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Abstract

This paper examines the problem of path planning for a MAV in complex 3D environments without the use of GPS.
Instead the MAV must rely on using sensor measurement of its surroundings for localisation. The quality of localisation
and uncertainty in the MAV's estimated state will be determined by the path it takes through the environment. In order
to minimize the probability of failure this state uncertainty must be incorporated into the planning process determining
the path of the MAV. We present a path planner that can be used to produce paths which attempt to minimize the
MAV's state uncertainty when operating in complex 3D environments. Simulation results are presented for a MAV
equipped with a limited �eld of view camera sensor in environments featuring �xed localisation beacons from which,
bearing measurements can be obtained and used for localisation.

1 Introduction

An autonomous vehicle operating in a GPS denied environment must rely on sensor measurements of its surroundings
for localisation within the environment. The quality and availability of such measurement may vary greatly across the
environment with some areas allowing for far more accurate localisation than others. The path the vehicle takes through
the environment determines the measurements received by its sensors and hence its ability to maintain good localisation
with low uncertainty in its estimated state. The vehicle is less likely to be able to accurately follow paths which involve
high state uncertainty which results in a higher probability of experiencing a collision or other form of potential failure.
It becomes necessary to account for this uncertainty in the vehicle's estimated state when conducting path planning in
order to produce paths which do not have a high probability of such failures occurring.

Belief space path planners are designed to account for uncertainty in vehicle state when generating paths. They
produce paths providing a trade o� between reducing the time taken and reducing the vehicle's state uncertainty. One
such planner, the Belief Road map [6], is based on a modi�ed version of the Probabilistic Road map [5]. Simulated
results demonstrated the planners ability to produce paths minimizing uncertainty by travelling within close proximity
to beacons which the vehicle could use for localisation. The Rapidly-exploring Random Belief Trees algorithm presented
in [7] iteratively constructs a graph in belief space. This graph is then used to determine a safe path for the vehicle.
Simulated results showed the vehicle's path deviate in order to pass through state measurement areas reducing the state
uncertainty and enabling safely passage through narrow areas further along the path. The Particle RRT algorithm [8]
accounts for uncertainty by stochastic simulating each tree expansion multiple times with process noise, adding multiple
new branches per expansion.

The belief space planner introduced in this paper is geared towards navigation for MAV class vehicles equipped
with camera type sensors, operating in complex 3D environments featuring many obstacles. Fixed beacons within these
environments are used for localisation. The vehicle is able to take relative bearing measurements to a beacon provided
it is both within the limited �eld of view of the vehicle's camera and not occluded by any obstacle. This setup is used
as a rough representation of a MAV using a visual SLAM system to navigate through an already mapped area (with the
beacons representing visual landmarks within the SLAM systems map). One of the long term goals of this work is to
produce a belief space planner that fully utilizes a visual SLAM system for autonomous navigation.
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The planner operates on a graph which is determined by the construction of an Octree partitioning of the environment.
The Octree's nodes are used to determine the positions of vertices within the graph. This process as discussed in [10], [9],
[12], [13] results in an efcient vertex layout for path planning with sparse vertices in large open areas and dense clusters
of vertices close to obstacles. Graph edges are then added between pairs of vertices that are within line of sight (LOS)
of one another and whose associated Octree nodes are in contact. This step involves the expensive test of determining
if two points are in LOS of one another by checking if the line segment connecting the two intersects any obstacle. The
computational cost of this step is reduced by using the partitioning Octree to determine a subset of obstacles with which
a connecting line segment could potentially collide. The planning algorithm involves incrementally constructing potential
paths through the graph from an initial starting vertex. The construction of a path involves conducting a simulation of
the MAV attempting to follow that path. This simulated MAV uses a particle �lter for localisation and state estimation
(as discussed in [4], [3], [2]). This particle �lter captures the growth of uncertainty in the MAV's estimated state as it
performs actions along with uncertainty reduction due to sensor measurements. At the end of the simulation the path is
evaluated based upon both its length and in terms of minimizing uncertainty in the MAV's state estimation. Potential
paths are then chosen to be extended or rejected based on this evaluation.

Section 2 introduces the problem formulation and representation used for the MAV's environment. Section 3 describes
the construction of the graph which the planner operates within. Section 4 describes the full planning algorithm. Section 5
then presents a set of simulated results where paths produced by the planner attempting to maintain low state uncertainty
are compared to paths which attempt to minimize distance traveled.

2 Problem Formulation

The path planning problem involves �nding a path from an initial position xstart to a destination xgoal which provides
some desired trade o� between minimizing distance traveled and maintaining low state uncertainty. The environment in
which path planning is conducted is represented by a set of n convex obstacles S (non convex obstacles can be represented
by decomposing into multiple convex) and a set of m �xed localisation beacons B = {b1, ...bm} where bi ∈ B is the position
of the ith beacon. The set S = {s1, ...sn} consists of the convex polygon meshes representing each obstacle. For si ∈ S
we denote the set of vertices of the mesh si.X, the set of mesh edges si.E and the set of mesh faces by si.F.

The MAV is taken to be equipped with a forward facing, limited �eld of view sensor which can take bearing measure-
ments to the beacons of B. A measurement to a beacon bi ∈ B can be made provided bi is both within the sensors �eld
of view and is not obstructed by any obstacle in S. It is assumed that the MAV has access to a complete map of the
environment. It can thus use the bearing measurements obtained from the beacons of B for localisation within this map.
The map also gives knowledge of the obstacles in S allowing the MAV to account for them when path planning.

A graph across the environment is constructed as described in Section 3 consisting of a set of vertex positions V
(including xstart and xgoal) and a set of undirected edges E dictating how the vertices are connected to one another.
Potential paths through this graph are then represented by path nodes. A path node p has an associated vertex p.x ∈ V ,
a parent path node p.p ∈ P , current path length p.l and an associated set of particle states p.S. Recursively iterating back
through the parents of a path node p and examining their associated vertices traces out the whole path represented by
node p. The set of particle states p.S represents the belief of the MAV's true state upon travelling p's path and reaching
p.x. Using a set of particle states to represent a probability distribution or �belief� for a true state is a standard technique
used in Monte Carlo (particle �ltering) localisation [2], [3], [8]. Path nodes also have a weighting p.w which is generally
based o� both the node's path length p.l and the uncertainty of its state belief represented by p.S, these two factors can
be weighted di�erently based on the desired type of path (for example minimum distance paths would have zero weighting
on uncertainty).

The planning problem then consists of �nding a path through the graph connecting the vertex xstart to that of xgoal

and which provides the desired trade o� between distance and state uncertainty. The state uncertainty of the MAV upon
reaching xgoal is dependent upon the path it traversed and the bearing measurements it took along the way which it used
for localisation. The planner used to �nd such paths by searching the constructed graph is described in section 4.
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Algorithm 1 Splitting Criteria for an Octree node

If node depth < max node depth

For All si ∈ S

For All edges e ∈ si.E

If node intersects e

return true

End If

End For

End For

End If

return false

3 Graph Construction

This section describes the algorithm used to construct the graph on which the path planner operates.

3.1 Determining Graph Vertices

The environment is �rst partitioned via the construction of an Octree whose nodes are then used to determine the locations
of graph vertices in V . The Octree is initialized so that its initial node encompasses the entire volume in which path
planning is to be conducted. Each node is then recursively subdivided into eight equally sized octants provided the node
fur�lls a speci�c splitting criteria given in Algorithm 1. This splitting criteria produces a partition as shown in Figure 1a
which has high node density at obstacle edges required for pathing around them but which ignores �at surfaces. During
construction each node of the Octree also stores which obstacles from S it intersects with in order to facilitate determining
edges between the vertices of V in a later graph construction step.

After construction of this Octree vertices are added to V at the centres of each of the Octree nodes (provided the
node's centre is not inside any obstacle from S). Finally vertices are added at the initial start and goal positions V =
V ∪ {xstart, xgoal}. Note that the max node depth of the Octree in Algorithm 1 determines the level of detail to which
the graph vertices V are placed throughout the environment. This a�ects the possible routes through the environment
represented in the �nal graph. Important routes may not be represented if the max node depth is too low.

3.2 Determining Graph Edges

It is assumed that if any two graph vertices xA, xB ∈ V are within direct line of sight then a safe path between them
exists along the line connecting the two. This can be represented in the graph by the addition of an edge (xA, xB) to the
set of edges E. However connecting every pair of vertices that are in line of sight leads to a huge amount of edges. Instead
edges are added to E connecting pairs of vertices that are both within line of sight and whose associated Octree nodes
are in contact with one another. This results in a graph of the form as shown in Figure 1b.

Determining if two positions xA, xB are within line of sight of each other requires checking that the line segment
connecting the two does not intersect with any obstacle in S. A naive approach to performing this check is to simply check
the line segment for intersection against each obstacle of S in turn until an intersection is detected or all obstacles have
been checked against. However this method results in the number of intersection checks required simply growing with the
number of obstacles present.

A preferable method involves using the constructed Octree to only perform intersection checks against a subset of the
total set of obstacles. From the earlier graph construction in section 3.1, each Octree node stores a subset of obstacles with
which it intersects. The method then consists of traversing the nodes of the Octree which the line segment passes through
one by one and only performing intersection checks with obstacles that are contained within the subset of obstacles for
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(a) The deepest nodes in a partitioning Octree showing how the split-
ting method biases the node density about obstacle edges

(b) Example of a graph constructed by the process de-
scribed in Section 3. The partitioning Octree constructed
with a low max node depth for clarity.

Figure 1

one of these nodes. Traversing between the cells of the tree is generally a relatively cheap process especially in open
areas which can be partitioned by a few large cells. This method generally results in far fewer intersection checks being
performed and resulting in large performance gains.

3.3 Intersection Checks

When constructing the Octree in Section 3.1 it is necessary to check for intersection between the cuboid nodes of the
Octree and the convex obstacles of S. Intersection checks between convex objects, such as these are conducted with a
method employing the separating axis theorem [11]. This simply states that if a plane can be placed between two convex
objects such that each is fully contained on a di�erent side of that plane then the objects are not intersecting. The normal
to a such a separating plane is called a separating axis.

To determine if a speci�c direction n̂ is a separating axis for two convex objects A and B, the projection of each of the
convex objects onto n̂ is calculated. This forms the projection intervals for each object IA and IB . If these intervals do
not overlap then it can be seen that n̂ is a separating axis for the object and hence they do not intersect. Figure 2 shows
a 2D equivalent example of this.

The interval formed from projecting a convex polygon mesh such as si ∈ S onto a direction n̂ is determined by
calculating the dot product of n̂ with each of the mesh's vertices x ∈ si.X. This then forms the set D = {x • n̂ | x ∈ si.X}
and the interval formed by the projection is simply I = [min(D),max(D)]. If the convex mesh consists of a single
edge (the object is a line segment) between two points p1 and p2 then its projection interval for a direction n̂ is just
I = [min(D),max(D)] where D = {n̂ • p1, n̂ • p2}.

In order to fully determine if two convex meshes intersect, a number of directions must be checked to see if any provide
a separating axis. This set of directions consists of the directions normal to the faces on each of the meshes along with
all possible directions formed by taking the cross product between two edges, one from each mesh. Without checking the
directions formed by the cross product of edges, separating axes such as those shown in Figure 2c would be overlooked.
As soon as any of these directions are found to provide a separating axis the objects have been determined to not be
intersecting and no further checks are necessary. On the other hand if no separating axis has been found after all these
directions have been checked then the objects do intersect.

Note if a speci�c direction n̂ has been checked to determine whether or not it is a separating axis it is unnecessary to
check any other direction parallel to n̂. For meshes such as those of the cuboid Octree nodes there will be faces whose
normal direction is parallel to that of another face and edges parallel to others edges. It is important therefore to keep
track of what directions have already been checked in order to avoid unnecessarily checking a direction parallel to one
previous.
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(a) Here the intervals IA and IB do not intersect
indicating direction n is a separating axis for ob-
jects A and B and hence they do not intersect

(b) Here the intervals IA and IB intersect hence
direction n is a not a separating axis however this
alone is not enough to determine if A and B are
truly intersecting

(c) Two objects with a sep-
arating axis shown by the
dotted line whose direc-
tion is formed by the cross
product of edges ea and eb

Figure 2: 2D Visualization of using vector projection to determine if a direction is a separating axis for two convex meshes

4 Path Planner

Paths that feature high levels of uncertainty in the MAV's estimated state are generally undesirable as the MAV will be
less likely to accurately follow such paths. This may then result in a collision or other form of failure due to the MAV
straying from the desired path. The path planning method in this section attempts to �nd paths through the graph
constructed in Section 3 which provide some desired trade o� between maintaining low state uncertainty and minimizing
distance traveled.

In order to evaluate a potential path the planner numerically simulates a MAV attempting to follow the path from
vertex to vertex using a particle �lter and bearing measurements to the beacons of B for localisation. The sample variance
and covariance of the particle �lter's set of particles is calculated upon reaching each vertex and used to determine the
current uncertainty in the MAV's estimated state. This uncertainty along with the distance traveled so far, is then be
used to evaluate the path upon reaching a vertex. If the path is deemed inferior to an already existing path to the current
vertex then the simulation is halted and the path discarded.

4.1 Algorithm

The planner searches for paths through the visibility graph constructed in Section 3 consisting of the set of vertices V
and edges E. A set of path nodes P (as described in section 2) is used to store di�erent paths through the vertices of the
graph. U ⊆ P denotes the set of path nodes which should be used in attempting to create new paths by extending their
current path to another vertex.

The set of path nodes P is initialized by setting P = {P0} where the path node P0 is at the starting vertex (P0.v =
xstart ∈ V ) and has a set of particle states P0.S representing the initial belief of the MAV's state. The parent of this node
is simply initialized as P0.p = P0 as it is the path node from which all others originate. U is then initialized as U = {P0}.

The planning algorithm used to generate paths for this setup is listed in Algorithm 2. The algorithm iteratively creates
new paths through the graph from the path nodes in U . This involves selecting a path node p ∈ U and attempting to
extend p's existing path to every vertex v ∈ V which is connected to p.x by an edge from E (every vertex v such that
(v, p.x) ∈ E).

For each path extension from p.x to some other vertex v ∈ V the MAV is simulated attempting to travel from p.x to
v taking p.S as the initial belief of the MAV's state. The result of this simulation is then used to form a new path node q
representing the extended path. This path node is also assigned a weighting q.w based on both its uncertainty and path
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Algorithm 2 Planning method

While U 6= ∅

p =minimum scoring element of U
For all v ∈ V | (v, p.x) ∈ E

q = Propagate(p, v)
q.l = Assign_weighting(q)
If !(∃a ∈ P | (q.w < a.w∧q.x = a.x))

P = P ∪ ptest
Insert(ptest)

End If

End For

U = U \ p

End While

length, each of which, are weighted by di�erent constants (wlen and wun) depending on the desired type of path. If this
new path node is then deemed to provide the current best path to its vertex q.x then it is added to both P and U.

After all possible extensions of a path node have been attempted, it is removed from U . Once U no longer contains
any path nodes there are no more potential paths to investigate and the algorithm terminates.

There are a number of functions de�ned in Algorithm 2 which are now explained in greater detail.

4.1.1 Propagate(p, v)

The function Propagate(p, v) takes a path node p ∈ P and a graph vertex v ∈ V and returns a new path node q such
that q.x = v. The function carries out a numerical simulation of the MAV travelling from vertex p.x to vertex v using a
particle �lter for localisation taking p.S as the initial set of particles. At each step of this simulation the subset of beacons
in B that are within line of sight of the MAV (if any) and which can be brought within the MAV's limited �eld of view
sensor is determined. These beacons are then further examined to determine which would provide a bearing measurement
resulting in the greatest decrease in state uncertainty, the MAV is then made to face this beacon. The set of particles on
the returned path node q.S is that of the particle �lter at the end of the simulation.

4.1.2 Assign_weighting(p)

This function assigns a weighting to a path node p based on both it's path length p.l and an uncertainty measure u
associated with its set of particle states p.S. In the set of results given for the planner, this uncertainty measure u was
simply taken to be the sum of the x,y,z sample variances in the positions of the particle states in p.S. The path nodes
weighting is then assigned as p.w = wlen×p.l+wun×u where wlen and wun are constants that can be adjusted depending
upon the desired type of path. For example setting wun = 0 would assign weightings based purely on path length resulting
in the planner attempting to produce minimum distance paths. On the other hand, setting wun to a value much greater
than wlen results in the planner producing paths which are far longer but which maintain much lower state uncertainty
by taking measurements to the localisation beacons of B.

4.1.3 Insert(p)

The function Insert(p) inserts a path node p ∈ P into the list of path nodes to update U . The position at which p is added
to U is determined by its assigned weighting p.w such that U maintains a list of path nodes ordered by their weightings.
Low weighted path nodes in U can then be expanded �rst by simply choosing the last element of U for expansion. If we
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were instead not to order U , or simply select which path node to expand at random, it would lead to an extremely large
number of cases whereby a new path would be found that was slightly preferable to an existing path but which would
then itself, be replaced by another slightly preferable path found soon after. This would result in a great amount of time
wasted creating and examining similar paths which are likely to be replaced.

5 Results

A number of paths produced by the planner in di�erent environments are now presented in this section (each environment
is fully enclosed, however the roof of each is not drawn). The uncertainty of the MAV's estimated state is visualized
by error ellipsoids formed from the set of particle states of the path nodes as discussed in Section 2. In each setup,
robust paths produced by the planner when attempting to maintain low uncertainty (drawn in orange using weighting
constants wlen = 0.01, wun = 1) are compared with the paths produced when only minimizing distance (drawn in blue
using weighting constants wlen = 1, wun = 0). localisation beacons are drawn as red markers and measurements taken of
them at points along a path are indicated by lines and vision cones.

(a) Path produced by planning algorithm through complex environment (b) Path of (a) shown from a di�erent angle

(c) Path of (a) shown from another di�erent angle (d) Path Produced by planner when attempting to minimize path length

Figure 3
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An example of a path generated by the planning algorithm between two points in a complex environment is shown
Figure 3. The minimum uncertainty path is seen to take a route which enables it to obtain numerous beacon measurements,
resulting in better localisation by the internal particle �lter compared to the minimum distance path.

Examples of the planner operating in simpler environments are shown in Figures 4, 5, 6. Figures 4 and 5 show the
planner producing paths which take the MAV through areas in which localisation beacons are always visible. Figure
5 in particular highlights how the minimum distance path risk collisions, as the ellipsoid cuts deep into the wall near
the destination. Figure 6 shows the planner producing a path taking a very speci�c route through an open space which
maintains line of sight between the MAV and a set of beacons in order to retain localisation. Tables 7b and 7c show the
computation times and properties of the robust paths and shortest distance paths. The uncertainty measure of the robust
path is seen to always be lower than that of the shortest distance path. This indicates that in every scenario the MAV is
more likely to successfully follow the robust path over the shortest distance path.

(a) (b)

Figure 4: (a) Shows the path produced by the planner which attempts to maintain good localisation. By comparision (b)
shows the path produced when the planner simply trys to minimize distance traveled. The path shown in (a) goes through
the corridor to the right resulting in the MAV taking a longer route but able to observe several localisation beacons along
the way.

6 Conclusions

This paper has addressed the problem of path planning for a MAV-like vehicle with the presence of state uncertainty. A
belief space path planning algorithm is presented in which a particle �lter is used to represent the belief of the MAV's state
and examine how the belief would evolve along potential paths through the environment. The algorithm was demonstrated
in simulation producing routes in complex 3-D environments which e�ectively maintained good localisation minimizing
the probability of the MAV straying from the path.

Much future work and examination remains, currently the planner does not explicitly take into account the probability
of environmental collision when generating new paths, instead only performing comparisons to the current set of potential
paths. Due to this omission many paths are generated which have a high likelyhood of collision. Though these paths are
unlikely to be part of the �nal path outputted by the algorithm, signi�cant computational time could be saved by culling
such paths. By determining the probability of environmental collision at each step of path generation, the planner could
also be formulated to produce paths that have a certain probability threshold of collision, rather than simply attempting
to maintain a low state uncertainty.
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(a) (b)

Figure 5: Here (a) shows the planner producing a path which takes a long indirect route to the destination but which
always keeps the MAV in line of sight of a measurement beacon. (b) Shows the planners route minimizing only distance.

(a) (b)

Figure 6: In this environment several localisation beacons are present placed at the end of a narrow corridor. The MAV
is thus only able to observe them when it aligns itself with the corridor, bringing them within clear line of sight of its
sensor. (a) Shows the planner producing a path diverging from the shortest route in order to align with this corridor and
observe the beacons. (b) Shows the planners route minimizing only distance.
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Figure Time (s)

3 6.14
4 2.88
5 5.41
6 1.18

(a) Algorithm computation
times

Final Uncertainty Measure Path length

18.81 687.36
32.18 655.89
21.26 707.39
46.73 418.11

(b) Robust path properties

Final Uncertainty Measure Path length

125.41 320.74
173.92 324.50
267.35 355.87
63.82 270.64

(c) Shortest distance path properties

Figure 7
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