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ABSTRACT

This paper presents a new and effective ap-
proach, incremental model based heuristic dy-
namic programming, to design an adaptive near-
optimal controller without a-prior knowledge of
the dynamic model. Both traditional heuristic
dynamic programming algorithm and incremen-
tal model based heuristic dynamic programming
algorithm are provided and applied to an illus-
trative on-line learning task. The system dy-
namics are completely unknown at the begin-
ning, and the agent learns the local system mod-
els and the control policies on-line to follow a
reference signal. It was found that using in-
cremental models in heuristic dynamic program-
ming can avoid off-line learning of the system
model and help to accelerate the on-line learning.
This proposed method can potentially design a
near-optimal controller for autonomous flight of
unmanned aerial vehicles without a-prior knowl-
edge of the system dynamics.

1 INTRODUCTION

Control of a complex, nonlinear flying vehicle without
sufficient knowledge of the system dynamics is a challeng
ing problem to maintain functionality and safety in aviatio
Until recent decades, adaptive control methods allow terta
levels of robustness and fault-tolerance to be achieveds@h
methods in some form or another rely on off-line or/and on-
line identification of air vehicles’ dynamics and adaptatif
control laws when necessary. However, on-line identificati
of unknown dynamical systems is not a trivial task especiall

when the system is complex and highly nonlinear.

with [6, 7]. Adaptive Critic Designs (ACDs), which are also
known as actor-critic designs, constitute a class of ADfhmet
ods that separate evaluation and improvement using paramet
ric structures [2].

The most basic form and widely used structure of ACD
is Heuristic Dynamic Programming (HDP). An action inde-
pendent heuristic dynamic programming controller cossist
of an actor, a critic and an approximated plant structure con
nected between the actor and the critic [2, 6, 7]. An alterna-
tive approach is Action Dependent Heuristic Dynamic Pro-
gramming (ADHDP), which does not need plant approxima-
tion, but has a direct connection from the output of the actor
network to the input of the critic network. However, from the
theoretical perspective, the actor output is not necdgsari
input to the critic for estimating the optimal value functio
From the practical point of view, extra input will increaset
complexity of the critic network. Furthermore, some reshar
has investigated the difference between HDP and ADHDP,
and found that HDP controller with the approximated plant
dynamics can operate in a wider range of flight conditions
and has a higher success learning ratio in controlling aé F-1
model [8]. Therefore, in this paper, only HDP, which refers t
action independent heuristic dynamic programming, is con-
sidered.

Neural networks are most widely used as function ap-
proximators to approximate plants. However, this method
has two main drawbacks which may lead to failure when ap-
plied in practice. First, on-line identification of the ptars-
ing neural networks needs certain time to approximate fea-
sible model, which may even need an off-line identification
beforehand. Second, neural networks may add two sources
of errors. One is lacking adequate computing power when
neural networks are used to perform the least-square approx
imation of the desired cost-to-go function. Another is that
the function approximator is trained from a simulation mode

In recent years, Adaptive/Approximate Dynamic Pro-
gramming (ADP), which obtains approximately optimal so-
lutions of the Hamilton-Jacobi-Bellman (HJB) equatiores h
been actively researched to solve nonlinear, optimalt-faul

which might not be correct due to the unknown system [9].
Incremental methods are able to deal with system non-

linearity. These methods compute the required controkeicr

ment instead of the total control input. However, some parts

tolerant control problems [1, 2, 3, 4, 5]. Different from-tra . L
ditional Reinforcement Learning (RL) methods, ADP appliesof the system model are still required in order to Compl%e th
' design process [10, 11, 12]. Incremental Approximate Dy-

a function apprc_mmator with p_arameters 0 apprQXImate thenamic Programming (iADP) was developed for the first time
value/cost function to solve optimality problems with leway

) . ) ; to control nonlinear unknown systems without using models.
continuous state spaces on-line and to tackle the ‘cursi of dThis control strateav uses a quadratic function to apprasd
mensionality’, which traditional RL methods often confton 9y q bp
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Programming controller using incremental models, which2.1 HDP using Neural Networks to approximate system

is namedincremental model based Heuristic Dynamic Pro- model

gramming(IHDP), is developed as a model-free adaptive con2 1.1  Critic

trol approach for nonlinear unknown systems. This is called

a model-free approach, because it does not need any a pridkle critic network is used to approximate the state-value

model information at the beginning of the algorithm nor on-functionV(z;), which is the cumulative future rewards from

line identification of nonlinear systems, but only the ameli ~@ny initial statex;:

identified linear incremental model. The incremental forfim o )

a nonlinear dynamic system is actually a linear time-vayyin VHE(X) = Zyi_tct, ()

approximation of the original system assuming sufficiently i=t

high sample rate for discretization. As the plant to be conyyhere , s the current policyfor this algorithm,y is called

trolled in this paper is nonlinear, the IHDP is therefore@lev i qunt factoror forgetting factor which is a scalar with

oped based on the linearized incremental model of the origi, <~ < 1, ande; is theone-step cost functiohe discount

nal nonlinear system. This algorithm can be seen as an exteRsctor ensures that the cost for any state is finite and pesvid

sion to the algorithm developed in [13, 14] with more general, 1o 450naple evaluation and approximation to infinitezoori

value function approximaters. problems as well as problems involving a finite but very large
The rest of the paper is structured as follows. An HDPpymber of stages. By adjusting it is able to control the

algorithm with a widely used neural network plant approxi- extent to which the short-term cost or long-term cost is con-

mator is introduced and designed in section 2. An IHDP algogerned [9].

rithm using incremental approach is first presented in gecti To minimize the cost of the system approaching its goal,

3. Then, in section 4, the two algorithms are applied to anhe one-step cost function is defined quadratically as afunc

illustrative application, and the results are compareddisd  tion of the difference between the current state and theetési
cussed, showing how much the IHDP method can improvetate, as follows:

the performance. The last part concludes the advantages and

disadvantages of using the incremental approach with HDP, o = (X, di) = (% — dy) T Q(x¢ — dy), )

and ad?qresses the challenges and possibilities of thee‘cutu(/vheredt is the reference track] is a positive definite matrix.

research. To normalize the effect of each state, we usually use normal-
ization factors in th&) matrix. Thus, we let) be a diagonal

2 HEURISTIC DYNAMIC PROGRAMMING matrix, and Eq. 2 can be rewritten as follows:
Similar to other ADP methods, action independent n v\ 2
Heuristic Dynamic Programming (HDP) algorithms operate = (G)? ( b “) , (3)
by alternating between two steps: policy evaluation, imple i=1 Tmaz,i

mented by the critic, and policy improvement, implemented,here, is a given weight to indicate the importance of the
by the actor [14, 9]. Fig.1 is a schematic diagram of an HDPFq o for thei-th state approaching the desired track.
controller, which uses 3 Neural Networks to approximate ac-  actor-Critic methods are on-policy Temporal Difference

tor, critic, and system dynamics with weights,, w., and  (Tp) methods, which continually estimate the cost-to-go fo

W, respectively. the current policy by updating the critic, and change the pol
R ‘ icy towards greediness by updating the actor at the same time
O Vea)met) Y [15]. The evaluation of the critic is the TD error:
X, di o ‘7(X ) AW - ~ ~
Sille " v eelt) = 1 + AV (Xe) = V(xs-1), 4)
X, V' (Kea) i whereXA/(xt) is the approximated cost-to-go from stateun-
‘ - v N der current policy. Note thdt is a function ofx; andw.,.(t)
—*ﬁdt—> Actor U System————— with a static neural network structure. The target for tligocr
| e @ update isz;—1 + 7V (X;).
1 ) : M{fdéI/ A; The critic network tries to minimize the defined error
| LA X function: .
e | Ec(t) = €2(t). (5)

) _ ) ) Therefore, the weights of the critic network are updated ac-
Figure 1. Architecture of HDP using Neural Networks t0 ap- cording to a gradient-descent algorithm with a learning rat
proximate system model

Ne-
Wc(t + 1) = Wc(t) + ch(t)v (6)
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where where
E em(t) =Xt — S(\t- (14)
AWL(1) = . IE.(t) . _
ow,(t) The model network weights are updated according to the
OE.(t) OV(x;) (7) gradient-descent algorithm with a learning rate
= M- = : .
OV (x) OWelt) Won (£ 4+ 1) = Wy () + AW, (1), (15)
With a fixed policy and converged critic, the neural network
parametersv..(t) will be constant. where
OFE,,(t+1)
2.1.2 Actor AW (£) = —~1hm - W (t)
" 16
The actor is used to find the policy which minimizes the dif- o OER(t+1) O (16)
ference between the defined cost-to-go functiofx;) and Thm ORer1 OW (1)
the goalV*(t):
Ea(t) = lei(t% ) 2.2 HDP trainin'g. by back-propagation . .
2 The actor, critic and model neural networks in this pa-
ea(t) = V(x;) — V*(1), (9)  per are all Multilayer Perceptrons (MLP), which consist of

multiple, fully connected, and feedforward layers of nodes
Each neural network has an input layer, a hidden layer and an
output layer. Each node in hidden layers is a neuron with a
contlnuous nonlinear hyperbolic tangent activation fiomc

where the goal*(¢) is set to 0.

The policy is determined by the weights of the actor net-
work. However, updating the actor network is more compli-
cated, since it involves the critic network and the modei net

work. Fig. 1 shows that, through the 3rd back-propagatien d| ' 1 —e Y
rection, the actor weights affect cost-to-go functiéfx; 1) o(y) = 1t 17)
through affectingx;; and u;. Thus, the actor network o i R
weights can be updated according to the gradient-descent M €ach point, it has a positive derivative:
gorithm with a learning rate,: 9o (y) B 1(1 I, (8
Wo(t+1) = Wa(t) + Aw,(2), (10) gy 2
where In fully connected multilayer neural networks, the input
OEa(t+ 1) of the (n + 1)-th layer consists of the outputs of theth
AW, (t) = =g - —t layer and sometimes also a bias teijm When the neural
8Wa(tA) (11) network hasl inputs,J hidden neurons, anfl” outputs, the
B OF,(t + 1) OV (Xp41) OXe1 OUg neural network weight fromi-th input layer neuron tg-th
= "Mas 8l7(xt+1) OXee1  Oup OWg(t) hidden Iaye_r neuron isuji_(z' =1,.,I+1,j =1,..J),
and the weight fromy-th hidden layer neuron tb-th output
The approximated system model can be used to estimate thgyer neuron igog;(j = 1,...,J + 1,k = 1,..., K). Thus,
next Stat?»(f;ll with an inputu;. This helps to get the use-  the feedforward neural networks frath |nput Iayer (noted

ful term =5 apprOX|mat|ng ‘“ in updating the actor as superscriptn) neuron toj-th neuron of the hidden layer
network [8]. Therefore, Eq. 11 can be rewritten as follows: (noted as superscript) can be described as follows:

Aw, (t) — 8EAG (/t\-i— 1) 8V£Xt+1) 8Xt+1 (9U(t) . (12) Uhi (t) 1—¢ y]u( ) (19)
OV (Xep1)  OXepr  OU(t) OW,(t) J Tt ®’
213 Mode , I+1
. . Yj = Z Wj; i ) (20)
The model network approximates the system dynamics and I — I

gives the estimated next statg ; as output. The next state A

is a function of inputu, and the network parameters,, (¢) where,a§”(t) is the output of thej-th hidden layer neuron,
with a fixed neural network structur@;., 1 (U, w,,(t)). The " (t) is the network input of thg-th hidden layer neuron,
update of the model network is by minimizing the dlfferencew’”( ) is the weight from the-th input neuron tg-th hidden

between the measured stajeand the estimated state: layer neuron at time, andz" (¢) is thei-th input of the hid-
1, den layer, which consistsinputs of the system and the bias
Ep(t) = iem(t)7 (13)  termb™. The feedforward neural networks frofvth hidden
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layer neuron tdk-th output layer (noted as superscriptt)  The partial derivative of thé-th output with respect to the
neuron can be described as follows: i-th input can be calculated as follows:

A ; ou J ou hi
() = 3w ) (1), @1 9w _ > dyp'(t) 90" (1)
j=1 ox" — 80’;-” (t) ox"
h H(t) is th f the:-th | g @7)

where,y?u!(t) is the output of thes-th output layer neuron, : . 1 o o
w(¥(t) is the weight from thej-th hidden layer neuron to = Z wiy' (1) - 51 =0j (t)*)w}] (t)} :
k-th output layer neuron at time andz"(¢) is the jth input =t
of output layer, which consist$ outputs of the hidden layer 3 INCREMENTAL HEURISTIC DYNAMIC

neurons and a bias terbn’.

Because the output of a hyperbolic tangent function is
bounded with(—1, 1), and the outputs of the neural network
is a summation with parameters, the neural network with bia
items can approximate any value theoretically. Thus, the ou
put of the neural networks is written &Xt):

PROGRAMMING

Fig.2 is the diagram for implementation of an Incremental
gnodel based Heuristic Dynamic Programming (IHDP) con-
troller. It uses 2 Neural Networks to approximate the actor
and critic with weightav, andw,, and an incremental model
to find the system dynamics at a certain moment. The updat-

O(t) = y°“(t) ing of the critic weights is the same as updating critic in HDP
2 (), 2 (1) out ()T (22)  algorithm, which will not be reiterated in this section. Fhi
=Y Yz () YK ' section focus on the new idea of using the incremental ap-
221 Criticand Modd proach to approximat@% in Eq. 11 as part of updating
o actor.
To update the critic and model network weights (through the N ‘
1st and 2nd back-propagation directions in Fig. 1) accordin D Vi) —el®) &
to Eq. 7 and Eq. 16, the partial derivative of the network Xe, de crific V(xy) ‘W >
output with respect to the network weights is needed: R A l_l_____. ga
V*Rer1) A
OE _ O0E 00(t) (23) )
ow  00(t) dw(t)’
w (t) Ow(t) Syste Xt41 -

To be more specific, the partial derivative of each network
outputy2“(¢) with respect to the network weights from the
hidden layer to the output Iayar’,;gt(t) and the weights from

. . ) i . >
the input layer to the hidden Iayem;-?(t) is shown below, }/ Model  Xt+1
respectively: L eemeemo oo .

QO _ i) (24)
8wkj (t) Figure 2: Architecture of HDP using incremental approach to

; y approximate system model
dypt(t) _ oyg (1) 9o3'(t) Oyj'(t)

dwli(t) — dali(t) ayhi(t) owli(t)

.......... » Stored Data Set
(2

Incremental

(25) 31 HDP using incremental approach

1 i in
= wii(t) - 5(1 — ol (t)%) - (t). 311 Incremental Mode

Many physical system, such as aircraft, are highly nonaline

222 Actor and can be generally given as follows:

To update the actor network weights, the network errgr )

go through the critic network, model network, and finally the X(t) = fIx@),u(®)], (28)
actor network along the 3rd back-propagation directions in

Fig. 1. Thus, the partial derivative of the network output y(t) = hx(®)], (29)

with respect to the network inputi*(i = 1,...,1) is also  where Eq. 28 is théinematic state equatiorin which

needed for the terrﬁ"ggm) and %ﬁ; in Eq. 12 to update  f[X(¢),u(t)] € R™ provides the physical evaluation of the

the weights: o state vector over time, Eq. 29 is tlwaitput (observation)
d0(t)  90(t) y°ui(t) (26) equation which can be measured using sensbps(t)] € R?

oxin yout(t) oxin is a vector denoting the measured output.
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The system dynamics around the condition of the system Ax;;1 =~ F(X¢—1,Uz—1)AX; + G(X¢—1,Uz—1)AUs,  (36)

at timet, can bg Iinearized.ap.proximately by using the first-Where Flx1,upq) = 2ou - gaxn
order Taylor series expansion: is the system transition mat?}(x antd th(xlt,l,ut,l) =
X(t) =~ f[X(to), u(to)] O -, € R™™ is thecontrol effectiveness matrix
Afx(t),u(t)] at time stepg - 1. Because_of the high frequenc_y sample data
ox(1) Ix(to),utto) X(t) — X(to)] and the relatively slow-variant system assumption, theecur

BFIx(E). Ut 30 linearized model can be identified by using the measured data
L OFIX(®), u(®)] oty [U(E) — U(to)] (30)  in previousM steps.

u()
= X(to) + F[X(to), u(to)][x(t) — X(to)] 3.1.2 Actor
+ G[X(to), u(to)][u(t) — u(to)], The structure of the actor is the same as the one in HDP con-

AFx(),u(t X troller. Itis used to minimize the difference between thsteo
whereF[x(t), u(t)] = f[B(X()t)( )€ R s thesystem ma- to-go functionV/ (x,) and the goal/*(t). However, updating

trix at timet, andG/[x(¢), u(t)] = %W € R"™™isthe  this actor network is easier and faster than the one in HDP
control effectiveness matrat timet. controller, since it involves a critic network and an incesm

We assume that the states and state derivatives of the syt model.

tem are measurable, which meafig(t), Ax(t), Au(t) are Through the 3rd back propagation direction in Fig. 2, the
measurable. Under this assumption, the model around timactor weights affect cost-to-go functidfx,, 1) also through

to can be written in the incremental form: affectingx;., andu,. The actor network weights can be up-

. dated according to the gradient-descent algorithm as shown
AX(t) = Fx(to), u(to)] AX(t) (31) inEq. 10 and Eq. 11. The incremental model of the system

+ G[x(to), u(to)|Au(t). can be used to approximate the derivative of the next state
Xt4+1

This current incremental model can be identified using Ieas\{vIth respect to_tk.]e "NPULEy, " _ _
squares (LS) techniques and can be used to obtain an approx2 |HDP training by back-propagation and incremental

imated value o5 without using model networks in pre- mode identification
vious section. 3.2.1 Incremental Model
The physical systems are generally continuous, but th%inceAx(t),Au(t) are measurable as assuméd, ,, G,

data we collect are discrete Samp,'?s- We_ assume _that ﬂé‘?e identifiable by using the simple equation error method:
control system has a constant, sufficiently high sampliag fr

quency. With this constant data sampling rate, the noratine Az g1 = FiAX g + 0; AU,
system can be written in a discrete form: 7 (37)
— [ auf) [
Xer1 = [(X¢, Uyp), (32) 9
whereAxz; ;11 = Zi1—k+1 — ik 1S the increment of
Yi = h(Xe), (33) ith state el/emenf,- andg; are the elements ath row vector
where f(x;,u;) € R™ provides thesystem dynami¢csand of Fi_1,G¢_1, andk = 1,2...M denotes at which time the
h(xt) € RP is a vector denoting the measuring system. historic information is available. Because there ar¢ m
By taking the Taylor expansion, we can get the systenrparameters in théth row, M needs to satisf\/ > (n +
dynamics linearized around: m). By using the Ordinary Least Squares (OLS) method, the
linearized system dynamicélf row) can be identified from
Xey1 = f(Xt, Uy) M different data points:
df(x,u
= f (X0, Uo) + fﬁf)x Dol =x0) (3 ri] = (ATA) ATy, (38)
df (x,u) 9.
+ =5 Ixo,u0 (Uz — Uo). where
When At is very small,x,_; approximates;. Thus, Ax{y Aul, Az y
Xo, Ug In EQ. 34 can be replaced iy = x;_; andup = u;_1, A = : : VY = : . (39)
and we obtain the discrete incremental form of this nondine AxT AuT AZ; 1 aan
system: =M =M B
Choosing a suitable number of dalta is also important.
Xe41 — Xp =2 F'(Xp—1,Up—1)(Xp — X¢—1) g5)  Theidentified incremental model will be used and is only ca-
+ G (X1, U 1)(Uy — Us_q), (35) pable of describing the system behaviour within a small time
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range. WhenV/ is very large, the identified model may not The nonlinear model in the pitch plane is simulated
represent the local linearized model of the nonlinear syste around a steady wings-level flight condition:
However, when} is too small, the linear system might be _

ill-conditioned, especially at which point the excitatismot a=q+ a5 C,(a,q, My, de), (43)
sufficient. Thus, choosing/ depends not only on the sam- maVr

pling frequency and non-linearity, but also the intensftthe . qSd

excitation. In this papet}/ is chosen to be - (n 4 m). =71, Com(at; ¢, Ma, de), (44)

whereg is dynamic pressure; is reference areay,, is mass,
322 Actor Vr is speedd is reference length,, is pitching moment of
To update the actor network weights, the network e&#pgo |rr1]ert|a, C: Is th? aerodynamlcﬁfo'rce coefficient, aﬁh%rlls
through the critic network, incremental model, and the acto e aerodynamic moment coefficierit, andC, are highly

network consequently along the 3rd back-propagation direc?onlinear functions of angle of attaek pitch rateg, Mach
tions in Fig. 2. The partial derivative of the network output "UMPerM, and elevator deflectio.
with respect to the network weights (Eq. 23 to 25) and the AS & Preliminary test, an air ve0h|c|e modeol (parameter
partial derivative of the network output with respect to thedata) is taken in the pitch plane ferl0” < o < 10°[16, 17]:

. 1% Xt41)
network input (Eq. 26, 27) are needed for the te@éﬁﬁ

and term=2Y_ in Eq. 11, respectively.

Cz(aa q7 Ma7 56) = Czl(a7 Ma) + Bz§e7
Ow, (t)

. . . . Cm s 4, Maa 6& = Cm ) Ma Bm567
With the linearized incremental model, the teﬁgj(%) (s q ) 1(a )+
can be easily approximated: B. = b1 M, + by,

Bm = b3Ma + b4,
axa(i(t)l) ~ 8[Xt + F(Xt—la Ut—l)(xt — Xt—l) Czl(a7 Ma) = ¢Z1(a) + ¢ M,, (45)
(40) Caa(@, Ma) = dmi1 (@) + dmaMa,

+ G (X1, Ug—1) (U — Uz—1)]/Ou(t)

b.1(a) = h1a® + hoalal + hsa,
= G(X¢—1,Us—1).

bm1(a) = hya® + hsala| + hea,
This method simplified the approach of updating actor net- b2 = hralal + hsa,

work weights and accelerate the learning with direct om-lin _

. 9 . Om2 = hoala| + hipa,
identification of the incremental model.
wherebq, ..., by, h1, ..., h1o are validated constant coefficients
in the flight envelop [17].

This section will present an illustrative application ofiho To accomp"sh the reference tracking task' an adaptive
the HDP and the IHDP algorithms on a simulation model forcontro”er with the actor need to be found out by minimiz-
validation. The flight control task is to track a changingref  jng the cost-to-go functio’(x,) with a feasible critic and
ence, when there is input disturbances, which is a most basigodel.
and important control task for air vehicles.

4 APPLICATION

, ) 4.2 Results and Discussions

4.1 Airvehicle model Two algorithms are applied to this problem: traditional
A nonlinear air vehicle simulation model will be used in HDP uses a neural network to approximate the plant model

this section. Air vehicle models are highly nonlinear and ca and IHDP uses the incremental approach. The identified

be generally given as follows: models are used 1) to predict the next states, which is used
) to estimate the cost-to-go of the next state and its diffegen
X(t) = fIx(@),u(t) +w(t)], (41) " from the minimal cost, and 2) to estimate the control effec-
y(t) = hIx(1)], (42) g\;igs:gi;é\év:tiig?]is used to update the actor during thererro
where Eq. 41 is the kinematic state equatient,) is the ex- Fig.3 shows the one-step prediction @fand ¢, when
ternal disturbace, which is set to be caused only by the inpuhere is a sine input excitation, using the on-line iderdifie
noise, and Eq. 42 is the output equation. neural network model and the incremental model. As illus-

As an application for these control algorithms, only ele-trated in Fig.3 (a), the one-step state predictions usirg bo
vator deflection will be regulated as pitch control to stiakil methods are feasible. However, the prediction using the neu
the air vehicles. Thus, we are interested in two longitudi-ral network needs more time to learn at the beginning. When
nal statesangle of attacky andpitch rateq (i.e. the system having a close look at the prediction errors with Fig.3 (b)
variables arx = [ ¢]), and one control inpuglevator de-  and (c), the prediction using incremental approach has sig-
flection angle).. nificantly higher precision. Fig.4 presents the identifat
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Figure 5: On-line tracking problem using neural networks

Figure 3: One-step prediction with on-line identified modeland incremental approach.
using neural networks and incremental approach.
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Figure 4: On-line identified control effective matrix using

neural networks and incremental approach.

results of the control effective matrix; = [G1, G2]’, using

ing problem. Comparing to traditional HDP method, IHDP
method can identify the local model and reject the distucban
much quicker at the beginning, and follow the reference sig-
nal more precisely. A slow on-line training of model neural
network of traditional HDP may lead to a large overshoot and
lost control at the initial stage. In realistic cases, tiadal
HDP needs an off-line training of the model before on-line
training of the controller to prevent failures. On the other
hand, IHDP does not need off-line learning because of a quick
linearized local model identification at the beginning, ebhi

is very fast and accurate.

5 CONCLUSION

This paper proposed a new approach, incremental model
based heuristic dynamic programming, to design an adaptive
flight control method without sufficient a-prior knowledge o
the system dynamics. This method combines the advantages
of HDP methods, which are adaptive and use a more gen-
eral function approximator, and of incremental approaches
which do not need off-line learning and accelerate the oe-li
learning efficiently. The HDP method using a neural network
to approximate the system dynamics and the IHDP method
using incremental models are applied to a simple and iustr

the two methods. It is apparent that the incremental methodve application. By comparing the results, it is apparéat t
has a substantially improved identified control effective-m the presented IHDP method speeds up the on-line learning

trix, which is to approximate an important te ’Jl in up-

dating Actors.

at the beginning and has a significantly higher precision tha
traditional HDP methods. To accelerate the on-line legnin

Fig.5 illustrates the performance of the traditional HDPwhen a-prior knowledge is unknown or the system dynamics
method and IHDP method when applied to an on-line trackare changed suddenly is of great practical value.

IMAV 2016, Beijing, PR of China, 17-21 October 2016

International Micro Air Vehicle Competition and Conference 2016



IMAV2016-25
http://www.imavs.org/pdf/imav.2016.25

As an extension of iIADP method using a quadratic cost{11]
to-go function, the IHDP method presented in this paper
uses neural network functions with greater approximation
ability and separates the policy evaluation and improveémen
with two approximators. This study generalized the use
and applications of the IADP methods. Further investigatio [12]
into different type of approximator and experimentatiotoin
more complex and realistic applications are strongly recom
mended.
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