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ABSTRACT

Wind turbines require periodic inspection and
maintenance to ensure good performance and a
prolonged lifetime. Traditionally, inspection in-
volves the risk of a person falling while climb-
ing down from the platform. Trying to elimi-
nate this risk, Unmanned Aerial Vehicles (UAVs)
have been controlled by operators to inspect the
structure while taking pictures and video. In con-
trast, we propose an autonomous UAV system
that is able to locate itself and build a map of
its environment using visual SLAM. Perception
of static rotor blades is based on a single obser-
vation, where the Hough transform for lines is
used to detect the position of the hub and the an-
gle of the blades, allowing the path planner to
make a backwards projection from the 2D image
plane to the 3D scene, establishing a set of way-
points to inspect the surface from a safe distance.
Experiments were carried out in a simulated en-
vironment and a real setting.

1 INTRODUCTION

Wind turbine inspection has been traditionally performed
through simple visual inspection from the ground with a tele-
photo camera lens or by a person who climbs down from the
platform. The former method is time-consuming and the lat-
ter puts a human life at risk; while both are restricted by the
mobility and field of view of the operator.

Trying to overcome these challenges, a recent approach
using Unmanned Aerial Vehicles (UAVs) is being adopted in
the industry. In contrast to traditional methods, an UAV of-
fers an increased mobility and a close-up view of the surface
of the blades. However, this task requires expert pilots and
causes them to experience fatigue quickly. Alternatively, au-
tonomous UAVs are not subject to human tiredness and can
follow trajectories in a repeatable manner.
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Figure 1: Left column: simulated inspection using Gazebo,
with the bottom image showing the view of the frontal cam-
era; right column: likewise, inspection carried out on an em-
ulated turbine. https://youtu.be/XZZm345rCRY

Autonomous inspection of wind turbines poses a series
of challenges. The first one is the localization of the UAV
within its environment. This was approached with a com-
puter vision technique named Simultaneous Localization and
Mapping (SLAM), to estimate the pose of the UAV, by ex-
tracting features from the monocular input of its camera and
anchoring them into a map it builds of its surroundings.

To perform the inspection, the UAV must perceive the
wind turbine and determine its position relative to the frame
of the UAV. Based on an arbitrary takeoff position, the UAV
must detect the hub of the wind turbine and the angle of its
blades using line features. Once detected, the path planner es-
tablishes an inspection trajectory for the UAV to follow while
it takes pictures and video of the surface from a safe distance.
This method aims at the automatic acquisition of high quality
image data for further evaluation with human expertise.
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2 THEORETICAL FRAMEWORK
2.1 Localization

SLAM with a monocular camera can only build a map up
to a scale factor. Autonomous navigation requires a metric
scale for path planning, that takes into account the dimen-
sions of the object of interest and the scene. To address this
problem, the RGB-D version of ORB-SLAM?2 [1] was used,
where the RGB frames are coupled with a synthetic depth
map [2]. Figure 2 shows the generation of the metric map us-
ing the above mentioned procedure. The detection, planning
and autonomous navigation modules are described below.
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Figure 2: Inspection diagram with three main modules: lo-

calization, detection, planning and autonomous inspection.

2.2  Detection

Computer vision tasks such as object recognition require
an efficient representation, reducing the amount of data in
the image and preserving its visual characteristics and struc-
tural information. In order to detect straight lines with the
Hough transform, edges must be detected beforehand. Edge
detection reduces the amount of data to be processed while
conserving the outline of the wind turbine. However, some
scenes require further processing to remove image noise. The
HSV color model was used to segment the image by separat-
ing hue, saturation and value channels.

A Gaussian filter was used to blur and remove noise from
the image. The Canny edge detector [3] calculates the di-
rectional derivatives with the Sobel operator, which uses two
3x3 kernels, one for horizontal and one for vertical differen-
tiation. These kernels are convoluted with the original image,
to obtain the magnitude and direction of the gradient. The
output is a binary image with the edges, suitable for straight
line detection.

The Hough transform, uses an angle-radius parametriza-
tion [4], instead of the original slope-intercept parameters [5]
to detect the most prominent straight lines [6] from its camera
input, as shown in Figure 3. The position of the hub can be
found by looking for the intersection of the blade lines.

Standard (left) and probabilistic (right) Hough
transform for lines, segmented by angle.

Figure 3:

2.3 Autonomous navigation

To describe the mathematical relationship between the
coordinates of one point in three-dimensional space and its
projection onto the image plane, we use the pinhole camera
model. With this ideal model, we can also obtain the 3D co-
ordinates from a 2D image if the depth of the image and the
intrinsic parameters of the camera are known.

A backward projection is done to recover 3D coordinates
from the detection pixel in the 2D image plane, given a known
depth '. The path planner uses the coordinates from the detec-
tion of the hub, along with the angles of the blades to create a
flight plan.

Once the path planner has established a set of inspec-
tion trajectory points, the UAV must follow these waypoints
to approach the blades of the wind turbine and capture pho-
tos/video of its surface. In order to accomplish this task, we
must find the error between the current pose of the UAV and
the target 3D coordinate or setpoint in the control loop.

The UAV approaches the hub of wind turbine using a lon-
gitudinal approach. Then it switches to lateral movements to
keep the camera oriented perpendicular to the surface of the
blades. This process is implemented as a finite state machine
with three states: altitude, rotation, and translation.

Altitude. The first state is a proportional (P) controller for
the altitude, that minimizes the error between the current z-
axis position and the reference, established by the waypoint.
Once the error is less than the threshold, the state machine
transitions to the rotation state.

Rotation. In this state, the current rotation is compared to
a reference rotation matrix that maintains the orientation to-
wards the surface of the blades. A proportional integral (PI)
controller is used to reduce the error between the current ro-
tation and the setpoint.

Translation. The last state is a translation controller. The
rotation state keeps the orientation of the UAV fixed towards
the blade, while a proportional integral (PI) control loop
reaches the desired y-axis position.

Depth corresponds to the arbitrary distance from the takeoff position to
the hub of the wind turbine.
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The controller iterates between these states until the con-
trol signals minimize the error on all three axes within a cer-
tain threshold. Once this condition is met, the UAV proceeds
to follow the next waypoint. Figure 4 shows this navigation
controller as part of a state machine of the autonomous in-
spection procedure described beforehand.
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Figure 4: Flowchart of the finite state machine.

3 EXPERIMENTAL FRAMEWORK
3.1 System Overview

The robotic platform used to carry out the experiments
was a Parrot Bebop 2 for the physical trials and a Parrot
AR.Drone 2.0 in simulation. Even though the UAVs have dif-
ferent Software Development Kits (SDKs), bebop_autonomy
and ardrone_autonomy share topic names, types and co-
ordinate frame conventions for core piloting tasks. These
shared characteristics allow the development of algorithms
in a simulated environment before testing the effects of the
same program in a real setting. As opposed to the AR.Drone
2.0 simulated UAV, the Bebop platform only has a frontal
monocular camera. This camera is used for localization, so
an additional GoPro camera was attached to the back of the
UAV to record the inspection.

The Kinetic distribution of Robot Operating System
(ROS) runs on top of an Ubuntu 16.04 Linux operating sys-
tem. Both bebop_autonomy and ardrone_autonomy are
available as ROS drivers. In order to test and tune our visual
navigation system we use Gazebo, a ROS-based robotics sim-
ulator. In particular, we use the tum_simulator, a implemen-
tation of the Gazebo simulator with a model of the AR.Drone
2.0, developed by Hongrong Huang and Jiirgen Sturm from
the Computer Vision group at the Technical University of
Munich (TUM).
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Figure 5: The publisher/subscriber ROS architecture is the
same for the simulated environment and real setting scenes.

4 RESULTS

Experiments were carried out in simulation using a model
of a scale wind turbine with a height of 10 m to the hub, and in
a real setting we used a 3 m tall, emulated scale wind turbine.

4.1 Simulated environment

The waypoint controller follows the inspection trajectory,
which is generated by the path planner based on the detection
of the hub and the angles of the blades. This control loop
uses the continuous localization from the metric SLAM sys-
tem to estimate the pose of the quadrotor and navigate around
the blades of the wind turbine, taking pictures of its surface.
Figure 6 shows a 3D plot of the pose estimation from ORB-
SLAM against the ground truth from the Gazebo simulator.
As can be observed, the inspection trajectories match in all
three axes, proving the capacity of the localization system to
retrieve an absolute metric scale from its monocular input.
The x-axis or depth corresponds to the arbitrary distance to
the hub which permits the backwards projection with the pin-
hole camera model.
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Figure 6: Gazebo ground truth vs. SLAM pose estimation.
Root mean squared error, RMSE = 0.344.
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Figure 8: Frontal view of the inspection trajectory.

Figure 7(a) shows a Gazebo simulation with the model
of the AR.Drone 2.0 inspecting a scale wind turbine with a
height of 10 m to the hub or rotor. Figure 7(b) displays the
waypoints in the ROS visualization package, rviz. The white
arrow depicts the actual pose of the quadrotor estimated by
the metric SLAM system. Figure 8 is a frontal view of the
trajectory for comparison with the inspection plan above.

(a) Simulation - Hub. (b) Simulation - Right blade.
J
(c) Simulation - T1p of right bla-d‘c;,.‘: (d) Simu:tlon - Hub.
P ! / _
(e) Simulation - Left blade. | (f) Simulation —ifip ’of left blade:
(g) Simulation - Top blade. (h) Simulation - Tip of top blade.

Figure 9: Wind turbine inspection in simulation.

The sequence of pictures in Figure 13 shows captures
taken at the generated waypoints. The purpose of this image
data is to provide useful information for an inspection expert,
to detect damage on the surface of the blades and schedule
maintenance for the wind turbine, to sustain its performance.
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4.2  Real setting

Due to illumination changes and background image noise
found in the proposed scene, alternative color segmentation
and detection methods were used.

The CIE L*a*b color space was used to segment the wind
turbine from the background. It expresses color in three nu-
merical values, L for lightness, a for green-red and b for blue-
yellow components, with a perceptually uniform distribution
with respect to human color vision. In this particular scene,
the color model allowed the distinction of the white wind tur-
bine from the glow of the sky and the reflection of the light on
the leaves. Thus, removing noise and enhancing the detection
of the blade lines.

LSD: A Line Segment Detector [7] had better line de-
tection results as it requires no parameter tuning, making it
suitable for detection at different lighting conditions. Fig-
ure 10(a) shows the six prominent finite line segments, corre-
sponding to the blade lines, extended to infinite lines. Subse-
quently, the hub is detected by obtaining the centroid of the
intersections of these lines. This coordinate is then used by
the path planner, which makes the backwards projection to
generate the inspection points along the blade lines, as de-
picted in Figure 10(b).

Figure 10: (a) Hub and blade detection over the CIE L*a*b
color space. (b) Inspection plan in rviz.

The UAV carried out the autonomous inspection of a 3
meters tall scale wind turbine located at INAOE. It had a Go-
Pro camera attached to its back to record video of the inspec-
tion, operating with an inverted orientation.

Figure 11: Frontal camera. Figure 12: GoPro on the back.

The following photographs show the detection of the
wind turbine, proceeded by the approach to the hub and in-
spection of the blades. The flight plan considers the coordi-
nate of the hub first, an inspection point in the middle of the
blade and another one at the end, returning to the hub after
each blade. After the execution of the trajectory is completed,
the UAV lands.

e BV

(a) Real setting - Hub.

(c) Real setting - Tip of left blade.

(e) Real setting - Tip of Right blade. (f) Real setting - Top blade.

Figure 13: Wind turbine inspection in a real setting.
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5 CONCLUSIONS

The increased capacity and expanding installation of wind
parks require an inspection method capable of producing high
quality and readily available data for inspectors. An UAV
offers a close-up view of the surface of the rotor blades, in-
creased safety and better mobility than traditional methods.

Motivated by the above advantages, we have presented a
method that does not depend on GPS localization, aiming at
carrying out the inspection task in an fully autonomous man-
ner.

Our perception system is capable of detecting the blades
and hub in simulation using the Hough transform over the
HSV color space, and in a real setting with the Line Segment
Detector (LSD) over CIE L*a*b.

This automatic detection generates a plan of waypoints,
which are then followed autonomously by the flight con-
troller, thanks to its capacity to locate itself with our metric
monocular SLAM system.

Furthermore, we carried out several flight tests with
two emulated wind turbines of different sizes, facing strong
changes in outdoor illumination and background noise that
affected the detection. However, we managed to find the right
line detectors, coupled with segmentation over suitable color
spaces, for each scene.

As future work, we will develop a detection method that is
more robust to illumination changes and can handle different
scenarios with minimal parameter tuning. This could offer
faster setup times for autonomous wind turbine inspection.
We will also carry out tests with full-size wind turbines.
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