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ABSTRACT

Real-time aerial image mosaicing is a crucial
task for future search and rescue missions. Solv-
ing the correspondence problem, estimating a
valid transformation and visualizing the result is
computational intensive. It becomes more chal-
lenging if the flying platform is a small micro air
vehicle (MAV), which limits the available mar-
gin for payload significantly.

This paper proposes a robust algorithm that is
able to create and update photo maps in a fixed
period of time. The approach uses a high num-
ber of features and strict match filtering to allow
robust matching without additional sensor infor-
mation. Subsequently the ability of todays most
common single board computers (SBC) to run
the presented algorithm is examined. Together
with the selection of a lightweight board camera
the setup is less than 100 grams allowing even
small MAVs to generate maps in real-time.

1 INTRODUCTION

In recent years the development of unmanned aircrafts
considerably reduced the costs and effort required to gener-
ate aerial images. As a result aerial mapping is getting more
common in various fields such as agriculture or construc-
tion side documentation. Common mapping results are 2D
pseudo-orthophotos and 3D surface meshes. Both are com-
monly generated using structure from motion or photogram-
metry workflows which are started after the survey flight and
usually take several hours.

The capability for cost and time efficient aerial map-
ping is also needed by various emergency response units. In
civil catastrophe scenarios for instance after earthquakes or
tsunamis these maps can be used by rescue workers to get an
overview of the situation. While a 3D mesh of the area gener-
ated by structure from motion or photogrammetry can fulfill
the need for an all around perspective at best, it is compu-
tationally intensive and therefore too time consuming. Cer-
tainly time is of critical importance to maintain an effective
coordination of the emergency aid to save human lifes.

This paper aims to provide a solution for a 2D real-time
mapping implementation. In its first half a suitable mosaicing
algorithm is discussed and presented. Afterwards the hard-
ware requirements are determined and compared to hardware
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available today. The ultimate goal is to create a lightweight
standalone package capable of performing the image acquisi-
tion and mapping task independently from the aerial vehicle
it is attached to.

Figure 1: General approach to image mosaicing.

2 REAL-TIME CAPABLE MOSAICING ALGORITHM

In this section the focus lies on the algorithms used for
image mosaicing. The choice is highly influenced by the
requirements emerging from real-time performance. While
classic approaches use bundle adjustment to minimize the re-
projection error over all images in a single, iterative step to
get a global consistent solution, it is not feasible for real-time
applications. The computational time is too high and will
increase with every image taken as the complexity increases
withO((m+n)3), wherem is the number of images and n is
the number of structure points [1]. The real-time performance
imposes the requirement of a constant maximum time frame
for every stitching iteration. This time frame has to be inde-
pendent from the number of images that have already been
taken. To allow such performance the extensive OpenCV 3.0
C++ library is well suited and is therefore used for this task.
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2.1 Feature Extraction

In figure 1 the general approach for image mosaicing is
displayed. As soon as a new image is acquired and sent to
the pipeline, the first step is initiated. This step combines de-
tection of markable points and description of the pixels near
environment. For this task the ORB algorithm is used. It
is based on the FAST keypoint detector and the BRIEF de-
scription of these keypoints [2]. The fact ORB uses a binary
descriptor allows very efficient logical operations and com-
parisons, which fits the need for a real-time capable system
excellently.

2.2 Feature Matching

If the input image is the first of the series it is then saved
with all its features, since there is no other data it can be
stitched to. After the acquisition and feature extraction of the
next image the search for corresponding points is initiated.
To ensure a fixed time frame the current input image is only
stitched to the previous, thereby matches between these two
sets of features have to be found. It is the most crucial part as
it influences the final transformation notably. After generat-
ing a list of matches by brute force comparing their descrip-
tor it is therefore beneficial to filter these results. A common
method to identify good matches is the ratio test [3]. It com-
pares the best and the second best match for each feature by
their euclidean distance. A good match has a high chance of
not having a second best match too close, which would be an
indicator for a homogenous image section.

Additionally the previously introduced characteristic of
ORB as a binary descriptor is used. It describes the features
near environment with 1 and 0. Comparing two descriptors
bit by bit and quantifying the difference by the hamming dis-
tance a proposition about the likeliness of two features can be
done. That way the set of raw matches can be reduced to a set
of best matches. Figure 2 shows the movement of the matches
from two consecutive frames. On the top the movement of the
raw matches is displayed, whereas on the bottom the filtered
matches can be seen. In figure 3 the resulting stitched scene
based on 43 aerial images is displayed. It should be noted,
that reducing the matches drastically can result in decreas-
ing transformation stability despite their quality, as they may
not be uniformly spread across the image leaving more de-
grees of freedom. A good compromise between quality and
quantity of matches should therefore be intended and can be
achieved by selecting proper parameters for the pipeline de-
pending mainly on the processing power and the overall per-
formance requirements.

To improve the overall stability of the algorithm by min-
imizing the total drifting error it is furthermore beneficial to
use an initial guess of the position to compute image neigh-
boorhood relations. This can be done by kalman or parti-
cle filtering, additional sensor data like GPS or simple lin-
ear extrapolation of image centroids. If neighbours can be
found within a defined range, matched features with the pre-

vious frame can be reprojected into the neighboring images
to increase the number of observations and therefore ulti-
mately improve transformations. At this step advanced state-
of-the-art algorithms perform local bundle adjustment to op-
timize camera pose and 3D world points for even higher ac-
curacy [4]. Considering the increasing complexity accompa-
nied with numeric optimization a simpler approach for our
system was chosen. The neighbourhood relations are used to
compute additional matches between more than two frames
resulting in reduced error propagation, which is evaluated in
chapter 4.

Figure 2: Movement of the matched features from two con-
secutive frames with unfiltered matches on the top and filtered
by ratio test and hamming distance on the bottom.

2.3 Transformation estimation

After generating features and determining their corre-
sponding points the transformation estimation starts. The
most common method for real-time capable mosaicing ap-
proaches is the identification of the homography. It describes
the relative position of two planes by a 3x3 matrix with 8
degrees of freedom, called perspective transformation. How-
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Figure 3: Stitched result with unfiltered matches on the left
and with ratio and hamming filtering on the right for a test
dataset.

ever in practice it has proven to be more reliable to use pitch
and roll stabilised image data for mapping, reducing the over-
all complexity of the homography to

H =

[
A t
OT 1

]
(1)

where A represents a 1D rotation and scaling matrix and t
the translation vector. Thus with 3 corresponding points the
similiar transformation can be identified. It is important to
be aware, that while estimating the homography the minimal
geometric error between input and reference image is calcu-
lated. However the reference image in the pipeline is always
the last stitched image. To achieve global consistent solu-
tions it is therefore convenient to first transform all features
used for calculation into the reference coordinate system and
then compute the homography [5]. That way the input im-
age is aligned relatively to the global reference and not to the
untransformed previous image. Additionally random sam-
pling consistency (RANSAC) is applied to reduce the number
of outliers and obtain the maximum transformation accuracy
during the process.

2.4 Image composition
In case a valid transformation matrix was found the input

image must then be composited visually with the rest of the
data. This step contains a high risk of breaking the real-time
requirement, as the growing global map must be updated in a
fixed time frame. Therefore only the section of the image that
actually changed has to be considered. To achieve this a com-
mon approach is to project the edges of the input image into
the global reference system using the previously estimated
homography. In conclusion the maximum dimension of the

warped input image is known and can be reduced to a region
of interest for the visualization.

Additionally to increase performance even more the vi-
sualization process can be decoupled from the rest of the
pipeline in aspects of image resolution. While working on
lower resolution data for fast but stable feature extraction and
matching the calculated matrix can be scaled afterwards. This
approach also implies sending only raw image data and the
corresponding transformation informations to the user. Once
received, the frame can be aligned in high resolution to the
global reference by using the complete processing power of
the ground station. Furthermore implementing it that way,
lost data packages during uplink to the UAV will not be a rel-
evant problem as the solution on-board stays consistent the
whole time.

3 HARDWARE SELECTION

In the previous section a potential real-time capable im-
age mosaicing algorithm was descriped. The next step is to
choose a lightweight hardware that is able to satisfy the de-
fined requirements.

3.1 SBC Selection
The performance of the proposed algorithm is mainy in-

fluenced by two parameters. First is the image resolution,
second the number of features that are extracted. However
these parameters are not independent from each other. A high
resolution image has a lot of details that can be detected as
markable points. The higher the resolution, the more mark-
able points and the more features can be extracted. To ensure
matching features it is therefore necessary to extract as many
markable points as possible while keeping the computational
time low. This is aggravated by the fact that during matching
brute force is used. In conclusion every feature is compared
with each other resulting in an O(n2) complexity.

Following the approach given by [6] the selection of a suf-
ficently capable single board computer (SBC) is now possi-
ble. Their framework quantifies the performance of the devel-
opers computer in OpenCV by running two different standard
algorithms and measuring their respective processing time T1
and T2. The first is a simple (ComplexityC1 = 0%), the
second a complex one (C2 = 100%). By interpolating linear
between these two sampling points the user is able to identify
the complexity Calg of his own algorithm with

Calg =
Talg − T1
T2 − T1

C2 + C1 (2)

In the next step [6] tested common SBCs with both algo-
rithms defining T 1 and T 2 on common SBC hardware. With
a known Calg on the developers computer T alg on the SBC
can then be estimated using

T ′alg =
Calg − C1

C2
(T ′2 − T ′1) + T ′1 (3)
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Table 1 shows the resulting processing performance of the
proposed mosaicing algorithm with a working resolution of
480 x 360 pixels and roughly 500 extracted features per im-
age on different SBCs. Furthermore table 2 shows the spec-
ifications of the boards allowing to choose the best match-
ing component concerning size and weight. Overall the Brix
board is the best compromise by performance and weight. It
also outperforms the Intel NUC while being less than half as
heavy. However considering the goal of a very lightweight
setup the Odroid XU3 offers the best solution. In our finals
system an Odroid XU4 was selected as it comes with the same
processing hardware but less periphery.

Board Estimated fps
ITX i7 31.3
Brix 53.5
NUC 43.3
Odroid XU3 12.3
Odroid U3 8.1
ITX atom 9.3
Jetson 6.6
Rasp. Pi B 0.6

Table 1: Processing performance for the proposed algorithm
with different SBCs [7].

3.2 Camera specifications
At first it is important to determine the general mission

requirements. In an emergency aid scenario a human should
be indentifiable on the aerial images. Therefore a resolution
of 5 pixels per 30 cm should at least be maintained resulting in
a ground sampling distance (GSD) of 6 cm / pixel. Taking the
image resolution defined in section 3.1 into account this leads
to an image ground dimension of 28.8 x 21.6 m. The vehicle
operation altitude can vary but was chosen to be at least 30 m
to prevent collisions with high trees or other obsticles.

Figure 4: UI-1221LE camera developed by IDS.

For a lightweight setup the use of board cameras is a

promising option. In figure 4 the µEye UI-1221LE developed
by IDS is displayed. With a resolution of 0.36 Megapixel, a
maximum of 87.2 fps and global shutter it is a suitable camera
for this mission. Following the definition of the GSD

GSD = hrel
d

f nPixel
(4)

with the relative altitude hrel above ground, d as the camera
chip width and nPixel as image width the focal length of the
camera lens can be deduced. Applying hrel = 30 m, d = 4.52
mm, nPixel = 480 pixels and GSD = 6 cm / pixel the focal
length of the camera is estimated with equation 4 to

f = hrel
d

GSD nPixel
= 4.7mm (5)

Finally to guarantee a stable stitching process a high over-
lap between two consecutive frames is recommendable. Tests
showed that an overlap of at least 75% is required for a stable
stiching process.

Figure 5: Processing time distribution for each image with
image loading (green), feature detection (red) and total pro-
cessing time (blue)

4 EVALUATION

The proposed algorithm was tested on the determinded
hardware using an available dataset. At first the performance
of the SBC is analyzed and compared with the estimation
made in the previous section. Subsequently the accuracy of
the calculated trajectory is evaluated using a GPS reference.
The data set used was published by [8] in 2016 and includes
381 images of a village captured by a UAV in an height of
165 m. Following section 3.2 the image resolution should
be at least 480x360 pixels with a height of 30 m and 75%
overlap. The latter parameters are overly fulfilled by the data
set, which results in higher stability of the algorithm with less
ground resolution. This can not be transferred directly to the
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Name Processor Memory Weight [gram] Power@100% [Watt] Volume[cm3]
mini-ITX I7 Intel i7-4770S 16GB 684 68 1815
Brix Intel i7-4500 8GB 172 26 261
NUC Intel i5-4250U 8GB 550 20 661
Odroid XU3 Samsung Exynos 5422 2GB 70 11 131
Odroid U3 Samsung Exynos 4412 2GB 52 7 79
mini-ITX atom Intel Atom D2500 8GB 427 24 1270
Jetson Cortex A15 2GB 185 13 573
Rasp. Pi B ARM1176JZF-S 512MB 69 4 95

Table 2: Processing performance for the proposed algorithm with different SBCs [7].

Figure 6: Trajectory generated by the GPS receiver (blue) and
the stitching algorithm (red) with additional neighbour frames

mission requirements, as the resolution is not enough to
identify humans safely. But it should be sufficent to verify the
general performance and accuracy capabilities. Additionally
the resolution can be adjusted in the real scenario as proposed
in section 2.4 for visualization purposes.

4.1 SBC Performance
The extrapolations made in section 3.1 indicate the

Odroid XU4 to run the stitching pipeline at 12.3 FPS. Us-
ing the given data set a mean runtime of 103 ms per frame
was achieved. This concludes 9.7 FPS for the designed sys-
tem making it slightly slower than estimated. The processing
time for each image is displayed in figure 5. It can be no-
ticed that image reading from the harddrive (green) shapes
the mean processing time significantly, while feature match-
ing (red) defines the overall variance. Despite the small varia-
tions around the mean value the complexity can be identified
as constant per frame.

4.2 GPS - Image trajectory comparison
To evaluate the accuracy of the transformations and there-

fore the quality of the mapping process a comparison between
UAV trajectories will be displayd. The trajectory produced by

Figure 7: Trajectory generated by the GPS receiver (blue)
and the stitching algorithm (red) without additional neighbour
frames

the proposed algorithm was analyzed by following the x-
and y-coordinates of image centroids in the global reference
frame. The scale was extracted by identifying markable cen-
troids from the images and measuring their distance in satel-
lite images. Calculating the meters per pixel and applying
this informations to the rest of the data produced the red out-
put in figure 6. The GPS trajectory measured by the UAV
(standalone, single frequency receiver) on the other hand is
displayed in blue. Figure 7 in contrast shows the calculated
trajectory for the same data set without additional neighbour
frame matching. It can be noticed, that the overall visual con-
sistency only fits the first leg flown. Even though an align-
ment of the trajectories was found visually by assuming the
error to be minimal at start, the error propagation of the trans-
formation estimation obviously grows and affects the map-
ping solution negatively. However for future analysis another
possibility might be to align the starting points, calculate a
least squares transformation for the first centroids and apply-
ing this to the rest of the data. That way error propagation can
be directly calculated between every single measurement, al-
lowing a more distinct analysis.
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Figure 8: Public image sequence data set visualized by the proposed stitching algorithm
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Figure 9: Height measurements by GPS (blue) and stitching
algorithm (red)

Additional analysis can be achieved by decomposing the
homography into rotation, scale and translation. Subse-
quently by multiplying the resulting scale with the initial
UAV height of 165 m a direct comparison to the GPS height
measurements can be done. Figure 9 shows this comparison.
On the left the total height measured by image processing is
displayed in red while GPS data is in blue. Significant is the

sinusoidally characteristic of the plot. This is also an indica-
tion for the reduced error propagation achieved by neighbour
frame matching. The first leg flown by the UAV ends at frame
77 followed by the second leg until frame 105. In this exact
period the error drops down to zero. This repeats constantly
following the flight routine of the UAV with a steady growing
error offset.

5 CONCLUSION

A lightweight setup for image mosaicing was introduced
together with a real-time capable stitching algorithm. The
feature based approach solves the problem using only image
data and no additional sensor informations. Tests with a pub-
lic dataset showed promising results reducing the error prop-
agation through homography estimation by extracting high
amounts of markable points and filtering the matches after-
wards.

The evaluation of available SBCs revealed that the Odroid
XU4 is capable of running the pipeline with an average of 9.7
FPS. In combination with a board camera like the UI-1221LE
the whole setup is light and can further be developed to a
standalone module making real-time mapping available for a
variety of MAVs. Final flight tests with the defined setup will
show if an additional camera stabilization is required and are
planned for the very near future.
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