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ABSTRACT

This paper presents a technique for multi-
UAV localization using ranging measurements
from Two-Way Time-Of-Flight Ultra-Wideband
(UWB) transceivers. In continuation with our
previous work, the use of the Extended Kalman
Filter (EKF) estimate is extended by fusing with
other sensors to achieve a usable altitude es-
timate. Besides EKF, another method based
on Non-linear Regression (NLR) is also devel-
oped to serve as an auxiliary localization to sup-
plement the EKF. Experiments of autonomous
flights are carried out to study the performance
of these localization methods. Our success in
supporting 4 UAVs demonstrates the capability
of UWB for multi-UAV localization as a substi-
tute for GPS in GPS-denied conditions. It can
also serve as a cost-competitive alternative for
very accurate yet expensive, highly centralized
motion capture systems for indoor localization.

1 INTRODUCTION

Micro unmanned aerial vehicle (UAV) technology has
plenty of potential and is seeing increasing application in
recent years. Besides the well-reported military applica-
tions and the ubiquitous aerial photography consumer drones,
UAVs are also being used for 3D mapping [1], aerial inspec-
tion [2], precision agriculture [3], as well as search and res-
cue [4]. Other noticeably interesting applications are also be-
ing explored such as deployment in indoor industrial environ-
ments [5], and even interception and capture of other UAVs
[6].

Most of these applications rely heavily on the satellite-
based localization system (Global Positioning System, GPS)
which limits it to outdoor use. The system would thus fail
to work indoors or in semi-cluttered urban environments
and forests due to multipath and non-line-of-sight blockage.
Hence, a satisfactory localization solution is desired to extend
the use of UAV into complex environments.

The authors are with School of Electrical and Electronic Engi-
neering, Nanyang Technological University, Singapore 639798, Singa-
pore. email: E150040@ntu.edu.sg (T.M. Nguyen); E150010@e.ntu.edu.sg
(A.H.B. Zaini); GUOK0005@e.ntu.edu.sg (K. Guo); elhxie@ntu.edu.sg (L.
Xie)

The research was partially supported by the ST Engineering - NTU Cor-
porate Lab through the NRF corporate lab@university scheme.

For indoor localization, two infrastructure-dependent sys-
tems have attracted much attention from UAV research
groups: a camera-based motion capture system, and a sys-
tem that utilizes the existing wireless local area network. The
camera-based motion capture system is commonly used by
several research groups focusing on challenging autonomous
aerial tasks such as formation, cooperative control and high
speed maneuvers [7, 8]. Commercially-available motion cap-
ture systems are able to provide millimeter/degree accuracy
and high update rates at upwards of 200Hz. However, the
motion capture system is a highly centralized system utiliz-
ing many cameras connected to a single computer which then
transmits the positions and orientations to the subjects within
its view. It is also costly, has significant setup time, small
sensing area, and can only be used indoors which limits use
beyond research.

The second method utilizes the IEEE 802.11 standard
usually referred to as WiFi. It has been used in commercial
and residential buildings [9] and robot teams [10]. However,
to date, no successful UAV flight using WiFi localization has
been reported. This can be attributed to the unsatisfactory ac-
curacy of WiFi-based localization methods for a demanding
application such as UAV [11].

Recently, a third method for indoor localization has
emerged which utilizes the pulse-based ultra-wide band
(UWB) radio technology. The large bandwidth and pulse-
based communication enables spectrum sharing and does not
interfere with conventional signals. With the large bandwidth,
this technology has the properties of strong multi-path resis-
tance and, to some extent, wall-penetration, which enables
accurate ranging via peer-to-peer two-way time of flight.
With centimeter-level ranging accuracy, small size and light
weight, low-power UWB modules can be applied for UAV
localization [12]. UAV localization has also been achieved
using time of arrival and time difference of arrival with one
way UWB communications [13]. The work reported in this
paper builds on the group’s previous work in [12].

In this paper, PulsON 440 UWB modules from Time Do-
main [14] are installed on multiple quadcopters for localiza-
tion in GPS-denied environments. Each UAV sends range re-
quests to anchor nodes in a round-robin manner. Once a range
measurement is retrieved, based on our proposed localization
algorithm, position and velocity estimates will be updated and
fed into the flight control unit of the quadcopters. A combi-
nation of Nonlinear Regression (NLR) and extended Kalman
filter (EKF) localization methods is proposed where NLR can
be used to initialize and reset the EKF estimates. Also, due

1

IMAV2016-9
http://www.imavs.org/pdf/imav.2016.9

IMAV 2016, Beijing, PR of China, 17-21 October 2016
International Micro Air Vehicle Competition and Conference 2016



to the significance of the accuracy of anchors’ coordinates for
our localization estimation, a tedious procedure of measuring
the anchors’ coordinates must be conducted every time the
operation sites are altered or the anchors are moved. There-
fore, the proposed NLR method can also be used to assign the
coordinates to the anchors. An autonomous formation flight
test with a four-UAV team are also conducted and the data
were studied to validate the performance of our proposed lo-
calization system,.

The content of this paper is organized as follows. In the
first part we formulate the Extended Kalman Filter and Non-
linear Regression algorithms that use the distances to produce
the locations of the agents. In the second part we describe our
experiments where we fly 4 UAVs using the EKF estimates
while running the other method simultaneously and summa-
rize their performance. Finally, we conclude on the perfor-
mance of the UWB-based localization system and its capa-
bility to support multiple UAVs as well as discuss issues that
can be investigated for future works.

2 LOCALIZATION TECHNIQUES

2.1 Extended Kalman Filter

In this paper the Extended Kalman Filter is based on our
previous work [12]. Let p be the aircraft’s position, v = ṗ be
its velocity, w(t) is a white noise process (w(t) ∈ R3). The
UAV’s motion is modelled as a random acceleration second-
order system as follows:

X =

[
p
v

]
; Ẋ =

[
0 I
0 0

]
X(t) +

[
0
I

]
w(t)

The model above is discretized as:

Xk =

[
pk
vk

]
; Xk+1 = AkXk + wk

where:

Ak =

[
I ∆tkI
0 I

]
is a 6 × 6 discrete state transition

matrix, ∆tk is the time difference between the last update
and the current update. {wk} is a white noise sequence with
its covariance derived in [12] as:

Qk =

[
1
4 (∆tk)4 1

2 (∆tk)3
1
2 (∆tk)3 (∆tk)2

]
⊗ diag(σ2

x, σ
2
y, σ

2
z)

Qk is a 6 × 6 covariance matrix for the random accel-
eration sequence. Here ⊗ is the Kronecker product and
diag(σ2

x, σ
2
y, σ

2
z) is a 3 × 3 diagonal matrix whose non-zero

entries are the variance of the random acceleration on each
direction.

We assume that the measurement is the distance from an
anchor (whose position is denoted as pa) to the UAV’s po-
sition subject to a zero-mean Gaussian noise νk with vari-
ance R: dk = ‖pk − pa‖ + νk. The EKF algorithm will run

through the following steps every time a new distance esti-
mate is received:

X̂∗
k+1 = AkX̂k (1)

P̂ ∗
k+1 = AkP̂kA

T
k +Qk (2)

d̂k+1 =
∥∥p∗k+1 − pa

∥∥ (3)

Hk+1 =

[
1

d̂k+1

(p∗k+1 − pa)T
∣∣∣∣01×3

]
(4)

Sk+1 = R+Hk+1P̂
∗
k+1H

T
k+1 (5)

Kk+1 = P̂ ∗
k+1H

T
k+1S

−1
k+1 (6)

X̂k+1 = X̂∗
k+1 +Kk+1

[
dk+1 − d̂k+1

]
(7)

P̂k+1 = (I −Kk+1Hk+1)P̂ ∗
k+1 (8)

The following Mahalanobis distance of each distance
measurement is also calculated between step (5) and step (6):

DM =
√

(dk+1 − d̂k+1)TS−1
k+1(dk+1 − d̂k+1)

If DM is larger than a threshold then it is likely to be an
outlier and we should skip fusing this measurement in step
(7) and step (8).

In our previous work, the EKF estimate was used mainly
as a 2D localization system. Therefore an independent laser-
based range finding sensor was used for altitude estimate. Al-
though the sensor is accurate, the UAV’s altitude estimate is
influenced by the terrain. In this work, we have combined the
UWB altitude estimate with the low level sensors to achieve
altitude control for UAV, independent from the variation of
the terrain.

2.2 Substituting GPS in low level fusion
In our platforms, we utilize the high-level EKF estimate

as the GPS input for the sensor fusion algorithm of the 3DR
Pixhawk [15]. Our Pixhawk units run a customized version
of the open-source PX4 [16] firmware and are set to use the
22-state EKF attitude and position estimator. In this 22-state
EKF, the position, velocity, and attitude states are predicted
by integration of acceleration and angular rate measurements
from the IMU. In the correction step, GPS position measure-
ment inputs are substituted and the relevant noise parameters
are adjusted accordingly.

To ensure reliable and stable altitude estimation, the al-
titude data (received at a rate nearly 32Hz) are fused with
the existing barometer-based altitude readings (sampled at
100Hz). The standard deviations of both measurements were
found to be similar when held stationary at 18cm and 20cm
respectively. However, the slower measurement rate of the
noisy UWB-based altitude measurements does not provide
the simultaneously smooth and responsive estimate required
for altitude control. Nevertheless, this estimate still has the
advantage that it is not subject to the variation of the ground
level. As the barometer altitude reading is an absolute value
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measured from sea level, an offset is subtracted from the
barometer measurements. This offset is obtained by calculat-
ing the difference between barometer measurement and the
EKF altitude estimate every 10 seconds as shown in Figure 1.
This arrangement simultaneously compensates for barome-
ter drift and dampens sudden changes in UWB-based altitude
measurement.

Figure 1: The method used for offsetting the barometer.

2.3 Non-linear regression for coordinates assignment and
localization

Since our localization method requires setting up the an-
chors at the operation site, it usually would be very cumber-
some, or sometimes impossible, for human to access the op-
eration area to measure the coordinates of the anchors before
the UAV team can be deployed. In this part we propose a
method based on Non-linear regression to assign the coordi-
nates to the anchors/UAVs on startup. This method can be
implemented based on the communication capability of the
UWB transceivers in the future.

Besides coordinates assignment, the algorithm can also
be run in parallel with the EKF to serve as initializer and re-
covery value. A secondary localization technique is useful in
this situation because there can be cases when the signal is
lost for sometime (for example, 1 second), the step time ∆tk
can be too large and cause the EKF to diverge. Also, since we
assume a random acceleration model, when the UAV moves
faster than the estimator can catch up, an over-conservative
outlier rejection can cause it to stall completely. The NLR
method does not require the past estimate unlike the EKF.
Therefore, if enough distance measurements can be obtained
in a short period, we can use the NLR to calculate the posi-
tion and reset the EKF. In the Experiments section the per-
formance of the NLR localization will be summarized and
compared with the EKF.

Assume that we have a network of N agents, which can
be either anchor or UAV, and each agent has its coordinates
denoted as pi =

[
xi yi zi

]T
, i = 1, 2...N . An agent

can have none, some or all of its coordinates known before-
hand. In the context of a non-linear regression problem, the
known coordinates will be in the set of error-free indepen-
dent variables x and the unknown will be in the set of pa-
rameters β to be estimated. Regardless of their roles we
will group these coordinates into one vector of length 3N as

p =
[
x1 y1 z1 x2 y2 z2 . . . xN yN zN

]T
Let dij = ‖pi − pj‖ be the distance between pi and pj ,

where i, j = 1, 2, 3...N and i 6= j. Also since dij = dji we
only consider dij of i < j. The number of distances from
all N agents in the network will be K = N(N − 1)/2. Our
non-linear model, denoted as f(x, β) or f(p), will be aK×1
vector of all of the distances arranged in a particular way as
follows:[
d12 d13 . . . d1N d23 d24 . . . d2N . . . . . . dN−1,N

]T
Our observed dependent variables yij are these distances

subject to some error εij , or yij = dij + εij .
To apply the Non-linear regression method, we start from

some initial guess β0 and seek to improve our estimate of β
by the following recursive steps:

Jk = Jk(x, βk) =
∂f(x, β)

∂β

∣∣∣∣
β=βk

(9)

∆y = y − f(x, βk) (10)

∆β = (JTk WJk)−1JTk W∆y (11)
βk+1 = βk + ∆β (12)

where k = 0, 1, 2, 3... andW is a weight matrix to signify
the comparative importance between the measurements.

During the initial phase when all agents are static W can
be set as identity. In the second phase when some agents
assume the role of anchors and some are the mobile nodes,
the distances may not be acquired at the same time. The more
recent a distance is, the more priority should be given to its
residue ∆yi. Also, it should be noted that a time window
should be applied to ignore the very old measurements. For
example in a period from t0 to tm within our time window,
we have measured the distances to m anchors at times t1,
t2, ...tm. W can be set as:

W =
1∑m

l=1 tl −mt0
diag([∆t1∆t2 . . .∆tm])

where ∆tl = tl − t0, l = 1, 2, ...m.
To calculate the Jacobian Jk in equation (9) conve-

niently, we can employ a more expressive Jacobian Jp =
∂f(x, β)/∂p = ∂f(p)/∂p. Jp can be expressed as follows:

Jp =



J̄12 J̄21 0 0 . . . 0
J̄13 0 J̄31 0 . . . 0

...
...

...
...

. . .
...

J̄1N 0 0 0 . . . J̄N1

0 J̄23 J̄32 0 . . . 0
0 J̄24 0 J̄42 . . . 0
...

...
...

...
. . .

...
0 J̄2N 0 0 . . . J̄N2

...
...

...
...

. . .
...

0 0 0 0 . . . J̄N,N−1



(13)
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where J̄ij =
(pi−pj)T

dij
; i, j ∈ {1, 2, 3...N} and i 6= j. 0

indicates a 1× 3 block of zeros.
After we have substituted the values of x and βk to (13),

we can remove the columns corresponding to x to obtain Jk.
For UAV localization, since only the UAVs are moving, all of
the anchors’ coordinates can be added to x so that the corre-
sponding columns can be removed from Jp. The same treat-
ment can also be done to the rows corresponding to the dis-
tances between the anchors. Finally if the UAV only needs to
localize itself then the final Jk matrix will be aK∗×3 matrix
where K∗ is the number of anchors.

Using NLR for coordinates assignment requires fixing
some coordinates before estimating the others. The follow-
ing lemma can provide several necessary conditions to assure
the computational feasibility of the NLR algorithm.

Lemma 1. Let l, m, n be the numbers of fixed x, y, z coor-
dinates, respectively. The following are necessary conditions
for Jk to have full rank:

1. (l +m+ n) ≥ 6.

2. The known coordinates must belong to at least three
agents.

3. l ≥ 1, m ≥ 1, n ≥ 1.

4. Any two in three numbers l, m, n must not be both
equal to 1.

Remark: Lemma 1 only specifies some conditions for
the computational feasibility of the algorithm regarding the
number of known coordinates. Some numerical instances of
βk may still result to loss of rank of Jk, especially when the
agents are co-linear or coplanar. Therefore a check for infinity
or NaN value in ∆β is still necessary. Also, since NLR is a
gradient descent method, the solution may converge to a non-
global optimum, therefore a good initial guess β0 is also very
important.

3 EXPERIMENTS AND RESULTS

3.1 Testbed

Figure 2: Main modules of the testbed.

In our experiment, the UWB transceivers in use are the
P440 modules from Time Domain. There are four P440s act-
ing as the anchor nodes and another four are mounted on the
UAVs to range to the anchors. Each UAV has a high-level
control board who hosts and directs the UWB modules to col-
lect the distances to anchors.

The high level board then computes the location and sends
the position estimates to the low-level board which fuses this
data with its high-rate IMU and barometer sensors. The out-
put is then sent back to the high level board at a lower rate for
logging and off-line analysis.

3.2 Indoor autonomous flight
The indoor flight test was carried out using VICON as

ground truth. 4 UAVs were loaded with predefined set points
and set times. The set points were chosen to be on a 4m×4m
square for the outer loop and an 2.5 × 2.5m square for the
inner loop. The anchors are positioned at the corners of a
6m × 6m area with varying heights. After sending an RC
signal to trigger the autonomous flight mode, all UAVs will
register the trigger time. Each will then load the first set point
from memory, fly to this point, stay there until the local clock
exceeds the set time and then proceed to the next point. The
ground truth was processed by a central computer and sent to
each UAV to be stored locally. In Figure 5, all of the flight
data were synchronized to the VICON system time by us-
ing time stamps and assuming that the clocks of P440, VI-
CON, high-level and low-level controller boards have negli-
gible drift during the experiment period.

Figure 3: 4 UAVs at the closest set points (roughly 1.75m
apart from each other) in the indoor test. Each square on the
floor has an area of 0.5m× 0.5m

In Figure 4, it can be seen that x and y estimates from
UWB-based localization methods have consistent accuracy
across all UAVs, as the same level of error can be seen at
the same area on the four plots. All of the RMS errors of the
implemented methods are summarized in Table 1. For 2D lo-
calization analysis, which we only compare x and y estimates
with VICON data, among all methods and UAVs, the maxi-
mum RMS error is 0.162m. The NLR method also notably
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Figure 4: x and y estimates of 4 UAVs with VICON ground
truth in red. EKF estimate is in blue, NLR orange and the
EKF estimate fused with Pixhawk’s sensors in green.

shows a slightly smaller error on all of the UAVs. The fused
estimate appears to have a slightly larger error in comparison
with the raw UWB-EKF estimate which can be explained be-
cause the data were down-sampled from 250Hz to 20Hz to
ease the logging and analysis. The latency from transmitting
the UWB-based estimate to px4 is also a factor of this larger
error. This error is negligible for 2D movements of the UAVs.

For altitude estimate, the error is obviously more promi-
nent than x and y estimates. The desired altitude is set at 1m
for all the UAVs. The maximum RMS error is 0.354m from
the fused estimate. It can be seen in Figure 5 that the error is
location-wise consistent: any UAV will read the same altitude
at the same place and the error level can act like an offset at
that place. This effect thus does not forestall stabilization of
altitude. On the other hand, it can be seen that the NLR alti-
tude estimate has very large variation. It can suddenly ”flip”
at some points which can be explained as the algorithm con-
verges to a value that is not globally optimal due to the imper-
fection of the distance as well as error in the declared position
of the anchors.

Incompatible accuracy in the altitude estimate is a persis-
tent issue in similar works [13]. For future work we may con-
sider fusing external IMU data with the EKF/NLR estimates
on the high level board to mitigate their respective shortcom-
ings. If the application requires 2D localization only, x and
y estimates of either method can be made into use. For 3D
localization, the experiment shows that the EKF altitude esti-
mate fused with Pixhawk’s sensor is stable enough for flying.
Though there is still significant altitude error, it is consistent

UAV EKF FUSED NLR
XY Z XY Z XY Z

1 0.124 0.353 0.127 0.354 0.119 0.346
2 0.111 0.343 0.126 0.349 0.105 0.327
3 0.150 0.335 0.162 0.338 0.144 0.336
4 0.107 0.348 0.110 0.347 0.102 0.341

Table 1: RMS error of the indoor flight test for each UAV (all
data are in m).

among all UAVs and locations. This characteristics may offer
a possibility for improvement in future works, for example
the altitude error can be mapped out and compensated based
on the 2D localization estimates.

4 CONCLUSION

In this paper, the capability of the proposed technique for
multi-UAV localization has been demonstrated by supporting
up to 4 UAVs. A secondary localization method based on
NLR was also investigated to work together with the EKF for
initialization and reset. For 2D localization, both Extended
Kalman Filter and Nonlinear Regression methods can pro-
vide sufficiently accurate estimate for UAVs. When altitude
estimate is taken into account, the EKF estimate has been
successfully tested for flying while the NLR method still has
some problems with its altitude estimate. Nevertheless, the
two methods are relatively independent and can both run in
parallel to supplement each other.
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