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ABSTRACT

The goal of the work presented in this paper is to
facilitate the cooperation between human opera-
tors and aerial robots to perform surface inspec-
tion missions. Our approach is based on a model
of human collaborative control with a mixed ini-
tiative interaction. In the paper, we present our
human-robot cooperation model based on the
combination of a supervisory mode and an as-
sistance mode with a set of interaction patterns.
We developed a software system implementing
this interaction model and carried out several
real flight experiments that proved that this ap-
proach can be used in aerial robotics for sur-
face inspection missions (e.g., in vision based
indoor missions). Compared to a conventional
tele-operated inspection system, the solution pre-
sented in this paper gives more autonomy to the
aerial systems, reducing the cognitive load of the
operator during the mission development.

1 INTRODUCTION

Certain types of missions in aerial robotics may require
special human-robot interaction with intermediate degrees of
robot autonomy between manual teleoperation and complete
autonomy. One example of this type of mission is surface
inspection in which the operator uses aerial robots to inspect
the state of a certain surface (e.g., an indoor wall, the surface
of a dam, the facade of a building, etc.) to find defects (e.g.,
holes, fissures, mold, spots, humidity, etc.) as symptoms of
potential problems due to, for example, structural imperfec-
tions.

In this type of scenario, the aerial robot may operate as
an assistant for the human operator who delegates in the ve-
hicle inspection tasks. The robot may have certain inspection
abilities (e.g., path planning, defect recognition, etc.). These
abilities may reduce significantly the workload of the opera-
tor and increase safety, compared to simple manual teleoper-
ation. However, in this type of mission, it is difficult to have
robots that operate fully autonomously because they may not
have a complete understanding of the environment. Robots

may have recognition abilities for certain defects but, some-
times, certain defects are difficult to classify automatically.
In this case, the robot may ask for assistance to the operator,
which requires a richer interaction model between operator
and robot.

The goal of this paper is to present preliminary results of
our ongoing research work to analyze more complex human-
robot interaction in surface inspection missions. In our work,
we have followed the general concept of collaborative con-
trol to formulate a specific human-robot interaction model
designed for mission inspections. Our approach combines
two interaction modes, supervisory and assistance (with a
set of interaction patterns). We implemented this model us-
ing the software framework Aerostack (www.aerostack.
org) [1, 2] and developed several flight experiments that
proved the adequacy of this approach for aerial robotics.

Figure 1: Collaborative control for surface inspection.

The remainder of the paper describes our model and the
main results of our work. Section 2 describes the type of user-
system collaboration that we have identified for this prob-
lem. Section 3 the required inspection abilities. Section 4 de-
scribes how we implemented it using Aerostack and, finally,
section 5 describes real flight experiments that we performed
to refine and evaluate our approach.
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2 THE HUMAN-ROBOT INTERACTION
MODEL

The problem that we consider in this work is the develop-
ment of a surface inspection mission performed by a human
operator and one or several aerial robots. The goal is to ex-
plore a spatial region of a given surface to detect the presence
of certain defects. A simple example of this problem is to
find imperfections such as fissures or holes in the surface of a
wall.

Figure 1 summarizes this type of human-robot interac-
tion. On the one hand, the operator can play the role of su-
pervisor. This form of automation is related to the notion of
supervisory control [3] in which a human operator is intermit-
tently acting on the robot to delegate tasks. The robot closes
an autonomous control loop through effectors to the environ-
ment. This concept has been used to design flexible inter-
action models, for example, for military mission planning of
UAVs [4], swarming networks [5] or remote surveillance sys-
tem [6].

But, on the other hand, the operator can also play the role
of assistant. The human works as a resource for the robot,
providing additional information. The robot may ask the hu-
man questions as it works, to obtain assistance with percep-
tion and cognition. This allows the human to compensate for
limitations of autonomy. This is related to the idea of collab-
orative control in which human and robot work together [7].
The human and the robot dialogue to exchange information,
to ask questions, and to resolve differences. This interaction
scheme is a kind of mixed initiative approach [8]. Both, the
operator and the robot, may take the initiative of the conver-
sation during the dialogue.

Based on this collaborative scheme, we designed a gen-
eral human-robot interaction model considering messages in
categories according to the theory of speech acts [9, 10, 11].
We consider different illocutionary acts to distinguish the in-
tention of the messages, and other subcategories defined by
different schemes: DAMSL (Dialogue Act Markup In Sev-
eral Layers) [12], KQML [13], Move Coding Scheme [14],
etc. In particular we use the following categories:

• Assertive messages. These messages are sent to give
certain information to the receiver (for example, the
robot informs the operator the completion of a task).

• Directive messages. These messages cause the receiver
to take a particular action. Within directive messages,
we distinguish between two categories: action direc-
tives (requests for action) and information requests.

Our interaction model is divided in two interaction modes
(supervisory mode and assistance mode) that are described
in the following sections.

2.1 Supervisory mode
In this interaction mode, the operator sends action direc-

tives to the robot in order to delegate mission tasks to the

robot. The operator may ask the aerial robot to perform an
inspection mission, specifying the area to cover and the ex-
ploration strategy. In this case, the relation between opera-
tor and robot follows a hierarchical authority (as supervisor-
subordinate schema) in which the operator delegates a set of
tasks to the robot.

During the development of the mission, the operator ob-
serves the robot behavior and the robot sends assertive mes-
sages to inform about the mission execution progress (e.g.,
completed task or finished mission). These messages are use-
ful for the operator to verify that the mission is developing as
expected. The operator can interrupt the mission under cer-
tain circumstances (for example, to avoid wrong behaviors).

In this interaction mode, the robot shows autonomy to
adapt to a dynamic environment while tries to reach its goal
[15]. But the robot shows also autonomy to accept or re-
ject the proposed actions according to characteristics of the
environment and its own goals (e.g., safety goals) [16]. Its
behavior is not completely determined by the influence of the
operator.

(a)

(b)

Figure 2: Dialog model for mission control (a) and behavior
control (b).
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Figure 2a shows the structure of the dialog for mission
control. The figure is a state-transition diagram. Transitions
with continue arrows correspond to messages sent to the robot
by the operator: start mission, pause mission, continue mis-
sion, abort mission and delegate mission to other robot. Tran-
sitions with dashed arrows correspond to types of messages
sent by the robot.

The operator can also control the execution activating and
canceling individual robot behaviors (e.g., land, go to point,
turn lights on, etc.). Figure 2b shows the dialog model for this
type of interaction in which the operator can send messages
such as start behavior, pause behavior, continue behavior, re-
peat behavior and abort behavior.

Both models include a specific transition called required
assistance. This transition represents that the robot has
reached an impasse because there is an event that prevents
from continuing the execution and needs operator assistance.

2.2 Assistance mode

In the presence of uncertainty, a robot may ask the opera-
tor for assistance. This interaction mode is required because
robots have partial knowledge and are not completely self-
sufficient. In this case, the robot works like the field tech-
nician (i.e., it is skilled, but may need help) and the opera-
tor is like the expert (i.e., she or he can provide assistance
when needed) as it is considered in human collaborative con-
trol [17].

In the particular case of inspection missions, robots may
have recognition abilities for certain defects but, sometimes,
certain defects are difficult to classify automatically. In addi-
tion, unexpected changes of the environment (e.g., shadows,
wind, etc.) may require attention from the operator to decide
the appropriate response.

The interaction mode for assistance starts, for example,
when the robot is not able to recognize the category of a de-
tected defect in the surface. In this case, the robot sends an
information request to ask the operator for the category of the
detected defect. The operator answers the category or rejects
the detection. In addition, the operator may help the robot
proposing motion actions to have better views of the surface.

This interaction mode may also start when the robot is
not able to complete a requested task because there is a prob-
lem in the environment such as: low visibility, low battery,
lost position, high vibrations, impassable barrier, or unstable
ground. This includes also the time out event that happens
when the robot is not able to complete the task in the ex-
pected time due to unknown reasons. The operator helps the
robot saying how to respond to these events.

We consider also that the robot may delegate certain spe-
cialized tasks to other robots. For example, the robot can
transfer part of the mission to other robot because it does not
have enough battery charge, or the robot can delegate a cer-
tain specialized task that require specialized actuators (e.g.,
use a special device to mark the detected defect on the wall).

To formulate a model for this type of dialog, we use in-
teraction patterns (see table 1). Each interaction pattern ex-
presses how the robot must interact with the operator in the
presence of a certain event. Each pattern is a tuple consist-
ing of two parts. The first part of the pattern is the event that
generates an impasse in the development of the mission. The
event is the reason why the assistance is required. The sec-
ond part of the pattern is a list of suggested actions to be pre-
sented to the operator (for some of these actions, additional
question-answers are needed).

For example, the third pattern in the table is used by the
robot in the following way. When there is low visibility, the
robot informs about this event to the operator and asks the
operator for the next action to do, showing a list of suggested
actions. In this case, the operator can select either (1) turn
on the lights and continue mission or (2) abort mission and
land. If one of these options is selected by the operator, it is
performed automatically. The list of suggested actions is not
closed. This means that, instead of the suggested actions, the
operator can decide to do any other action using the supervi-
sory mode.

Event Suggested actions

Unknown
object

• Zoom in
• Zoom out
• Learn new category
• Horizontal exploration
• Vertical exploration

Recognized
category

• Confirm category and continue mission
• Reject category and continue mission
• Learn new category
•Mark defect

Problem low
visibility

• Turn on the lights and continue mission
• Abort mission and land

Problem low
battery

• Turn off the lights
• Turn off the camera
• Delegate mission to another robot and land

Problem time
out

• Repeat behavior
• Continue mission

Table 1: Example interaction patterns for operator assistance.

In general, the list of actions include different types of
actions: (1) behavior control directives (e.g., zoom in, land,
etc.), (2) mission control directives (e.g., abort mission, con-
tinue mission, repeat behavior), and (3) information requests
to the operator (e.g., learn new category, a robot to delegate
the mission).

The list of actions should not include more than a small
number of options (e.g., 5 options) to facilitate an agile com-
munication with the operator. In addition, the list is ordered
according to its probability of selection (most probable ac-
tion first). This list can be initially given by the programmer.
But its components could be also learned and its probability
updated according the interaction with the operator.
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3 ROBOT BEHAVIORS FOR SURFACE
INSPECTION

This section describes the specific robot behaviors that we
have considered for surface inspection missions.

3.1 Visual recognition of surface imperfections
One of the requirements of an autonomous robot for sur-

face inspection tasks is the ability to detect abnormal marks
in a surface and classify the images in the corresponding cat-
egory. For this purpose, it is possible to use computer vision
algorithms.

In this work, we have used the method based on fre-
quency histogram of connected elements (FHCE) [18, 19].
This method is useful to treat the image pixel by pixel and
characterize the different types of flaws of the surface.

This method uses the concept of neighborhood, i.e. for
a given pixel p(i, j) of an image, its neighborhood is formed
by a set of pixels which distances to p are not greater than
two integer values r, s and is defined as φr,s(i,j). A connected
element is the neighborhood selected such as the intensity I
of a pixel is a subset of a given grayscale range [T −ε, T +ε]:

C(i,j)(T ) = φr,s(i,j) : I(k, l) ⊂ [T − ε, T + ε], ∀(k, l) ∈ φr,s(i,j)

Given the previous definitions, H(T ) is defined as the
sum of all the connected elements for each pixel of an im-
age on different gray levels T , where T is greater than 0 and
inferior than the maximum intensity minus one:

H(T ) = C(i,j)(T ), 0 ≤ T ≤ Imax − 1 (1)

We use this algorithm to separate the flaws from the back-
ground, dividing the process into several steps. We defined
the neighborhood shape with a square kernel to fit both the
hole and fissure needs. Our square kernel is formed by a 3×3
matrix (i.e. r = 1 and s = 1) of neighboring pixels where the
center pixel is the target.

Figure 3: Example of original vs resulting image after flaw
separation.

To find the connected elements in the kernel, we calculate
the standard deviation of the grayscale values between pixels
within the same neighborhood. Then, given a threshold th (in
our case 0.1), if the standard deviation is inferior than th, we
assign to the pixel the mean gray value of all the pixels of the
kernel. If not, we preserve its original grayscale value.

Then, to calculate FHCE we apply equation 1 to the re-
sulting image after separating connected elements. Accord-
ing to FHCE result, we see that the region related to a flaw
is characterized by a range of gray levels between 1 and 50
(i.e. dark gray). If we assign a white value to all the pixels
in that range, we have as a result an image with all the flaws
separated from the background (Figure 3).

Finally, we have to distinguish between categories of
flaws. In this work, two main flaws were considered on the
inspected surface: fissures and holes. Fissures can be char-
acterized as a linear flaw, which is why we search for areas
where white values are concentrated along a certain linear di-
rection. Holes have to be defined as a square (or circular)
flaw, which is why we search for areas where white values
are concentrated along a square area of a certain dimension.
As a result, we will get delimited areas for both flaw types
(see Figure 4).

Figure 4: Example of image classification.

3.2 Motion behaviors
In addition to visual recognition of flaws, the robot re-

quires specifc motion behaviors to develop a safe exploration
search with an appropriate degree of autonomy. Table 2
shows a list of behaviors that the robot may need for inspec-
tion tasks.

We have designed this set of behaviors to be reusable
for different inspection missions. There are general behav-
iors (e.g., TAKE OFF, LAND) and more specific behaviors
for inspection tasks (e.g., ZOOM, EXPLORE). For example,
the behavior EXPLORE develops an exploration search fol-
lowing a prefixed trajectory to cover the complete surface.
The trajectory may follow different strategies such as vertical
search or horizontal search (see Figure 5).

4 SYSTEM IMPLEMENTATION
We implemented an experimental software prototype to

refine and evaluate the approach for surface inspection mis-
sions described in this paper. For this purpose, we used
and extended the software framework Aerostack (www.
aerostack.org) [1, 2]. Aerostack is a general software
framework for aerial robotics that provides different soft-
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Behavior Description
TAKE OFF The robot takes off

EXPLORE
The robot explores the surface following
a search strategy. Argument: strategy
VERTICAL, HORIZONTAL

LAND The robot lands
GO HOME The robot returns to the home base

ZOOM
The robot moves forward to zoom in or
backwards to zoom out. Argument: IN,
OUT

MOVE

The robot moves a prefixed distance (e.g.,
0.5 m) in the specified direction.
Argument: direction UP, DOWN,
RIGHT, LEFT

KEEP
HOVERING

The robot pauses its movement

TURN LIGHT
The robot turns the light on or off.
Argument: ON, OFF

MARK
SURFACE

The robot draws a colored circle around
the flaw

APPROACH
The robot goes to the position of another
robot. Argument: robot identifier.

Table 2: Example behaviors for inspection tasks.

(a) (b)

Figure 5: Example of exploration strategies: (a) horizontal
and (b) vertical.

ware components and a combination scheme for building the
software architecture for autonomous operation of an aerial
robotic system. For example, Aerostack provides software
components with perception algorithms, SLAM algorithms,
controllers, mission plan interpretation methods, multi-robot
communication and a general graphical user interface for
human-robot interaction.

Figure 6 shows a block diagram with the main software
components of our implementation. In the figure, blue blocks
correspond to processes provided by Aerostack and orange
blocks are new processes that we programmed and added to
Aerostack for inspection problems. For instance, we pro-
grammed the process called surface defect recognizer that
implements the FHCE algorithm presented previously, using
the images captured by the front camera of the drone. In this
implementation of FHCE we also used simple routines pro-
vided by the OpenCV library (e.g., for representation of im-
ages, pixel manipulation, etc.). Aerostack provides a library
of behaviors such as general motion behaviors (take off, land,
got to point, etc.). We extended this library with specific

Figure 6: Block diagram with the main software components.

behaviors useful for inspection missions. For example, we
implemented the behavior explore with different exploration
strategies, or the behavior zoom, to move closer or farther to
the surface.

The dialog between the operator and the robot uses three
communication channels. First, Aerostack provides a graph-
ical user interface (GUI) to interact with the drone. This in-
terface allows the operator to do supervisory control. Figure
7 shows an example of window presented by the Aerostack
GUI which can be used by the operator to control the mission
execution (start mission, abort mission, etc.). This window is
called control panel, with specific buttons and fields, where
operator can control the state of the mission. The robot uses
also this panel to show the current action (e.g., take off, go
to point, land, etc.). This is useful to help the operator to
supervise the correct execution of the mission.

The Aerostack GUI also provides another channel that the
operator can use to send behavior directives to the robot. In
this case, the operator selects the specific behavior to do (e.g.,
land, take off, etc.).

The version of Aerostack that we used for this work did
not provide the assistance request for human-robot interac-
tion, as we defined in this paper. Therefore, we programmed
a new process, called assistance requester, to provide this ser-
vice. This process receives events corresponding to a mis-
sion impasse (e.g., the presence of an unrecognized image
or the presence of a problem) and interacts with the operator
requesting the appropriate information according to the inter-
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Figure 7: Window for mission control provided by Aerostack.

action patterns.
We programmed the assistance requester using a com-

mand line interpreter with simple commands with two let-
ters (e.g., cm for continue mission, etc.). However, for a
future more complete implementation, we designed two al-
ternative options for assistance request. The first option is
based on a interruption window presented to the operator (a
pop-up window) asking for operator attention and requesting
an answer. Figure 8 shows an example of the design of such
a window. We asume that while this window is presented,
the robot keeps hovering and, if the operator does not answer
after a limited time T (e.g., T = 45 seconds), the robot con-
tinues the mission.

Figure 8: Example window presented to the operator for as-
sistance request.

An alternative option for the previous window is based on
using voice messages and speech recognition used in natural
user interfaces (as we propose in [20]). In this case, the robot

generates the following text message:

The mission is stopped because I have rec-
ognized the mark shown on the monitor. Please,
say what to do next: (1) confirm recognition and
continue exploration, (2) reject recognition and
continue exploration, (3) learn a new category,
(4) mark defect, and (5) do another action.

5 EXPERIMENTS
This section shows a preliminary set of scenarios that we

analyzed to evaluate our interaction model. Table 3 shows the
set of flight experiments that we considered to cover different
situations of interaction. The experiments illustrate the kind
of collaborative human-robot interaction presented in this pa-
per.

Scenario Description

Low visibility
and mission
delegation

Robot R1 finds a dark area which does not
allow the proper recognition. The operator
orders R1 to turn on the light and continue
with the mission. Then, the drone has a low
battery charge. The operator transfers the
mission to robot R2.

Distributed
specialized

tasks

Robot R1 finds a hole. The operator orders to
delimitate the hole zone. The drone asks for
painter drone help. Painter drone draws a
circle around the hole. The first drone finishes
the mission.

Reconstruc-
tion of large

fissure

Robot R finds a large fissure. The operator
orders to change the inspection strategy to
up/down. The drone starts moving taking
several pictures of the fissure. Once finished,
it makes a reconstruction of the fissure and
classifies it correctly.

Zoom out for
large fissure

Robot R finds a large fissure. The operator
orders to zoom out. The robot gets a better
(complete) view and classifies it correctly.

Lost position

Robot R loses its position with respect to the
wall. The operator relocates the drone in the
inspection area using movement orders and
orders to continue the mission.

New object to
recognize

Robot R finds an unknown imperfection that
cannot be classified following the trained
imperfections. The drone asks the operator
what to do, and the operator decides to create
a new class stain.

Table 3: Example scenarios corresponding to flight experi-
ments.

For example, in the third scenario, the robot develops the
inspection until it finds a large fissure. The robot recognizes
an unknown object but it is not able to classify it. Then, the
operator orders to zoom out. Then, the drone zooms out from
the fissure to get a better (complete) view and then, classifies
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correctly the defect. Then the drone continues the mission
and no more objects are recognized.

Figure 9: Example exploration trajectory followed by the
robot.

Figure 9 shows the trajectory developed by the robot in
one of the flight experiments. This example corresponds to
an aerial platform AR Drone 2.0 (Figure 10) performing a
indoor inspection to find holes and fissures on a wall. The
whole trajectory is covered in 1 minute and 19 seconds. The
robot develops autonomously an horizontal exploration start-
ing from the takeoff point (2, 2, 0) and landing at the same
point after the exploration. There are two points where the
robot zooms in and out to have closer views of the wall: point
(2, 3, 1) and point (6, 3, 1). In this particular example, the
robot performs an autonomous inspection without any inter-
action with the operator.

Figure 10: The aerial robot (AR Drone 2.0) during wall in-
spection.

Figure 11 shows examples of recognized defects on the
wall, corresponding to a fissure and a hole. In general, the
experiments proved that the recognition method was able to
classify correctly the 88.5% of fissures and the 49.5% of the
holes (evaluated with a sample of 200 images). The recog-

nition performance can be acceptable for the interaction goal
presented in this paper, where the robot requires the confir-
mation of the operator. Especially, the algorithm gives good
results on well differentiated flaws from the background. A
high performance of the recognition process was outside the
goal of this work and may be achieved with future research
work.

Figure 11: Example of recognized defects on the wall.

6 CONCLUSIONS
In this paper we have presented our human-robot ap-

proach for surface inspection tasks based on a collaborative
control with a flexible dialogue between operators and robots
with a mixed initiative interaction. The human-robot dialog
scheme is defined with two main interaction modes, super-
vision and assistance, with generic interaction patterns. The
presented model is generic to be applied for different surface
inspection missions with one operator and one or more aerial
robots.

Compared to a conventional tele-operated inspection sys-
tem, the solution presented in this paper leaves more auton-
omy to the aerial robot, which can reduce the cognitive load
of operator during the mission development.

We developed an experimental prototype of a software
system to refine and validate this model using the framework
Aerostack. The experiments proved that this approach can be
used in aerial robotics for surface inspection missions (e.g.,
vision based indoor missions). However, this preliminary de-
sign and implementation still needs to be extended with addi-
tional components and more extensive evaluation to show in
more detail its contributions and its practial utility.

We plan to extend this approach in the future with more
types of behaviors (e.g, other complex exploration strategies)
and other types of categories of defects to be used in related
scenarios.
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