations one by one. All provided results
are sampled from a larger output of the algorithms, as tested
on sample Figure 6, therefore they are only indicative of the
actual results and the effects observed on modifying those pa-
rameters. The final results are provided in section 6.

4.2.1 Setting appropriate Page segmentation method

Page segmentation mode(psm) is the first of those parameters.
By default, Tesseract expects a page of text when it segments
an image. How Tesseract will read the page will depend
upon how it segments the image. And we can specify that
using psm. Tesseract provides 13 supported page segmenta-
tion modes for different scenarios. PSM SINGLE WORD
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(i.e Treating the image as a single word) was considered
due to better performance at detection over other methods,
PSM SINGLE LINE (i.e treating the image as a single text
line) and PSM DEFAULT.

S.no. PSM SINGLE WORD PSM AUTO
1 11A
2 11A 11
3 11A 114
4 11A 41h
5 11A 11A

Table 1: Results for different page segmentation modes

Increased frequency and accuracy of prediction, given pre-
defined knowledge as to the type of text present (Refer to
Table 1).

4.2.2 Disabling Tesseract built-in dictionaries and in-
cluding custom word-lists and patterns

Modifying the load system and load freq parameters allows
us to enable/disable Tesseract dictionaries, which are respon-
sible for producing output close to the general dictionary
words. Disabling the dictionaries, Tesseract should increase
recognition since the text we need to detect isn’t dictionary
words but alphanumeric codes having a specific pattern.
Common character patterns were added (/d/d/c for digit, digit,
character) to further trim down image output to more accurate
results. It should be noted that this method only increases the
probability of correct predictions. We need to perform a fur-
ther trim(section 4.2.5) to ensure it. The following table sum-
marizes the improvements.

S.no Using Custom word-patterns Default
1 11A 141A
2 J1A J1A
3 11A 111A
4 11A A1A
5 11A 1A

Table 2: Custom word pattern results

Notice the improvement in detection of both digits instead of
just one (row 5) and of correct text-pattern (row 4) (refer to
Table 2).

4.2.3 Using White-list of characters

White list is another parameter which can be assigned the
value of a string containing all characters which we want to
be used for recognition purposes. Since we are sure to en-
counter only single alphanumeric codes for detection, we can

safely omit special characters and blank spaces from the list
of characters. Thus we can add alphabets and digits under
Tesseract white-list, only they will be used for prediction of
text.

S.no. With White-list Without white-list
1 11A
2 11A 11
3 114 114
4 11A 11&
5 11A !1A

Table 3: Results for character white-list

Using white-list has suppressed occurrence of special charac-
ter ’!’ (row 5) and ’&’(row 4) and has improved confidence
in prediction (Refer to Table 3).

4.2.4 Using an iterator object to examine sub-strings

Owing to background noise, a lot of stray text is also detected,
which is not a part of the text in the input image. To sup-
press those occurrences, we use an iterator object to scan each
string detected separately and select the text sorted on basis
of confidence in prediction and word-pattern. We modify the
code to involve an iterator object to achieve this result.

4.2.5 Trimming the output further

The next step is parsing the output for the desired result and
selecting the most probable alphanumeric code correspond-
ing to a specific QR-code. We run a loop over the obtained
text to find for data of type (int)(int)(character) having the
maximum number of observations.

Algorithm 1 explains the full algorithm.

Algorithm 1 Overall Algorithm per frame

Ensure: QR code & Text Matching
Input: Camera feed image, Depth

Undistorted image←Preprocess(INPUT)
(QR dims, QR data)← QR detection(Undistorted image)
Cropped image←Cropping(Undistorted image, QR dims)
Resized image← Rescaling(Cropped image, depth)
Text← Text detection(Resized image)
Alphanumeric Code← Trim(Text, QR data)

Output: (QR data, Alphanumeric Code)

5 WAREHOUSE MANAGEMENT ALGORITHM

Using the above pre-processing steps guarantees a good
recognition using very minimal computation but during use,
to reduce any possible errors, we improvised on the motion
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of the quadcopter to improve efficiency and quality of results.
The improvisations are listed below:

• The current warehouse consists of various shelves, and
each of the shelf is used to store various packages.
The shelves are further divided into various rows and
columns to store the packages. We observed that detec-
tion when traversing along columns was considerably
slower than when traversing along rows. So a row-wise
traversal of the shelves was used finally.

• Also, since Tesseract gives optimal result at only a defi-
nite text size, we implement an algorithm, in addition to
section 4.1.2, to maneuver forward and backward from
the mean position. This to and fro swaying motion per-
pendicular to the shelf changes the text size by a small
amount thus correcting any drift errors in the position
of the drone and thus assuring an appropriate output
even at an erroneous distance from the shelves. It also
reduces the scope of error in re-scaling of the image.
An oscillation of 10 cm was observed to produce max-
imum results.

• Having observed that Tesseract gives better results
when the text is on the bottom side of the page, we
align it more that way to get a better result using the
pre-known position of the QR code from section 3.

• Once a QR-code is detected, we initiate a hover time so
that sufficient detection results are obtained thus mini-
mizing error during final processing.

• Also, the presence of gimbal ensures that the QR-code
is viewed normally at all times, reducing perspective
distortion in text.

6 TESTING

Figure 7: Drone used for testing (Source: www.parrot.com &
www.amazon.in)

We used a Parrot Bebop 2 drone (Figure 7) for testing
purposes which has a built-in gimbal camera, to eliminate all

hardware limitations. The result obtained was quite satisfac-
tory. QR code and corresponding alphanumeric text could be
correctly recognized from a wide range of distances from the
shelf, depending upon the quality of the camera feed of the
drone. Experiments on Bebop drone gave impressive results
for distances up-to 3m, after which the camera feed depre-
cates due to re-sizing (section 4.1.2). The Average computa-
tion time observed was low, thus the algorithm was capable of
real-time detection. Output frequency and accuracy was suffi-
ciently high, thus the hover time required before each package
was low (Results listed in detail in Table 4).

Parameter Freq(min−1) Acc(%) Frame-Rate(fps)

None 95 96.8 7.10
Config-File 68 95.4 5.96
White-List 97 42.2 7.31

PSM 11 51 7.21

Table 4: Result: Excluding different parameters

Table 4 lists in detail the effect of the absence of any of
the tuned parameters tested in section 4.2. The first column
is the parameter excluded. The second column represents
the number of correct observation observed per minute. The
third column is the percentage of correct observations in
prediction. The fourth lists the frame-rate observed during
detection. These results are obtained during testing on a
desktop PC.

Major takeaways from the results table are -

• An impressive 95 observations/minute were observed
on the final algorithm and an accuracy of 96.8 % with-
out the final trimming step (section 4.2.5).

• Removing config-files (specifying custom user-
patterns and dictionaries, section 4.2.2) decreases
the frame rate as well as the observation frequency.
However, on the limited observations, the accuracy
observed is quite high (95.4%).

• Removing white-list (section 4.2.3) or changing page-
segmentation-mode (psm) (section 4.2.1) has quite
drastic results on detection results.

7 CONCLUSION

This article documents all steps and corresponding results
of the warehouse management sub-module of the IMAV com-
petition 2019. In this article we have mentioned the ways
to optimize the two major modules of warehouse manage-
ment i.e QR-code detection and alpha-numeric detection.The
QR-code detection module is simpler and provides accurate
results even with no modifications. However, the text detec-
tion module has higher complexity and has to be dealt with
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Figure 8: Initial output

great precision. We have described various methods of us-
ing Optical character recognition. To improve the results, we
used undistortion, re-scaling of the input image, cropping of
the input image. We obtained a frequency of 6-7 results per
second and the correct alphanumeric code was embedded in
about 90-95% of identified strings. Refer to Figure 8: Initial
Output, without the final trim(steps up to section 4.2.3) and
Figure 9: Final Output. The results were quite satisfactory.
Given a hover time of 4-5 seconds (modifiable during final
testing of the algorithm at the venue), we obtain enough test
data to predict the correct QR-code with >90% accuracy on
test input. We look forward to reproducing this performance
at the competition too.
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ABSTRACT

Intelligent vehicles are equipped with multiple
on-board sensors for environment perception.
Moreover, with the increasing number of these
vehicles on the roads, the more cooperation and
coordination among them is becoming more cru-
cial. Accordingly, this paper presents multiple
heterogeneous vehicles cooperation approaches,
to be used in smart roads to improve driving
safety. The heterogeneity aspect is based on the
use of Unmanned Aerial Vehicle (UAV) to scout
the surrounding of the Unmanned Ground Vehi-
cle (UGV), thus increasing the perception effi-
ciency. Two approaches were proposed for this
cooperation, vehicle and pedestrian detection.
The algorithms are implemented in the on-board
computers. In order to evaluate the proposed ap-
proaches, different scenarios were selected and
multiple experiments were carried out. The ob-
tained results show the high performance of the
algorithm in almost real-time detection and clas-
sification, moreover the ability to communicate
the outcomes to the UGV, thus improving the au-
tomated navigation process for out of the line of
sight pedestrians.

1 INTRODUCTION

The advances in Intelligent Transportation Systems (ITS)
are exponentially improving over the last century. The objec-
tive is to provide intelligent and innovative services for the
different modes of transportation, towards better, safer, co-
ordinated and smarter transport networks. The ITS focus is
divided into two main categories; improve existing compo-
nents of the transport networks, and develop intelligent ve-
hicles which facilitate the transportation process [1]. In re-
cent years, interest in self-driving vehicles has significantly
increased. Accordingly, the necessity of cooperation with all
road entities becomes more crucial. The ITS consists of three
main entities: vehicles, infrastructure and pedestrians [2].

Accordingly, an intelligent vehicle on the road must co-
operate with all road entities, to ensure road safety, especially

∗Email address(es): akaff@ing.uc3m.es

the safety of pedestrians and other Vulnerable Road Users
(VRU). Therefore, the VRU recognition and avoidance in in-
telligent vehicles are essential tasks. However, due to sensor
limitations and several blind spots surrounding the vehicles,
researchers are studying different possibilities improving the
perception to detect out of the line of sight obstacles.

This paper presents a heterogeneous cooperative ap-
proach to tackling the problem of obstacle detection and
avoidance with intelligent vehicles. In particular, an Un-
manned Aerial Vehicle (UAV) is used to help an autonomous
vehicle detect pedestrians located in blind or low visibility
areas for the car. To do this, it embarks on the UAV, a monoc-
ular camera and a computer, which can process visual infor-
mation and determine both the position of the vehicle and that
of pedestrians. The information generated by the vision algo-
rithms is shared with the vehicle to be incorporated into its
perception of the environment through intervehicular com-
munication. In this way, a method is presented that allows
providing the terrestrial system with safer navigation.

The remainder of this paper is organized as follows; Sec-
tion 2 presents the background overview of previous carried-
out work in this field. Afterwards, Section 3 introduces the
proposed algorithms for detecting and tracking pedestrians
and vehicles. In Section 4, the experimental work is illus-
trated with the selected platforms and scenarios, followed by
the discussion of the obtained results in Section 5. Finally, in
Section 6 conclusion and future work are summarized.

Start

Aerial Raw Image

Vehicle Detection
Algorithm

Pedestrian Detection
Algorithm

Vehicle pose  
relative to the drone

Pedestrian pose  
relative to the drone

Estimate relative pose
between vehicle and

pedestrian

Send the pedestrian
pose to the vehicle

End

Pedestrian pose  
relative to the vehicle

Figure 1: Proposed Approach
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2 BACKGROUND OVERVIEW

Pedestrian detection using computer vision is considered
as a challenging problem in traffic environments, and most
of the solutions presented in this field are based on a com-
mon approach, which uses a Histogram of Oriented Gradi-
ents (HOG) descriptor, and a Support Vector Machine (SVM)
classifier [3]. In [4], a monocular camera is used to de-
tect pedestrians from a UAV by applying a HOG descriptor.
Thereafter, based on three image sequences, the distance to
the pedestrian is estimated. Other works, such as [5], prefer a
Haar-Like based algorithm for pedestrian detection, followed
by a template-based tracking.

Furthermore, a detecting and tracking feature-based
method, from UAVs was presented in [6]. First, the features
are extracted using Harris detector, then the pyramidal Lucas-
Kanade (LK) optical flow model and Least Median Square
Estimator (LMedS) are used; to classify the movement of
the detected features. Then, a Kalman filter and a template
matching algorithm are used to track the targets.

Lately, with the advances in deep learning, new meth-
ods for object detection and classification are used. For in-
stance, in [7], a deep Convolutional Neural Network (CNN)
is trained to classify moving vehicles, showing promising re-
sults. In addition, the heterogeneous cooperation between
ground and aerial vehicles has been explored in applications
such as search and rescue. Recently, a heterogeneous robot
collaboration of UGV-UAV has been presented in [8]; in or-
der to collect observations in cluttered urban environments.
In this approach, the robot team is able to map the environ-
ment while following predefined waypoints. First, the UGV
builds the 3D map of the environment using a LIDAR, then,
the UAV performs the data gathering. Moreover, the UAV
estimates its location by detecting and tracking the UGV.

Furthermore, authors in [9] introduced a method for
pedestrians detection and localization based on perception
for cooperation between a team of UAV and UGV. The ge-
ographic information systems localization system considered
that the UGV as a moving landmark for a perspective trans-
formation; to convert the image locations of the targets.

3 PROPOSED APPROACH

In this section, the proposed approach is divided into two
algorithms: vehicle and pedestrian detection, as it is shown in
Figure 1. These algorithms are explained below.

3.1 Vehicle Detection
The main objective at this point is to be able to detect,

by computer vision and in real time, a characteristic pattern
located on the roof of an autonomous vehicle, and knowing
its position with respect to the UAV while it flies over an area,
in which is located the Vehicle and a set of pedestrians.

The procedure of detecting and estimating the position of
the autonomous UGV consists of analyzing each frame cap-
tured by the camera equipped in the UAV. Once the pattern
is located, the algorithm estimates the position of the UGV

with respect to the UAV. Once the position of the UGV and
the pedestrians with respect to the UAV is estimated, the rel-
ative position of pedestrians to the UGV is estimated.

In this work, the UGV is equipped with a pattern, placed
on the roof, as it is shown in Figure 2. The detection of this
pattern will make it possible to know the position of the vehi-
cle with respect to the UAV, and to be able to know the relative
position of the vehicle with respect to the pedestrians located
in the vehicle environment.

In the case of the circumference, it is defined by Equa-
tion 1 and is described by three parameters: coordinates x and
y to the center of the circumference (a, b) and the radius (r).

(x− a)2 + (y − b)2 = r2 (1)

In this algorithm, Hough is used to detect the circumfer-
ence of the pattern. Since the flight altitude of the UAV is
variable, it can be found in different sizes depending on the
height, at which it is found, so no search size will be set for
the radius. The only parameter established will be the dis-
tance between centres of the different circumferences to be
found within the image, so that in each image only one cir-
cle is detected, given that in the proposed scenarios there will
only be one UGV.

As it is shown in Figure 2, the pattern is formed by a circle
of 790mm diameter, and X-shape inside.

Figure 2: Landing Pattern

The procedure used to try to detect and know the position
of the autonomous vehicle consists of analyzing each frame
captured by the camera and, through computer vision algo-
rithms, detecting the described pattern on the roof of the ve-
hicle. Once located, it will be possible to know the position
of the land vehicle with respect to the UAV.

Once the position of the autonomous vehicle with respect
to the UAV and the position of pedestrians with respect to
the air vehicle is known, the relative position of persons with
respect to the autonomous vehicle may also be known.

The algorithm is based on the localization of circles
within the image and, in the subsequent analysis of the re-
gions of interest (ROIs) generated from the circles detected
in the frame. The algorithm will be taking frame to frame
by trying to carry out positive locations of the model in each
of the captured images, and performing a tracking process in
case there is no detection in the consecutive frame to a posi-
tive detection. The steps within this algorithm for the detec-
tion process are detailed below:

Circle detection: it is carried out using the transformation
of Hough.
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Creating a region of interest: to create a new image from
the original frame, extracting the section of the frame in
which the circle has been detected, provided that the pattern
is completely inside the image. Next, a filtering by size is car-
ried out to ensure the successful completion of the remaining
steps of the algorithms. The location of the small-sized pat-
tern would negatively affect all other tasks.

Resetting pattern size: an image of the model to be
searched is created that matches the size of the circle being
analyzed at this time.

Match between model and detection: Once the pattern is
reset, a correlation is established between the model and the
ROI created around the detected circle. If the correlation
value is above a threshold, which has been set experimen-
tally, it is considered that the detected circle corresponds with
the pattern placed on the vehicle, so that it is proceeded to
accept that detection (Figure 3) and to calculate the position
with respect to the UAV.

If the correlation value is below the set value, the algo-
rithm starts the tracking process as long as the pattern has
been detected in the previous frame.

Before moving to a new detection or to carry out the track-
ing process it is verified that the detection is not incorrect by
finding the model rotated with respect to the original, thus re-
peating this step by making turns of 30o in the reset pattern.
This process is repeated as much 2 times before leaving this
step, because when you reach the third iteration the pattern
will have rotated 90o and therefore reach its original position.

Figure 3: Detection of the Landing-Pad

Position calculation: Finally, the calculation of the posi-
tion is performed. For this, as it is collected in the following
equations, it is necessary to know the size of the pattern, both
real and in the image, as well as the focal length of the cam-
era. In addition, the value of the x and Y coordinates of the
image, as well as the value of the x and Y coordinates of the
center of the detected circle, must be used, all in pixels

z[m] =
RealPatternSize ∗ FocalLength

ImagePatternSize ∗ 1000 (2)

x[m] =
|CenterImgX − CenterDetecX| ∗ z

Focal LengthX ∗ 1000 (3)

y[m] =
|CenterImgY − CenterDetecY | ∗ z

Focal LengthY ∗ 1000 (4)

As indicated above, in the case that there is no detection
after a correct location, a tracking process of the pattern is
started using the position of the pattern in the previous im-
age. The tracking is carried out using the OpenCV library
and follows the steps as follow:

Tracker initialization: to carry out the creation and initial-
ization of the tracker. To do this, it is necessary to pass to
the function an image and an area or region of the element to
be followed during the tracking process, so this operation is
performed by passing to the function the previous frame and
the region of interest in which the pattern has been correctly
detected. Each time the detection algorithm concludes with a
positive result, the MedianFlow tracker is initialized.
Tracker update: to update the tracker; in order to carry out
the detection of the model in the current frame, in which the
detection has not achieved a satisfactory result. In this way,
the tracking updates the location of the pattern from the last
known position of the pattern in the new captured image.
Checking the tracking: It establishes a new region of in-
terest obtained from the frame being analyzed and the posi-
tion of the pattern obtained by the tracker. The pattern is read-
justed to the size of the region of interest and again a match-
ing process is performed where the correlation between the
ROI obtained from the tracking process and the model being
sought is checked. If the correlation is above the established
threshold, the tracking is correct and the position of the last
detected pattern is updated, whereas if the correlation result
is below the threshold, the tracker is considered to have failed
and the pattern is lost, so that the algorithm will loop back the
detection process until a good location (Figure 4) is obtained.

From the results obtained from the tracking algorithm, it
has been decided to set a threshold value in the tracking al-
gorithm lower than the threshold value in the detection algo-
rithm. Which resulting the increament the number of frames
in which the location of the vehicle is known.

Figure 4: Tracking of the Landing-Pad

Position calculation: If the tracking is correct, the position
is calculated using the Equations 2, 3, and 4 previously set.

3.2 Pedestrian Detection
The main objective at this point is the detection of pedes-

trian, by HOG in real time, and to locate their positions with
respect to the UAV.
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HOG descriptor uses a global feature to represent an ob-
ject rather than a collection of local features. An entire ob-
ject is represented by a single feature vector, as opposed to
many individual vectors representing smaller parts of the ob-
ject. Typically, HOG descriptor converts an RGB image of
size (width× height× 3) to a single feature vector n.

Pedestrian detection is done by a camera housed on a
UAV. The procedure is to process each frame from the camera
stream to detect pedestrians within the image. Detection steps
within this algorithm for the detection process are as follows:

1. Training HOG descriptor: the descriptor training is
performed using linear SVM. The training set is a bal-
anced one; number of positive set equal number of
negative set. The positive set consists of two hundred
40x40 pixels images of the object of interest (Figure
5a and 5b). The negative set consists of two hundred
40x40 images from the background of the object of in-
terest (Figure 5c and 5d).

(a) (b) (c) (d)

Figure 5: Positive and Negative Training Set

2. Setup HOG descriptor: as stated earlier in subsection
(3.2), the HOG descriptor detection depends on sev-
eral parameters that were tuned through trial and error.
WinStid size is set to 8x8 pixel step between each slid-
ing window location. Padding of size 8x8 was used in
the detection. The scale parameter was set to 1.01, this
value provided a sufficient factor by which the image
is resized at each layer and number of levels in the im-
age pyramid. The hit-threshold proved to be the most
important parameter in HOG detection. In the results
section, the performance of HOG detection under three
different hit-threshold values will be discussed.

3. Detections Filtering: the detection suffered from noise
at the edges of the frame to be processed. A small
number of false positives appeared at the edges of the
processed frame. These false detection are filtered and
omitted from the detection. Furthermore, the detection
was filtered against size. Detections with size greater
than 60x60 pixels are not counted.

4. Position Calculation: the positions of detected pedes-
trians is calculated using Equations 2, 3, and 4. When
the positions of both pedestrians and the vehicle are
calculated relative the UAV, the relative position be-
tween pedestrians and vehicle can be calculated.

3.3 Inter-Vehicular Communication
In this work, an approach for inter-vehicular communi-

cation for the broad off-road environment is proposed. The
approach objective is to maintain a continuous connection
among the vehicles in the system. Accordingly, a Virtual Pri-
vate Network (VPN) is created, which requires secure con-
nection via the use of authentication keys and certificates.
The platforms connect to the VPN via any suitable internet
connection using the proper authentication credentials. In ref-
erence to platform ROS software architecture, the approach
utilizes the multi-master presented in [10]. This enables the
platform to have a separate ROS core, thus it is self-dependent
and does not operate in a centralized paradigm. The proposed
scheme allows the platform to access two networks. One for
the vehicular communication schemes, and another for any
other types of communication.

Accordingly, for the cooperation among the UAV and the
intelligent vehicle, the proposed communication approach as-
sures continuous connection among the vehicles, which was
verified in the previous work for cooperative driving in [11].

4 EXPERIMENTAL WORK

The approach presented in previous sections has been val-
idated by performing real tests with UAV and UGV plat-
forms. The following subsections will describe the research
platforms used, the scenario designed for the experiments.

4.1 Platforms
On the one hand, the experiments have been carried out

on a ground autonomous vehicle under the iCab project (In-
telligent Campus Automobile). This vehicle consists of an
electric golf cart, which has been modified mechanically and
electronically to satisfy the goal of autonomous navigation
from one point to another within campus vicinity, as shown
in Figure 6a.

(a) (b)

Figure 6: Research Platforms

On the other hand, the UAV platform used in the experi-
ments consists of a 3D printed quadcopter as shown in Figure
6b, with a total weight of 1.5Kg. The autopilot used with
this quadcopter is the Pixhawk, equipped with GPS, mag-
netometer, IMU and barometer sensors. For the perception
purposes, SJCAM SJ4000 camera is used and mounted on
Walkera G-2D gimbal, which provides 640×480 RGB im-
ages at 30 frames per second. All the processing is performed
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on-board by an ODROID-XU4 embedded computer. Finally,
both platforms are running Ubuntu 16.04 operating system,
and the software architecture has been integrated into ROS
middleware. Moreover, in order to avoid a centralized ap-
proach and guarantee their operations in an independent way,
each vehicle has its own ROS master.

4.2 Scenario
The tests have been performed in outdoor environments,

emulating a zebra crossing area, with an autonomous vehi-
cle approaching and several pedestrians crossing. A UAV is
hovering while the pedestrian is crossing, detecting both the
vehicle and the pedestrians in the area. The relative distance
from the vehicle to each pedestrian is computed in the UAV
and shared with the UGV to perform safer navigation tasks.

5 RESULTS

In this section, the results from both vehicle and pedes-
trian detection are discussed.

5.1 Vehicle Detection Results
Table 1 collects the results obtained in terms of detections

of the vehicle are concerned (Figures 7a and 7b). Each of the
tables corresponds to each of the two sequences used for the
test of the algorithm.

In the first sequence, the lighting conditions are adverse
for the perception systems, as the UAV is flying over areas
with shadows and light changes. In the second sequence, the
tests are performed in a shaded area, where the level of illu-
mination is low, but without light changes.

Both sequences have been tested with three different cor-
relation threshold values, where the vehicle appears is con-
stant and what varies is the number of detections of the vehi-
cle and the false positives.

(a) (b)

(c) (d)

Figure 7: Vehicle and Pedestrain Detection results

In the case of false positives, a precise knowledge of the
altitude at which the UAV is flying, would allow applying a

filter of size of the circle of the pattern. Knowing the height
at which you are flying, and since you know the size of the
actual model, you can know the size with which the pattern
should be detected in the image, which would allow to carry
out a filtering by the size of the detected circles, thus decreas-
ing the likelihood of false positives appearing.

It is shown that slightly decreasing the threshold signifi-
cantly increases the percentage of correct detection, but also
increases the number of false positives, that is, there are times
when it is detected as good something it is not the vehicle. In
addition, it can be seen how the algorithm improves as the
light conditions become more suitable for the vision system.

As for the value of the threshold, if you want to avoid false
positives, and whenever a detection is known to the 100% that
is being detected the vehicle, it will be necessary to establish
a threshold of at least 0.94. This may interest you if you want
to carry out control actions on the UAV’s flight depending
on the detection, either to follow the vehicle or to carry out
landing maneuvers on it. If instead, what you want is to get a
greater number of detections even if you lose reliability, you
can reduce the threshold value below the 0.94 set above.

Although sequence 2 was performed under better lighting
conditions, the percentage of detections decreased. This is
because the number of frames in which the vehicle appears is
very low, which causes any detection failure to be penalized
more than in the case of sequence 1. Even so, it can be seen
that the number of times the pattern is located is over 90%.

5.2 Pedestrian Detection Results
Table 1shows the results obtained in pedestrian detection

(Figures 7c and 7d). Both sequences have been tested with 3
different hit-threshold values. In each sequence the number
of frames in which the pedestrian pass zebra crossing area
is constant. The table illustrates the variation of the detection
rate and number of false positives, depending on the threshold
with which the detection works. Detection rate is the ratio of
pedestrian detected correctly to the total number of pedestri-
ans detected in the frame, and is defined by Equation 5. False
positives can be filtered knowing the height at which the UAV
is flying and average pedestrian size as stated earlier.

DetectionRate =
TruePositive

TruePositive+ FalseNegative
(5)

A slight decrement in the hit-threshold value significantly
increases the detection rate, but also increases the number of
false positives detected. Furthermore, the results in this ta-
ble support the relation between algorithm detection improve-
ment and light conditions. In sequence 2, the UAV is main-
tained at a high altitude which provided a challenge in train-
ing and detection. The training file size had to be increased
in order to maintain a good detection rate.

6 CONCLUSIONS

This paper presents a heterogeneous vehicles coopera-
tion approach to cope with cutting-edge UAVs technology
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Table 1: Vehicle and Pedestrian Detection Results

Vehicle Detection
Sequence Threshold Vehicle

frames
Detection
rate %

False
positive

Seq. 1
0.92 301 100 65
0.93 301 100 26
0.94 301 100 0

Seq. 2
0.92 36 100 7
0.93 36 91.6 2
0.94 36 91.6 0

Pedestrian Detection
Sequence Threshold Pedestrian

frames
Detection
rate %

False
positive

Seq. 1
0.73 301 98 71
0.9 301 94.7 32
0.98 301 89 0

Seq. 2
0.73 308 96.75 43
0.9 308 94.48 15
0.98 308 87.01 0

for smart roads. This approach consists of real-time pedes-
trian and UGVs detection and tracking. These algorithms are
studied as a complex and essential task for intelligent vehi-
cles in transportation systems. The proposed algorithms take
the advantages of on-board camera for sensing and detect-
ing the two important components in the road (pedestrian and
vehicle), and providing information about its position and ve-
locity; to increase the safety in the smart roads.

Different scenarios are evaluated and difficulties have
been successfully overcame by means of monocular camera
on-board processing, where the pedestrians and UGVs are de-
tected with a total accuracy (>92%).

Future works will focus on the increasing of the environ-
ment understanding; which refers to detecting more compo-
nents in the road, and the combinations of all this information
with on-line context information; such as digital maps.

ACKNOWLEDGEMENT

This work was supported by the Comunidad de
Madrid Government through the Industrial Doctorates Grants
(GRANT IND2017/TIC-7834), and the Spanish Government
through the CICYT projects (TRA2016-78886-C3-1-R and
RTI2018-096036-B-C21), and the Comunidad de Madrid
through SEGVAUTO-4.0-CM (P2018/EMT-4362)

REFERENCES

[1] Fei-Yue Wang, Daniel Zeng, and Liuqing Yang. Smart
cars on smart roads: an ieee intelligent transportation
systems society update. IEEE Pervasive Computing,
pages 68–69, 2006.

[2] George Dimitrakopoulos and Panagiotis Demestichas.
Intelligent transportation systems. IEEE Vehicular
Technology Magazine, 5(1):77–84, 2010.

[3] Junping Zhang, Fei-Yue Wang, Kunfeng Wang, Wei-
Hua Lin, Xin Xu, Cheng Chen, et al. Data-driven
intelligent transportation systems: A survey. IEEE
Transactions on Intelligent Transportation Systems,
12(4):1624–1639, 2011.

[4] Kim Insu and Yow KinChoong. Object location estima-
tion from a single flying camera. In Mobile Ubiquitous

Computing, Systems, Services and Technologies (UBI-
COMM), 2015 9th International Conference on, pages
82–88. IARIA, 2015.

[5] Chen Yan-yan, Chen Ning, Zhou Yu-yang, Wu Ke-han,
and Zhang Wei-wei. Pedestrian detection and tracking
for counting applications in metro station. Discrete dy-
namics in nature and society, 2014, 2014.

[6] Mennatullah Siam and Mohamed ElHelw. Robust au-
tonomous visual detection and tracking of moving tar-
gets in UAV imagery. In Signal Processing (ICSP),
2012 IEEE 11th International Conference on, volume 2,
pages 1060–1066. IEEE, 2012.

[7] Y. Qu, L. Jiang, and X. Guo. Moving vehicle detection
with convolutional networks in uav videos. In 2016 2nd
International Conference on Control, Automation and
Robotics (ICCAR), pages 225–229, April 2016.

[8] Christopher Reardon and Jonathan Fink. Air-ground
robot team surveillance of complex 3d environments.
In Safety, Security, and Rescue Robotics (SSRR), 2016
IEEE International Symposium on, pages 320–327.
IEEE, 2016.

[9] Sara Minaeian, Jian Liu, and Young-Jun Son. Vision-
based target detection and localization via a team of co-
operative uav and ugvs. IEEE Transactions on systems,
man, and cybernetics: systems, 46(7):1005–1016, 2016.

[10] Sergi Hernandez Juan and Fernando Herrero Cotarelo.
Multi-master ros systems. Institut de Robotics and In-
dustrial Informatics, pages 1–18.

[11] Ahmed Hussein, Pablo Marı́n-Plaza, David Martı́n, Ar-
turo de la Escalera, and José Marı́a Armingol. Au-
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[8] Diana A. Olejnik, Bas P. Duisterhof, Matej Karásek, Kirk Y.W. Scheper, Tom van Dijk, and Guido C.H.E. de Croon.
A tailless flapping wing mav performing monocular visual servoing tasks. In P. Campoy, editor, 11th International
Micro Air Vehicle Competition and Conference, number IMAV2019-8, pages 60–66, Madrid, Spain, Sep 2019. 8

[9] Federico Magistri, Daniele Nardiyand, and Vito Trianni. Using prior information to improve crop/weed classification
by mav swarms. In P. Campoy, editor, 11th International Micro Air Vehicle Competition and Conference, number
IMAV2019-9, pages 67–75, Madrid, Spain, Sep 2019. 8

[10] Colin Greatwood, Laurie Bose, Thomas Richardson, Walterio Mayol-Cuevas, Robert Clarke, Jianing Chen, Stephen J.
Carey, and Piotr Dudek. Towards drone racing with a pixel processor array. In P. Campoy, editor, 11th International
Micro Air Vehicle Competition and Conference, number IMAV2019-10, pages 76–82, Madrid, Spain, Sep 2019. 8

[11] Florian Steidle, Wolfgang Stürzl, and Rudolph Triebel. Visual-inertial sensor fusion with a bio-inspired polariza-
tion compass for navigation of mavs. In P. Campoy, editor, 11th International Micro Air Vehicle Competition and
Conference, number IMAV2019-11, pages 83–88, Madrid, Spain, Sep 2019. 8

[12] José Arturo Cocoma-Ortega and Jose Martinez-Carranza. A cnn-based drone localisation approach for autonomous
drone racing. In P. Campoy, editor, 11th International Micro Air Vehicle Competition and Conference, number
IMAV2019-12, pages 89–94, Madrid, Spain, Sep 2019. 8

228



IMAV2019-28 11th INTERNATIONAL MICRO AIR VEHICLE COMPETITION AND CONFERENCE

[13] Yuchen Leng, Murat Bronz, Thierry Jardin, and Jean-Marc Moschetta. Slipstream deformation of a propeller-wing
combination applied for convertible uavs in hover condition. In P. Campoy, editor, 11th International Micro Air
Vehicle Competition and Conference, number IMAV2019-13, pages 95–102, Madrid, Spain, Sep 2019. 8
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