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ABSTRACT

In this paper, we presented a wilderness search
and rescue (WiSAR) system based on DJI M100
Unmanned Aerial Vehicle (UAV) and a ground s-
tation to search and rescue the survivors in wild.
We combined infrared and optical target detec-
tion to increase the detection speed and accuracy
and used multiple sensors to make this system
can autonomous avoiding obstructions and land-
ing on mobile platform. For further increase the
Average Precision of SSD, we build a field peo-
ple dataset UAV-PP and use ResNet-101 as the
base net. The actual flying test have been con-
ducted in multiple situations to verify the feasi-
bility of our WiSAR system. Our WiSAR system
laying a solid foundation for building a more in-
telligent search and rescue system based on UAV.

1 INTRODUCTION

Wilderness search and rescue (WiSAR) is very necessary
and difficult due to its vast territory and frequent field dis-
asters. Generally, WiSAR is racing with time, every second
counts. Search and rescue operations usually need a lot of
manpower and resources. Traditional rescue methods, like
human-base search, are inefficient and can easily miss the
best rescue time. In recent years, the rapid development of
Unmanned Ariel Vehicles (UAV) provides another better way
for rapid search and rescue. UAV equipped with image acqui-
sition cameras and a variety of sensors, transport the obtained
video to the ground station. In addition, the UAV is agile,
flexible, and can perform actions that are difficult to perfor-
m by humans. These features make UAV more suitable for
WiSAR. However, currently UAV in WiSAR mainly uses the
image acquisition module, cares little about the automation,
the application scenarios are relatively limited. Therefore, the
key technologies in the design of UAV for WiSAR are stud-
ied, i.e., the autonomous obstacle avoidance, path planning
and automatic landing. Meanwhile, we utilize the target de-
tection and recognition technologies to efficiently detect and
locate survivors.
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Figure 1: The hardware about WiSAR system.

2 WISAR SYSTEM DESCRIPTION

The hardware of our WiSAR system is shown in Figure
1.The whole system can be divided into three components,
i.e., drone system, ground station and remote control. The
details about the three parts are listed as follows,

• Drone system consists of a DJI Matrice 100 drone with
an on-bard PC Maniford, five stereo-vision sensors to
provides around and downside depth cloud maps, two
ultrasonic sensors to keep a safety height, a DJI Zen-
muse X3 camera to provide optical images, a FLIR
VUE Pro to provide infrared images.

• Ground work station is a DELL laptop with a very pow-
erful GPU NVIDIA Quadro M5000, which is mainly
used to process images.

• The remote control is a DJI standard remote control
with an Android phone.

Our WiSAR system works as: after the whole system is pow-
ered on, the on-bard computer Manifold starts to take control
and guide the drone autonomously take off. Then the drone
flies follow the global setting path. When there are obstacles
in the front or downside (point clouds from the stereo-vision
sensors), the Robot Operating System (ROS) [1] (Robot Op-
erating System) navigation package is used to set the local
path. Meanwhile, a searching command is sent from the AP-
P in remote control module to the drone by 2.4GHz/5.8GHz
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wireless communication module. The on-bard computer be-
gins screening the infrared video and sending ROI (Region of
Interest) to remote control. When the ground station receives
the searching command and ROI, the improved-SSD algo-
rithm is used to detect target using the optical video stream
transported from the remote control. The data link is shown
in Figure 2.

Figure 2: The data link diagram of Our WiSAR system.

3 PEOPLE SEARCH AND RESCUE

Finding lost people is the main job of our WiSAR sys-
tem. In this section, we provide a method to reduce the false
alarm of detection by combining infrared detection with opti-
cal detection. We use the infrared images for assistance. We
use morphological methods to obtain the salient region, then
converted it into the target candidate regions. After that, we
align the infrared image and the optical image. We use the
improved SSD [2] model to real-time detect people, based on
the candidate region.

3.1 Infrared image target detection

Usually, living target, like humans and other warm blood-
ed animals, can be distinctly displayed on infrared images
because these targets can radiate more energy than the back-
ground. In our WiSRA system, we using FLIR VUE Pro, a
thermal imager with 640×512 pixels resolution, to effectively
detect the thermal information within hundred meters away.
When our WiSAR system fly in the air, the resolution of liv-
ing targets is usually 30× 30 pixels. This relative low makes
the information easily lost and other disturbances make the
analysis of infrared image difficult (Figure 3a). So we ap-
ply several methods described below to handle the infrared
images first, making it easy to process.

First, it is necessary to carry out a equalization of the im-
age because strong light will cause the temperature of the wa-
ter in the air rising, radiating more infrared rays that can affect
thermal imager. While the distribution of water vapor is usu-
ally evenly distributed in a smaller area, the infrared energy
radiated outward is also evenly distributed. Let the length of
the image I beW , the width isH , P (x, y) is the gray level of
the position (x, y), P ′(x, y) is the gray value of (x, y) after

the mean translation, then we have:

P ′(x, y) = P (x, y)− 1

WH

∑

i,jεW,H

P (i, j) (1)

After equalization, we use gray-scale transformation to let
the gray scale range from 0 to 255 value instead of negative
value. The linear gray-scale transformation function is define
as,

Db = f(Da) = kDa + b (2)

where k is the slope, b is the intercept. Da indicates the
grayscale of the input infrared image. Db indicates the
grayscale of the output image.

When the gradient k is greater than 1, the contrast of the
processed image will increase, and if the gradient k is less
than 1, the contrast will decrease. Here, we highlight the tar-
get by increasing the contrast. By limiting the grayscale, the
gray values of the infrared images can be distributed equal-
ly in different lighting conditions, allowing for further pro-
cessing. By doing this, the significant region (temperature
anomaly region) is effectively extracted (Figure 3b).

(a) (b)

Figure 3: Infrared image gray scale processing. (a) Blurry
infrared image contained mutiple targets. (b) Image after e-
qualization and gray-scale transformation.

Further, we use the Top Hat transformation to reduce the
impact of light. Considering that the target size under the
UAV perspective is small and the brightness in the image is
high, Using the top hat transformation is reasonable.

From the previous steps, we have been able to get less
noise results. However, the background of the wild environ-
ment is very complex, just using infrared search is unable
to achieve the reliable results. Therefore, if the number of
candidate regions, obtained by the above image analysis pro-
cess, is greater than 0 (Figure 4), the UAV will transmit report
instructions and the coordinates of candidate regions to the
ground station. The ground station will automatically use op-
tical detection to search people based on these informations.

3.2 Optical image taget detection
Recently, the state-of-the-art deep conventional neural

network (DCNN) frameworks like YOLO9000 [3] and SSD
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Figure 4: Candidate region detected by thermal camera.

[2] have been presented. Considering the past target detection
methods based on statistical learning, such as HOG [4] and
DPM [5], are used artificial designed features, not enough for
field complex scenes. And field scenarios, people’s contours,
edges, textures may not be very clear, and even there will
be a certain degree of distortion (Figure 5a and 5b). Thus,
we decide to use the state-of-the-art methods to overcome the
problems above, that is DCNN. Through the use of our own
field people dataset UAV-PP, our WiSAR system can effec-
tively locate the field people. Based on the requirements for
real-time and high accuracy, we compared multiple DCNN
frameworks and finally decided to adopt the improved-SSD
framework.

(a) (b)

Figure 5: People under UAV perspective. (a) People in differ-
ent postures, (b) People with partial occlusions and without
partial occlusions.

The network structure of SSD [2] is very clear and easy
to understand. First it uses a forward-propagating CNN as
a base network. This forward convolution network can pro-
duce a series of fixed-size brackets and these enclosing boxes
contain scoring of various categories of objects. And then
it uses Non-maximum Suppression (NMS) to filter out the
final prediction results. The feature maps, from the same net-
work while at different levels, have different size of receptive
field. However, the SSD model does not have to let the default
bounding box corresponding to the receptive field in every
layer, but let the feature map to be responsible for the predic-
tion of a particular scale. Suppose you want to use m feature
graphs to predict. Then the scale of the default bounding box
corresponding to each feature map sk can be calculated ac-

cording to the following formula:

sk = smin +
smax − smin

m− 1
(k − 1), kε[1,m] (3)

We changed the scale partition, making m equal to 4,
smin equal to 0.4 and smax equal to 0.8, because the scale
of the target in UAV perspective does not change much. In
addition, we increased the batch size from 128 to 512, be-
cause the actual size of the target is relatively small.

The original base network of SSD uses the prediction lay-
er in front of VGG16 [6]. VGG16 model has been proved
to be a good classification prediction model, but its structure
is too complex and with many layers, a 32 × 32 target af-
ter VGG becomes 2 × 2 size, makes the extra layer is easy
to lose semantic information. So the original SSD for small
size targets (such as UAV view of the people) detection ef-
fect has been affected. Therefore, for the small target de-
tection, it is necessary to increase the semantic information
of the context[7]. Residual Network(ResNet)[8] proposed by
He et al can preserve as much target semantic information as
possible. ResNet introduces a shortcut between the output
and the input (shortcut), that is identity function, rather than
a simple stack network. This can solve the problem that the
semantic loss occurs due to the network being too deep. Al-
lowing people to further increase the depth of the network.
So we use the depth of the ResNet-101 structure as the SSD
base network to improve. It is worth noting that even using
ResNet-101 will not significantly increase the time required
for target detection. Through the above improvements, SSD-
ResNet model for small target detection has been improved.

3.3 Combination of infrared and optical detection
When trying to combine the optical and infrared target de-

tection, we need some coordinate transformation, because the
optical camera and the infrared camera have a certain phys-
ical distance during installation . In order to get the correct
candidate region coordinate mapping, we need to get the con-
version relationship between the two camera coordinate sys-
tems. In Figure 6,

θ1 is the viewing angle of the infrared camera,
θ2 is the viewing angle of the optical camera (taking the

x-axis as an example),
The point pf (uf , uf ) in the infrared camera image co-

ordinate system will be mapped to the image coordinates
pp(up, up) of the optical camera by the following transfor-
mations.

up = upo+WIDTHP ∗(uf−ufo′ )/WIDTHF +
d

fx
(4)

vp = vpo+HEIGTHP ∗(vf−vfo′ )/HEIGTHF+
d

fx
(5)

Where,
WIDTHP is the width of the optical image,
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Figure 6: Relationship between infrared and optical camera
coordinate system.

WIDTHF is the width of the optical image,
HEIGTHP is the height of the infrared image,
HEIGTHF is the height of the infrared image,
d is the installation position deviation, in our WiSAR is 6

cm,
fx is actual physical length of each pixel in an optical

camera.
By using two of the above image coordinate transforma-

tion equations, it is possible to obtain the corresponding posi-
tion of the target candidate region on the optical image. Then
set it as the region of interest (ROI) in optical images and
perform optical target detection based on this ROI.

4 AUTONOMOUS OBSTACLE AVOIDANCE AND
LANDING

As for autonomous obstacle avoidance, we adopt the ob-
stacle avoidance scheme based on binocular vision. It mainly
uses the parallax principle to carry out motion estimation, so
as to obtain the depth information of the obstacle in front of
the UAV. And then update the cost map based on the point
clouds, and further update the obstacle avoidance route ac-
cording to the cost map, so as to achieve the purpose of avoid-
ing obstacles [9]. If the UAV encounters an uneven terrain
like Figure 8, the ultrasonic detector mounted on the bottom

Figure 7: Human detection results using our WiSAR system.

of the UAV will initiative send signal to keep a safety flight
altitude. The results of the obstacle avoidance experiments
for static obstacles (wall, tree, etc.) and moving obstacles
(pedestrian) show that the vision avoidance scheme based on
binocular vision is more reliable than Light Detection And
Ranging (LIDAR).

Figure 8: UAV use ultrasonic to avoid obstruction .

Regarding the autonomous landing, we introduce the vi-
sual fiducial system AprilTag [10] from the Augmentation
Reality filed. By encoding an AprilTag, the detection algo-
rithm can greatly reduce the false alarm, and because of the
introduction of fault tolerance mechanism, the miss rate is al-
so maintained at a very low level. After detecting the mark,
the UAV can dynamically adjust its pose to achieve accurate
landing on the mobile platform by solving the PnP problem.
Experimental results show that the position deviation of land-
ing is less than 15 cm, which meets the requirement of real
landing scenario where a UAV is likely to land on a platform
with limited area, such as roof and truck rear.

AprilTag information is only expressed in black and white
blocks, without any symmetry(Figure 9a). In our WiSAR sys-
tem, we use the 25h9 set. First, the useful contour information
is extracted by image graying(Figure 9b) and used the adap-
tive binarization algorithm to binarize gray scale images (Fig-
ure 9c), and then processed by Gaussian filtering (because
Gaussian filtering can better preserve the edge information
[11]), and finally through the basic and further screening (pre-
venting false contours detection in internal AprilTag), we can
get the correct results (Figure 9d). Further, we introduced the
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Hamming code [12] to improve error correction and screen
out false alarms, making our AprilTag looks like Figure 9e.

(a) (b) (c) (d) (e)

Figure 9: Detection process of AprilTag. (a) Original image
with 6 AprilTags, (b) Image after gray processing, (c) Image
after binarization, (d) AprilTag edge detection, (e)AprilTag
after Hamming coding.

5 EXPERIMENTS AND RESULTS

5.1 Field people dataset UAV-PP
We build and put forward a field people dataset UAV-PP

and used the VOC [13] dataset format to increase the ver-
satility of UAP-PP dataset. Because the people under the
UAV perspective are very different with the people under the
ground camera perspective, and the deep learning is highly
rely on large volume of data. So lacking UAV perspective
people database will heavily influence the average precision
of detection.

UAV-PP including 3180 original images, resolution of
these images are 1000× 1000 pixels, each image contains 10
to 20 targets (people), each positive sample has a correspond-
ing ground truth bounding box. We provide a labeling tool
(Voc-Annotation-Tool) to facilitate the placement of Ground
Truth. It has the ability to batch rename pictures, import pic-
tures, and mark the image in VOC format and generate the
corresponding structure files. The software runs as Figure 10.

Figure 10: Voc-Annotation-Tool.

To improve the robustness of the DCNN model, we main-
ly use side view and bottom view samples. The ratio of the
human training images in the various postures are about 1:
1: 1 (bottom view 85◦, side view 45◦, and other gestures re-
spectively). Figure 11 shows the example targets in UAV-PP

dateset.

Figure 11: Human sample images.

5.2 Comparison of target detection algorithm

In the same test platform (as described in Table 1), we
used Average Precision (AP) to compare different target de-
tection frameworks and found that:

Table 1: Algorithm test platform

CPU Intel E3-1505M

GPU NVIDIA Quadro M5000, 8GB

RAM 64GB

DPM has a high demand for image capture quality and
perspective. In the different perspectives of people, the DPM
algorithm can not extract the characteristics from numerous
samples. DPM received 63.82% AP on the test set in the
UAV-PP dataset, with an average speed: 3.0 Seconds per im-
age.

As a successful deep learning framework, the detection
effect of Fast-RCNN is quite good. But due to the various
viewing angles, there are still some missed targets can’t be
detected. Using Imagenet dataset, learning rate α equal to
0.0003, batch size equal to 128, after 60000 times iterations,
we have 72.47% AP of Fast-RCNN, the average speed: 0.16
Seconds per image.

SSD is faster and more accurate than Fast-RCNN when
using the same dataset (ImageNet [14] dataset) and test set.
Average speed of SSD: 0.16 Seconds per image. AP of SSD:
80.85%.

After that, we changed the original SSD base network to
the residual network, and optimized the parameters of SSD,
and got 88.92% AP. Meanwhile, the average speed did not
increase, which still was 0.08 seconds per image. The com-
parisons of AP and speed are shown in Figure 12 and Figure
13.
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Figure 12: Average Precision between different target detec-
tion algorithms.

Figure 13: Speed between different target detection algo-
rithms.

5.3 WiSAR system test

The whole WiSAR system is a multi-module integrated
system. For the UAV side, data processing and instruction
transmission is mainly in ROS. For the ground station side,
the system includes a supporting demonstration system to sat-
isfy the practical need. Which includes an Android applica-
tion (Figure14) and a PC application (Figure15).

First of all, we conducted an independent obstacle test,
the results show that the UAV can effectively avoid moving
pedestrians and other obstacles. Then we carried out 20 tests
to test the autonomous landing (Figure 17a and 17b). Let the
center of the platform as the origin point,we have the results
that: the average deviation of X axis is 9.2 cm, the average
deviation of Y axis is 9.0 cm. The results are enough to meet
the requirements of landing on a moving truck. Finally, we
use 15 tests to test the time and distance flying ability of our
WiSAR system when under full load. The average farthest
flight distance is 4.2 km at full load and the average maximum
flight time is 15 minutes and 10 seconds.

Figure 14: Android application interface of our WiSAR sys-
tem.

Figure 15: PC application interface of our WiSAR system.

Figure 16: Some results of obstacle avoidance.

(a) (b)

Figure 17: Autonomous landing test. (a) Autonomous land-
ing on truck rear, (b) Autonomous landing on simulated truck
rear.
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6 CONCULSION

In conclusion, we have completed the design, prototyping
and construction of our WiSAR system. The system adopts
modular development strategy, leading to low coupling de-
gree and high portability. The accompanying software appli-
cations include an Android application and a multi-threaded
graphical PC application. Both applications respond quick-
ly and interactively. The experimental results show that the
performance of our WiSAR system is fully functional. The
simulated search and rescue tasks can be successfully accom-
plished, which lay a solid foundation for building a more in-
telligent search and rescue system based on UAV.
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