
Obstacle avoidance by combining background
subtraction, optical flow and proximity estimation

Jaysinh Sagar and Arnoud Visser

ABSTRACT

For Micro Aerial Vehicles (MAVs), robust ob-
stacle avoidance during flight is a challenging
problem because only light weight sensors as
monocular cameras can be mounted as pay-
load. With monocular cameras depth percep-
tion cannot be estimated from a single view,
which means that information has to be esti-
mated by combining images from multiple view-
points. Here we present a method which focuses
only on regions classified as foreground and fol-
low features in the foreground to estimate threat
of potential objects being an obstacle in the flight
path by depth segmentation and scale estima-
tion. We evaluate results from our approach
in an outdoor environment with a small quad-
rotor drone and analyze the effect of the differ-
ent stages in the image processing pipeline. We
are able to determine evident obstacles in front of
the drone with high confidence. Robust obstacle-
avoidance algorithms as presented in this arti-
cle will allow Micro Aerial Vehicles to navigate
semi-autonomously in outdoor scenarios.

1 INTRODUCTION

In the domain of robot technology, we see a lot of
progress using sophisticated hardware and software coming
together to create a functional machine to accomplish vary-
ing tasks replicating human activity. Today, MAVs (Micro
Aerial Vehicles) are used for tasks such as surveys, surveil-
lance, search and rescue, and military applications which
would otherwise be difficult or infeasible for humans con-
sidering harsher and challenging conditions. However, this is
a challenging problem as activities that are simple and latent
knowledge for living beings, are non-trivial when replicating
on machines. Technology in this domain still has a way to go
to achieve near human intelligence, but today, research tack-
les several sub-tasks which can someday be integrate into a
system.

Specific kinds of drones have been developed such as
flappy-wing drones, fixed-wing drones, and rotor based
drones. Flappy wing drones have an advantage of being able
to hover and fly close to objects being small, agile, and less
dangerous due to their low weight. Fixed-wing drones are
UAVs that use a gliding mechanism and use either external
propulsion mechanism or built in linear propellers. Unlike

flappy wind drones, fixed-wing drones are not very agile but
have longer flight durations and are extensively used for sur-
veying and mapping applications.

In this study, we look at the challenge of obstacle avoid-
ance using a quad-rotor drone in realistic environments with
stationary obstacles. For this, we use the A.R.-Drone from
Parrot S.A. which has the advantage of stabilized flight [1].

Previous approaches attempt to imitate biological ap-
proaches for obstacle detection and avoidance using optical
flow in peripheral vision or stereo disparity from both eyes.
However, these approaches are not suitable for oncoming ob-
stacles directly in front of the camera. Scale based texture
template matching algorithms mentioned in [2] may be used
to detect on-coming obstacles but are subject to camera reso-
lution and object texture. Supervised and semi-supervised ap-
proaches may be used as well if obstacle properties are known
but may be challenging to provide in unknown environments.

The proposed method consists of a modular algo-
rithm in order to generate confidence results using back-
ground/foreground classification, optical flow and filtering on
affine relationships and scale estimation. The result of the al-
gorithm generates a confidence mask used to direct and con-
trol the drone avoiding immediate obstacles. While clearly
visible obstacles are effectively detected, performance of our
method is subject to lighting and stability conditions. We em-
ploy existing methods of background/foreground classifica-
tion and optical flow in conjunction with clustering, filtering
and flow estimation methods to further improve avoidance re-
sults and effectiveness.

In section 2, we discuss related work in this area of study
looking at advantages and limitations of these approaches.
Section 3 touches upon general methods used in our obsta-
cle avoidance application. Section 4 discusses the proposed
method of this study followed by experiments, results and dis-
cussion in section 5. We then conclude and discuss future
work in section 6.

2 RELATED WORK

In recent years, obstacle avoidance in MAVs has been a
keen area of interest. Several approaches exist using monoc-
ular vision for detecting obstacle threats and avoiding such
threats based on optical flow as well as using feature descrip-
tors for relative size changes.

Bills et al [3] use an approach designed for indoor en-
vironments where there is uniformity in structure properties.
The paper makes use of edges and detects lines using Hough
transform and uses this information to classify the scene

1



based on a trained classifier. While the paper uses MAVs with
a single camera, the proposed method in the paper allows the
MAV to navigate in indoor environments where such features
can be used. Using these features, a confidence value is de-
termined based on line intersections crossing a visible vanish-
ing point. Based on this confidence value, the MAV adopts a
control scheme to react accordingly to its environment. When
faced with an unknown environment; when confidence value
is small; the MAV enters an unknown state where it adopts
defined exploration strategies.

Celik et al [4] use an approach that exploits both lines
and corner features detected in a scene. Similar to the Hough
transform method, the paper uses line information extracted
from the scene to determine the scene structure however, in-
stead of running the method on the entire scene, as the Hough
transform does, their method focuses only on scene parts
where data exists. The next proposition of the paper is us-
ing a human like range estimation method using the height of
the MAV and vanishing point of the scene. Using this infor-
mation, the paper states that it is possible to obtain the relative
distance of an object in the scene following feature points for
its SLAM formulation. The paper uses a variation of opti-
cal flow as well for the proposed Helix Bearing Algorithm to
create a motion field to determine turning points in the en-
vironment. This method is however also subject to camera
capabilities and detection of strong features in the scene to
navigate successfully.

Lee et al [5] talk about the use of MOPS (Multi-Scale-
Oriented-Patches) and SIFT feature descriptors to obtain
three-dimensional information of the environment. MOPS,
similar to the Harris corner detector, is a quick and accu-
rate corner point matching method. Using MOPS and SIFT,
the paper attempts to reconstruct objects in 3D space where
MOPS is used to extract edge and corner information and
SIFT used to detect the internal outline information of an ob-
ject. By combining these, a distinction between the outline
and the inline of objects can be determined using matching
distance between frames. By listing cases between the rela-
tionships of SIFT and MOPS features in the scene, it is pos-
sible to know the nature of objects around when the UAV
moves and construct a 3D map of the environment. While
the paper highlights experiments where they illustrate results
from the proposed approach, additional knowledge of flight
test data would help understanding the performance better.

Monocular cues used in the papers above ([3, 4, 5]) uti-
lize information such as lines, corners and scene regularities
to detect proximity and location of obstacles. However, the
methods do not perform well in natural environments where
such cues are challenging to find. Another limitation of these
methods is that monocular approaches may not find distance
to collision directly however [6] shows us that there exists a
relationship between optical flow to time to collision which
may be exploited to determine immediate threat of obstacles.
Previous work on ground robots [7, 8, 9] use motion cues to

estimate depth from motion and background subtraction to
determine obstacles in a frontal scene however face the is-
sue of computational cost as well as robustness of detection.
De Croon et al [10] use a combination of appearance varia-
tion cues and optical flow for their approach to obstacle de-
tection. This method however is highly influenced by blob-
based texture variations in the environment and has limited
performance in outdoor scenarios.

The approach of More and Scherer [2] also combines fea-
tures in conjunction with template matching to estimate scale,
resembles the method in this study. The platform is also sim-
ilar so a direct comparison of the results can be made. The
approach of [2] allows the drone to estimate depth of objects
detected as potential obstacles and observes relative changes
in size of the sub-image template around that feature point to
detect if the potential obstacle appears to come closer to the
MAV by a fixed metric. While results of the study are positive
for frontal obstacles using SURF features, a limitation of this
approach is that performance is subject to presence of suffi-
cient textures in the scene. In cases where there is not suffi-
cient texture available to track (smooth and regular surfaces)
the matching of SURF features do not perform as well as in
the case of detailed textures. Also, the experiments carried
out in this paper focus purely on narrow, tree-like obstacles
in an indoor setting.

3 METHOD

The method studied in this paper uses back-
ground/foreground classification to find regions of interest
in the MAV flight environment. Inside the region of interest
potential obstacles are identified by a combination of optical
flow, depth classification and scale template matching. The
theory behind those techniques is worked out in the following
subsections.

3.1 Background/Foreground classification
Background subtraction is a method in computer vision

and image processing where an image is classified into the
background and the foreground. This is done to achieve a
variety of applications which require segmentation of con-
cerned objects from a scene and filtering out everything else.
Background subtraction creates a model of the background
and then segments out everything that does not belong to the
background as foreground based on a spatial and temporal
setting. It can be seen as similar to detecting the objects are
both in the new image and the old image. Once foreground
objects are retrieved in the foreground mask, it is easy to ex-
tract as well as localize the objects in the scene.

There are several approaches to achieve background sub-
traction. Yet, due to the egomotion of our aerial vehicle a
highly adaptive method is needed. Our method is inspired
by the Improved Adaptive Background Mixture Model pro-
posed by KaewTraKulPong and Bowden [11]. The method
proposed is in two parts where we first consider background
modelling and then maximizing the expectation over the



background Gaussian mixture model. The background is
modelled using an Adaptive Gaussian Mixture Model where
each pixel in the scene is modelled by K Gaussian distribu-
tions [12].

The probability of a pixel xN at time N belonging to one
of the background components is given as:

p(xN ) =

KX

j=1

wjN (xN ;�j ;�j) (1)

where wj is the weight parameter of the kth Gaussian
component N with mean �j and covariance �j . Usually,
if foreground objects are clearly distinguishable they will
also be represented with a Gaussian component, but because
there will be no evidence in the training set those components
should have a small weight wj . If the components are sorted
on descending weights, the background can be modelled with
minimal collection of components:

B = argmin
b
(

bX

j=1

wj > Tb) (2)

where Tb is a threshold which corresponds with a prior
estimate of the minimal portion of background objects one
expect. The Gaussian Mixture Model is made adaptive by
updating each component based on ownership oj (the closest
component with the largest weight wj , as introduced by [13])
and a constant � which determines the learning rate, i.e. how
fast old data is forgotten. The classical updates rules for each
Gaussian component, in accordance with [12], for the update
between timestep t = N and t = N + 1:

wN+1
j = (1� �)wN

j + �oN+1j (3)

�N+1j = (1� �)�Nj + ��N+1j (4)

�N+1
j = (1� �)�N

j + ��N+1J

T
�N+1J (5)

where �j = x��j is the distance from the pixel x to cen-
ter of the Gaussian component �j . Although the adaptability
of this algorithm can be tuned by the learning rate �, con-
vergence could be too slow for the dynamics expected from
a flying platform. Bowden et al [11] improved the algorithm
by a window sampling method for faster convergence. In the
L-recent window version the weight wN+1

j is estimated from
the previous L time frames, which gives the update rule:

wN+1
j =

1

L

L�1X

t=0

oN+1�t (6)

The mean �N+1j and covariance �N+1
j of each Gaus-

sian component are updated equivalently for the last L time
frames.

With this approach, we have selected a method with could
identify potential obstacles for the drone. Once we have the
potential obstacles classified as foreground objects, we can
use the tracking method explained in the next section to keep
following those regions of interest.

3.2 Tracking and Depth Classification
We track features based on the classical Lucas-Kanade

method for Optical Flow [14], pyramidal implemented as
suggested by [15]. This method is based on the assumption
that the flow of a concerned pixel in one image to another im-
age should be present in the local neighborhood of that pixel
in the first image. To recognize a equivalent pixels, inde-
pendent of orientation and scaling, Lucas-Kanade describes a
pixel with certain features. An algorithm that can provide ad-
equate features is the Shi-Tomasi algorithm [16]. They pro-
pose the tracking of corners to avoid the aperture problem.
Shi and Tomasi define a good feature in the same manner as
Harris [17] which relies on the matrix of the second order
derivatives of the image intensities. By calculating autocor-
relation of the second derivative over small windows around
each point we get a good description of the window. Shi and
Tomasi found that a good corner could be easily described as
long as the smaller of the two eigenvalues was greater than a
minimum threshold.

Through optical flow, it is also possible to determine mo-
tion vectors or feature points that may be used to segregate
faster moving features to slower moving features. For this
segregation, we use clustering to condense the number of
features in one region of the frame. To limit computation
load we also added a neighbor count filter, which rejects iso-
lated features. Our approach is inspired by building recip-
rocal nearest-neighbor chains [18], nicely described for the
efficient average-link algorithm in [19]. The essence of this
algorithm is as follows; one starts with a random feature and
search for the nearest-neighbor. As long as the neighbor is
close enough (relative to threshold �), the neighbor is added
to the chain. When the neighbor feature is already member
of another chain, the two clusters are merged if they fulfill
a reducibility property (the clusters are more similar to each
other than any other cluster) [20]. When no close neighbor
feature can be found a new random feature point is chosen
to create a new chain. Note that the original approach [19]
traverses through all combinations by sorting the all points
from a common origin, while in our case a distance threshold
is set. By calculating the average length of the optical flow
for each cluster, it is possible to estimate affine relationships
between closer and further obstacles, which can be used to
evade closer obstacles.

3.3 Proximity estimation
In order to determine proximity of obstacles, calculating

scale expansion of obstacles in the scene while moving closer
makes it possible to estimate threat of collision. For this,
we use a template matching approach based on normalized



cross-correlation [21] where we generate the previous image
in different scales and then compare to the current image and
find the best matching scale. For this, we take the mean loca-
tion of dense feature groups from the result of tracking step
and create a sub-window around that point from the previous
frame. We then draw a sample template from the current im-
age with the same location and dimensions and run the tem-
plate matching algorithm to determine the relative change in
scale.

3.4 Integration

To be able to robustly avoid obstacles, several methods
(described in the previous subsections) have to be combined
to generate control commands for the flying platform based
on the images of the monocular camera. An overview is given
in Figure 1. The control framework consists of two parts; the
hardware side and the computer side.

Figure 1: Overview of control pipeline

The final product of the image processing chain is an ob-
stacle confidence image, which is used to steer the robot in a
number of orthogonal directions (left, forward, right).

4 RESULTS

We conduct flight experiments in two situations to test
performance of our method to highlight success and failure
conditions. Flight path illustrations are plotted based on lin-
ear directions given by the drone controller to the drone in a
sequence during the flight run. Example: [forward, forward,
forward, left, left, left, left, forward, left, left, forward ] where
the drone moves by linear velocity at� 1m=s in the given di-
rection.

4.1 Two narrow objects as obstacles

In this experiment, the drone has to avoid two trees at a
slight offset from one another where one is behind the other,
as illustrated in Figure 2. In this scenario, an early decision
to evade the second tree could result in a collision with the
first tree. The experiment will be first performed with our
complete algorithm, followed by an experiment without fore-
ground, depth and proximity estimations.

Figure 2: Two trees as an obstacle in the flight path

As can be seen from Figure 3 that out of five runs, two
runs avoid the trees with a flight path through the gap between
the trees, two runs dodge both trees from the left side and
one run dodges the first tree from the right side and does not
encounter the second tree at all in its path. In four runs the
flight path is not straight due to feature clusters detected form
shadows on the ground. We also note in two runs (red and
blue) there was a risk of the drone colliding sideways into
first ree when avoiding the second tree.

Figure 3: The path of the AR.Drone between two obsta-
cles (left), based on the image including depth classification
(right)

In Figure 4, we run the same experiment, yet this with-
out filtering the optical flow in the background. Compared
to the previous experiment, we see a large number of feature
points detected on the trees in the background and not many
on the obstacles. Flight results (Figure 4 (right)) do not have
any successful results as features were detected everywhere
in the scene except for the obstacles. As Tree 1 has more
texture than Tree 2, two runs manage to successfully avoid
Tree 1 however, the same level of accuracy is not achieved



with Tree 2 and feature points detected on the ground create
a bias for the drone controller to fly left when it should be fly-
ing right resulting in collision with Tree 2. Three runs out of
five do not detect enough features on Tree 1 resulting in colli-
sion. While a number of features detected may have detected
features on the obstacles, we accept features only above a set
score so that we do not have features with low scores. To
summarize the impact of filtering of the optical flow; with
BackGround/ForeGround classification 631 of 840 features
can be found on the trees, while without this classification
159 of 1987 features are found on the trees.

Figure 4: The path of the AR.Drone failing to avoide two
obstacles (left) based on the image without ForeGround clas-
sification(right)

In Figure 5, we run an experiment using only proximity
estimation. While the first tree is avoided well in all five runs,
three runs fail due to collision with the second tree. This is
due to the trunk of the second tree covers almost one half of
the frame resulting in a poor template matching score. In two
runs, the template matched with scale factor 1.1 of the previ-
ous frame texture and in one run, the frame was too obscured
by the tree trunk due to insufficient score in the previous run.
This may have been due to the fact that the second tree is
wider than the first tree and there was not enough distance to
measure the template accurately after avoiding the first tree.

Figure 5: The path of the AR.Drone between two obstacles
(left), without depth classification (right)

In Figure 6, we run an experiment using only optical flow
without depth or proximity cues. All five flights in this setting
are successful however the solution is a bit crude. As there is
no depth perception, the process just detects both trees as an
obstacle at the same degree and avoids them both immedi-

ately once detected. This method however is sensitive to fea-
ture patches found on the ground by tree shadows therefore
we do not see a perfectly smooth flight once both obstacles
are dodged.

Figure 6: The path of the AR.Drone around two obstacles
(left), with no depth nor proximity estimation (right)

4.2 Two wide objects as obstacles
In this experiment, we park two cars as wide body obsta-

cles as a series of obstacles for the drone to fly around, as
illustrated in Figure 7. This is another challenge; cars have
a complete different texture and are so wide that they could
fill the complete field-of-view. On the positive side; shadows
are less prominent and the obstacles are more equally illumi-
nated.

Figure 7: Two cars as obstacles in the flight path

Again we start the experiment with the full algorithm. As
can be seen from Figure 8 there are four successful runs and
one run (turquoise) failed. The failed run collided into first
car just after taking off. We observe this to happen due to
the template matching failing as the drone take off point was
too close to the first car. The matching score was low caus-
ing the method assumed that the obstacle is far away. For the
next four runs, we move the drone starting point a few steps
back. Even after this step, the template matching score was
not high enough however, the optical flow depth segmentation
detected faster shift in feature points on the first car compared
to detected features elsewhere in the scene due to the motion
parallax property of optical flow. With this experiment, we
see that when objects are too close to the drone on take-off,



the template matching algorithm fails as the drone does not
observe a high degree of change in scale to satisfy the scale
threshold in our method. Two runs (green and purple) suc-
cessfully avoid first car however there is some delay in going
around the right way when the second car is detected. This is
due to a greater number of feature points detected on the rear
of the car (right half of frame) compared to the front of the
car (left half of the car). Once the drone decides to move left,
features detected on the left side shift by a larger degree than
the right side of the frame resulting in the controller giving
the drone direction to move right successfully avoiding the
second car.

Figure 8: The path of the AR.Drone avoiding two cars (left),
, based on the image including depth classification (right)

In Figure 9, we see results of the proposed method
without the foreground/background classification along with
flight results. In the frames illustrated, we see that there are
a lot of features detected on background trees and fence in
the background of the scene. While there are a few features
detected on the obstacles, most features are detected outside
the two cars. Due to this, we see again a strong bias from
background objects leading to non-perfect obstacle avoidance
runs. Overall, we have two successful runs and three unsuc-
cessful runs. When faced with car 1, two runs (red and greed)
detect a lot of features on the tree at the right side of the scene
over features detected on the car 1. As not enough features
are detected on car 1, the drone controller did not assume
there to be an obstacle ahead resulting in collision. One run
(purple) avoids car 1 and while crossing pass it, large number
of incorrect features in the background and correct features
detected on car 2 cause the drone controller to give instruc-
tions to move right colliding into car 1 along the drone’s side.
Two successful runs (blue and turquoise) avoid car 1 and get
enough features on car 2 to successfully avoid it as well de-
spite more features detected on other objects in the scene due
to the depth and proximity estimations employed in the pro-
posed method. If we analyze the number of correct features
for this scenario, 874 of 1211 features are on the cars with
background/foreground classification, while only 504 of the
1384 features are correct without this classification.

The experiment using the proximity estimation method
without depth information confirms that this is no stable algo-
rithm. As can be seen in Figure 10 all five runs were a failure.

Figure 9: The path of the AR.Drone avoiding two cars (left),
based on the processed image (right)

The first car was positioned very close to the starting position
of the drone, so the initial template was not very descriptive.
As a result the template matching routine always gave poor
score values, so the flight controller just gave forward com-
mands as no threats with high confidence were detected.

Figure 10: The path of the AR.Drone between two obstacles,
without depth classification

In the experiment in Figure 11, we test the crude ver-
sion of our algorithm. The runs are not very successful even
though the method does detect feature points on the first car.
For the three successful runs, the first car is avoided but go-
ing in the wrong direction. Even though the first car was close
to the drone take off point, and feature points of the second
car were detected as well, the scene contained greater number
of feature points on the right side of the scene leading to the
drone controller give the left command as all points appeared
to be at the same level. Once the first car was crossed, the
flight path lead to the right direction however avoiding the
second car completely as it was no longer in the way. We
also observe two paths (green and turquoise) not moving in
any set direction at once point as the drone kept shifting left
and right when in the center of the first car. This was because
there were occasions where feature points on the first car kept
going in and out of the scene as it was too close, the drone was
stuck shifting left and right.

5 CONCLUSION

For each experiment carried out in this study, we see a
good performance of the proposed method in a variety of sit-
uations. During the experiments, we see some significant in-
fluence of lighting and texture conditions where performance



Figure 11: The path of the AR.Drone around two obstacles,
with no depth nor proximity estimation

was noted to be better when there was good contrast between
the obstacles and the surroundings. For outdoor experiments,
we saw a lot of false positive features detected around trees in
the background among others which caused a toll on the com-
putation time required for optical flow between each frame
pair. Due to which, we adjusted the contour threshold al-
gorithm to have a higher contour threshold so as to eliminate
small blobs caused by trees and leaves in the foreground mask
from the background/foreground classification step. Feature
detection is also significantly affected when there are not
enough corner points found in large smooth parts of objects;
e.g. car panels. Due to which the method has to rely entirely
on corners and edges of the object. We also observe that ac-
curacy of the template matching algorithm depends on regu-
larity of illumination between frames. When there is a sharp
change in illumination, the template matching algorithm re-
turns low scores, and optical flow is also affected as feature
are not matched. A failed run in the wide obstacle experiment
shows us that, while the method performs adequately when
the obstacle fits in the frame in its entirety, partially visible
obstacles like the first car with low texture for a large part of
the body cause an impact on the result. We also learn from
comparison with other methods that while optical flow meth-
ods work, for obstacles and features moving from side to side,
they do not function well when faced with walls or very nar-
row frontal obstacles. In the case with template matching, we
see that it works fairly well when there is adequate distance
between obstacles, but do not perform too well in tight nav-
igation scenes. The proposed method having a combination
of both methods performs better than them individually but
is still subject to scene conditions of illumination and good
features to track.

REFERENCES

[1] Pierre-Jean Bristeau, François Callou, David Vissière,
Nicolas Petit, et al. The navigation and control technol-
ogy inside the ar.drone micro uav. In 18th IFAC World
Congress, pages 1477–1484, 2011.

[2] Tomoyuki Mori and Sebastian Scherer. First results in
detecting and avoiding frontal obstacles from a monocu-
lar camera for micro unmanned aerial vehicles. In IEEE

International Conference on Robotics and Automation
(ICRA’13), pages 1750–1757, 2013.

[3] Cooper Bills, Joyce Chen, and Ashutosh Saxena. Au-
tonomous mav flight in indoor environments using sin-
gle image perspective cues. In IEEE international con-
ference on Robotics and automation (ICRA’11), pages
5776–5783, 2011.

[4] Koray Çelik, Soon-Jo Chung, Matthew Clausman, and
Arun K Somani. Monocular vision slam for indoor
aerial vehicles. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS’09), pages
1566–1573, 2009.

[5] Jeong-Oog Lee, Keun-Hwan Lee, Sang-Heon Park,
Sung-Gyu Im, and Jungkeun Park. Obstacle avoidance
for small uavs using monocular vision. Aircraft En-
gineering and Aerospace Technology, 83(6):397–406,
2011.

[6] David N Lee et al. A theory of visual control of braking
based on information about time-to-collision. Percep-
tion, 5(4):437–459, 1976.

[7] Jeongdae Kim and Yongtae Do. Moving obstacle avoid-
ance of a mobile robot using a single camera. Procedia
Engineering, 41:911–916, 2012.

[8] Abhijit Kundu, CV Jawahar, and K Madhava Krishna.
Realtime moving object detection from a freely moving
monocular camera. In IEEE International Conference
on Robotics and Biomimetics (ROBIO’10), pages 1635–
1640, 2010.

[9] Morimichi Nishigaki and Yiannis Aloimonos. Moving
obstacle detection using cameras for driver assistance
system. In 2010 IEEE Intelligent Vehicles Symposium
(IV), pages 805–812, 2010.

[10] GCHE De Croon, E De Weerdt, C De Wagter, BDW
Remes, and R Ruijsink. The appearance variation cue
for obstacle avoidance. IEEE Transactions on Robotics,
28(2):529–534, 2012.

[11] Pakorn KaewTraKulPong and Richard Bowden. An
improved adaptive background mixture model for real-
time tracking with shadow detection. In Video-Based
Surveillance Systems, pages 135–144. Springer, 2002.

[12] Chris Stauffer and W. Eric L. Grimson. Learning pat-
terns of activity using real-time tracking. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
22(8):747–757, 2000.

[13] Zoran Zivkovic and Ferdinand van der Heijden. Effi-
cient adaptive density estimation per image pixel for the
task of background subtraction. Pattern recognition let-
ters, 27(7):773–780, 2006.



[14] Bruce D Lucas, Takeo Kanade, et al. An iterative im-
age registration technique with an application to stereo
vision. In IJCAI, volume 81, pages 674–679, 1981.

[15] Jean-Yves Bouguet. Pyramidal implementation of the
affine lucas kanade feature tracker - description of the
algorithm. Technical report, Intel Corporation, 2001.

[16] Jianbo Shi and Carlo Tomasi. Good features to track.
In IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR’94), pages 593–
600, 1994.

[17] Chris Harris and Mike Stephens. A combined corner
and edge detector. In Alvey vision conference, vol-
ume 15, page 50. Manchester, UK, 1988.

[18] J-P Benzecri. Construction d’une classification as-
cendante hiérarchique par la recherche en chaı̂ne des
voisins réciproques. Cahiers de l’analyse des données,
7(2):209–218, 1982. Rappel: Cahiers de l’analyse des
données, 22(2):191-198, 1997.

[19] Bastian Leibe, Aleš Leonardis, and Bernt Schiele. Ro-
bust object detection with interleaved categorization and
segmentation. International journal of computer vision,
77(1-3):259–289, 2008.

[20] Michel Bruynooghe. Méthodes nouvelles en classi-
fication automatique des données taxonomiques nom-
breuses. Statistique et Analyse des données, 3:24–42,
1977.

[21] JP Lewis. Fast template matching. In Vision interface,
volume 10, pages 120–123, 1995. The report ”Fast nor-
malized cross-correlation” expands the original paper.


