
 

ABSTRACT

This  paper  presents  a  problem of  attitude  stabilization  and 
robust regulation of an indoor unmanned aerial vehicle, known 
as a quadrotor. The paper shows the design of continuous-time 
controller based on Dynamic Contraction Method. The control 
task is formulated as a tracking problem of Euler angles, where 
desired  output  transients  are  accomplished  in  spite  of 
incomplete information about varying parameters of the system 
and external disturbances. The resulting controller has a form 
of a combination of a low-order linear dynamical system and a 
subsystem  which  accomplishes  an  algorithm  of  quadrotor 
control. Experiments results for tracking a reference signal are 
presented,  and  confirm  the  effectiveness  of  the  proposed 
method and theoretical expectations.

1 INTRODUCTION

The  always  increasing  performance  of  Micro  Electro-
Mechanical  Systems  (MEMS)  inertial  measurement  unit 
(IMU), and low cost GPS have given them roles of enabling 
technologies  for  new  autonomous  vehicle  applications. 
Prime  examples  are  Unmanned  Air  Vehicles  (UAV)  for 
borders  surveillance,  forest  fires  monitoring,  safety  and 
natural  risk  management,  environmental  protection, 
management of the large infrastructures, agriculture and film 
production.  A quadrotor,  one  such  UAV with  four  fixed 
pitch  rotors,  is  a  highly maneuverable  vehicle.  It  has  the 
potential  to  hover  and  to  take off,  fly,  and  land in  small 
areas,  and  has  a  simple  control  mechanism.  However,  a 
quadrotor is a complex unstable system and can be difficult 
to  fly  without  modern  embedded  control  systems.  The 
availability  of  sensors  and  high  performance  small  size 
microcontrollers have resulted in the revival of the quadrotor 
concept.

In  practical  applications,  the  position  in  space  of  the 
VTOL unmanned aerial vehicle is generally controlled by an 
operator through the RC transmitter using a visual feedback 
from an on-board camera, while the attitude is automatically 
stabilized via an on-board controller. The attitude controller 
is an important feature since it allows the vehicle to maintain 
a desired orientation and, hence, prevents the quadrotor from 
crashing when the pilot performs the desired maneuver. The 
attitude  control  problem  of  a  VTOL-UAVs  has  been 
investigated  by  several  researchers  and  a  wide  class  of 
controllers  has  been  proposed  [3]–[7],  [11],  [13].  Thus, 
control of a nonlinear plant is a problem of both practical 
and theoretical interest.

Dynamic  properties  of  a  controlled  vehicle  depend  on 
both its structure and aerodynamic qualities as well as on the 
control  law applied.  The problem of output regulation has 
received  much  attention  and  especially  during  the  last 
decade, its nonlinear version has been intensively developed 
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[10].  The  well  known  approach  to  decoupling  problem 
solution based on the Non-linear  Inverse Dynamics (NID) 
method [2], [9] may be used if the parameters of the plant 
model and external disturbances are exactly known. Usually, 
incomplete information about systems in real practical tasks 
takes  place.  In  this  case  adaptive  control  methods  [1]  or 
control  systems with sliding  mode  [12]  may be  used  for 
solving this control problem. A crucial feature of the sliding 
mode techniques is that in the sliding phase the motion of 
the  system  is  insensitive  to  parameter  variation  and 
disturbances in the system. A way of the algorithmic solution 
of this problem under condition of incomplete information 
about varying parameters of the plant and unknown external 
disturbances is the application of the Localization Method 
(LM) [14], which allows to provide the desired transients for 
nonlinear  time-varying  systems.  The  generalization  and 
development  of  LM  is  the  Dynamic  Contraction  Method 
(DCM)  [15].  The  peculiarity  of  the  DCM method  is  the 
application of the higher order derivatives jointly with high 
gain in the control law. The DCM method is insensitive to 
plant parameters  changes  and  external  disturbances,  and 
works  well  both  lineal,  nonlinear,  stationary  and 
nonstationary objects.

In general, the goal of the design of a quadrotor control 
system is to provide decoupling of control channels in steady 
state, and to provide desired output transients according to 
the reference model. 

The paper is part of a continuing effort of analytical and 
experimental  studies  on  aircraft  control  which  were 
considered in [8]. The main aim of this research effort is to 
examine the effectiveness of a designed attitude stabilization 
and regulation control system for quadrotor (Figure 1). 

Figure 1: Quadrotor – aerial vehicle.

The paper is organized as follows. The first part includes 
a description of DCM method used for the control system 
design. Second, a mathematical description of the quadrotor 
model is introduced.  It  is desired  to construct  a nonlinear 
model of quadrotor in Simulink. The control solution along 
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with the stages of regulators design are presented. It is aimed 
to  design  control  system  that  can  stabilize  the  attitude 
around  hovering  conditions  or  regulate  the  desired 
orientation,  and  to  implement  the  controller  using 
Matlab/Simulink,  RTWT,  PC  and  data  acquisition  card. 
Finally, the  results  of  experiments  in  the  HiL  structure 
(Hardware  in  the  Loop)  are  shown.  The  conclusions  are 
briefly discussed in the last section.

2 DYNAMIC CONTRACTION METHOD [15]
The  main  aim  of  this  research  effort  is  to  design  a 

feedback  control  scheme for  the attitude  stabilization  and 
robust  angular  regulation  of  the  quadrotor.  The  control 
system consists of two parts as shown in Figure 2. First, the 
main subsystem, is a MIMO controller  designed using the 
Dynamic  Contraction  Method.  Second  subsystem 
accomplishes  an  algorithm  of  quadrotor  control,  and 
provides decoupling of control channels in steady state.

Figure 2: Block diagram of a control system.

To design a DCM controller let  us consider a nonlinear 
time-varying MIMO system in the following form:

(1) ( ) ( ) ( ) ( )( )1 , ,x t h x t u t t= ,     ( ) 00x x=

(2) ( ) ( )( ),y t g t x t= ,

where  ( )x t  is  n–dimensional  state  vector,  ( )y t  is

p–dimensional  output  vector  and  ( )u t  is  l-dimensional 

control vector. The elements of the ( )( ),f t x t ,  ( )( ),B t x t  

and ( )( ),g t x t  are differentiable functions.

Each output  ( )iy t  can be differentiated  im  times until 
the  control  input  appears.  Which  results  in  the  following 
equation:

(3) ( ) ( ) ( )( ) ( )( ) ( ), ,my t f t x t B t x t u t= +

where: ( ) ( ) 1 2 ( )( ) ( )
1 2, ,..., pmm m m

py t y y y =   ,

( ) max, ,        1,  2,.....,i if t x f i p≤ = .

The value  im  is a relative order of the system (1),(2) with 

respect  to  the output  ( )iy t  (or  so called  the order  of   a 

relative  higher  derivative).  In  this  case  the  value  ( )im
iy  

depends explicitly on the input ( )u t .
The significant feature of the approach discussed here is 

that  the  control  problem  is  stated  as  a  problem  of 
determining the root of an equation by introducing reference 

differential equation whose structure is in accordance with 
the structure  of  the plant  model equations.  So the control 
problem can be solved if behaviour of the ( )im

iy  fulfills the 
reference model which is given in the form of the following 
stable differential equations:
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where:  i MF  is  called  the  desired  dynamics  of  ( )iy t , 

( ) ( ) ( )11, ,..., i
Tm

i  M i  M i  M i  My t y y y − =   ,  ( )ir t  is the reference value 

and  the  condition  i iy r=  takes  place  for  an  equilibrium 
point.

Denote the tracking error as follows:

(5) ( ) ( ) ( )t r t y t∆ = −

The task of a control system is stated so as to provide that

(6) ( ) 0
t

t
→ ∞

∆ =

Moreover, transients ( )y t  should have the desired behavior 
defined in (4) which does not depend either on the external 
disturbances or on the possibly varying parameters of system 
in equations (1), (2). 

Let us denote

(7) ( ) ( )( ) ( ) ( ), mF
MF y t r t y t∆ = −

where:  F∆  is the error of the desired dynamics realization, 

1 2  , ,...,
T

M M M p MF F F F =    is  a  vector  of  desired 

dynamics.
As a result of (3),  (4),  (7) the desired behaviour of  ( )iy t  
will be provided if the following condition is fulfilled:

(8) ( ) ( ) ( ) ( )( ), , , , 0F x t y t r t u t t∆ =

So the  control  action  ( )u t  which provides  the control 
problem  solution  is  the  root  of  equation  (8).  Above 
expression  is  the  insensitivity  condition  of  the  output 
transient  performance  with  respect  to  disturbances  and 
varying parameters of the system in (1), (2).

The  solution  of  the  control  problem  (8)  bases  on  the 
application  of  the  higher  order  output  derivatives  jointly 
with high gain in the controller. The control law in the form 
of a stable differential equation is constructed such that its 
stable  equilibrium  is  the  solution  of  equation  (8).  Such 
equation can be presented in the following form [10]
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where: 1,...,i p= ,

( ) ( ) ( )  1 1, ,..., i
Tq

i i i itν ν ν ν − =   - output of a controller,

iµ  - small positive parameter iµ > 0,
 ki - gain,

,0 , 1,...,
ii i qd d −  - diagonal matrices.

Let us assume that there is a sufficient time-scale separation, 
represented by a small parameter  iµ , between the fast and 
slow modes in the closed loop system. Methods of singularly 
perturbed equations can then be used to analyze the closed 
loop  system  and,  as  a  result,  slow  and  fast  motion 
subsystems  can  be  analyzed  separately.  Following 
differential  equation  determines   the  fast  dynamics  of 
controller (Figure 3):

(10) ( )
1
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q
q q i i

i
i
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−

=

= + ∑

Figure 3: The main idea of a DCM theory.

Remark 1: It is assumed that the relative order of the system 
(1),  (2),  determined in (3),  and reference model (4)  is the 
same im .
Remark 2: Assuming that i iq m≥  (where 1, 2,...,i p= ), then 
the control law (9) is proper and it can be realized without 
any differentiation.
Remark  3: The  asymptotically  stability  and  desired 
transients  of  ( )i tν  are  provided  by  choosing 

,0 ,1 , 1, , , ,...,
ii i i i i qk d d dµ − .

Remark 4: Assuming that  ,0 0id =  in equation (9), then the 
controller  includes the integration and it  provides  that  the 
closed-loop system is type I with respect to reference signal.

3 QUADROTOR MODEL

The aerial vehicle consists of a rigid cross frame equipped 
with four rotors as shown in Figure 4.

Figure 4: Quadrotor concept motion description.

The  two  pairs  of  propellers  (1,3)  and  (2,4)  turn  in 
opposite  directions.  By  varying  the  rotor  speed,  one  can 
change the lift force and create motion. Thus, increasing or 
decreasing  the  four  propeller’s  speeds  together  generates 
vertical  motion.  Changing  the  2  and  4  propeller’s  speed 
conversely  produces  roll  rotation  coupled  with  lateral 
motion. Pitch rotation and the longitudinal motion – result 
from 1 and 3 propeller’s speed conversely modified.  Yaw 
rotation  - as the result from the difference in the counter-
torque between each pair of propellers [6].

3.1 Mathematical Model
The quadrotor is a six degrees of freedom system defined 

with twelve states. The following state and control vectors 
are adopted:

(11) , , , , , , , , , , , =  
& & & & & &

 T
X x x y y z zφ φ θ θ ψ ψ

(12) 1 2 3 4, , ,=   
TU u u u u

where: 
iu - control input of motor,

              1, 2,3,4=i - motor number

Six out of twelve states govern the attitude of the system 
(Figure  5).  These  include  the  Euler  angles  ( , ,φ θ ψ )  and 
angular  rates  around the three  orthogonal  body axes.  The 
other  six states determine the position ( , ,x y z )  and linear 
velocities of the center of mass of the quadrotor with respect 
to a fixed reference frame.

1

2

3

4



Figure 5:  Quadrotor configuration.

The  dynamic  model  is  derived  using  Euler-Lagrange 
formalism [3], [4], [7] under the following assumptions:

- the frame structure is rigid,
- the structure is symmetrical,
- the CoG and the body fixed frame origin are assumed 

to coincide,
- the propellers are rigid,
- thrust  and  drag  are  proportional  to  the  square  of 

propeller’s speed.
Taking  this  into  account,  the  quadrotor  mathematical 

model can be divided into two subsystems (propulsion and 
rigid body model) as depicted in Figure 6.

Figure 6:  Block diagram of a system dynamics.

Using  the  Lagrangian,  and  the  general  form  of  the 
equations of motion in Lagrange method:

(13) = −L T V

(14)
 ∂ ∂= − ∂ ∂ &

d L LF
dt q q

where: 
L - Lagrangian,
T - kinetic energy
V - potential energy

[ ], , , , ,= Tq x y z φ θ ψ - generalized coordinates

( ),= EF F τ - generalized forces EF  and moments 
τ  applied to the quadrotor due to the control inputs

For translational motion the Lagrange equation has a form:

(15)
 ∂ ∂= −  ∂∂ &

E
d L LF
dt ξξ

where:

[ ], ,= Tx y zξ - position coordinates,

( )
( ) ( )

( ) ( )

sin
sin cos

cos cos

 
 = − ⋅ 
  

E gF f
θ

φ θ
φ θ

1 2 3 4= + + +gf F F F F
2= Ωi iF b

Ω i - rotor speed
b - thrust factor

Accordingly,  the  Lagrange  equation  for  rotary  motion  is 
following:

(16)
 ∂ ∂= − ∂ ∂ &

d L L
dt

τ
η η

where:

[ ], ,= Tη φ θ ψ - Euler angles,

 =  
T

φ θ ψτ τ τ τ

( ) ( )2 2
4 2 1 3 2 4= Ω − Ω − Ω + Ω − Ω − Ω&

rbl Jφτ θ

( ) ( )2 2
3 1 1 3 2 4= Ω − Ω + Ω + Ω − Ω − Ω&

rbl Jθτ φ

( )2 2 2 2
1 2 3 4= Ω − Ω + Ω − Ωdψτ

l - distance between propeller center and CoG
rJ - rotor inertia

d - drag factor

Above torques equations ( , ,φ θ ψτ τ τ ) consist of  the action of 
the  thrust  forces  difference  of  each  pair,  and  from  the 
gyroscopic effect.

Finally the quadrotor dynamic model with x,y,z, motions 
as  a  consequence  of  a  pitch,  roll  and yaw rotations  is  as 
follows:

(17) ( ) ( ) ( ) ( )( )21
xx zz zz

xx
I I s c I c

I θθ φ θ θ φ ψ θ τ= − − − +&& & & &

(18) ( )( ) ( ) ( ) ( )(

( ) ( ) )
2

1
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                            2 2

zz
yy

zz yy zz

I s c s
I s
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φ ψ θ θ φ θ θ
θ

θ ψ θ τ

= − − ⋅
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&& & &&&

& &

(19) ( )( )1
zz

zz
I s

I ψψ φ θ τ= − +&&&&

(20) ( )gfx s
m

θ=&&

(21) ( ) ( )gfy c s
m

θ φ= −&&

(22) ( ) ( )gf
z c c g

m
θ φ= −&&

where: s and c are abbreviations of ’sin’ and ’cos’,
, ,xx yy zzI I I - inertia moments.

The complete rigid body model can be presented in the 
form  of  block  diagram  (Figure  7).  The  internal  block 
contains moments and forces generated by quadrotor, linear 
and angular velocity, and the attitude and position which can 
be  calculated  on account  of  the  inputs  from the  block of 
propulsion system.

Figure 7:  Block diagram of the rigid body model.

3.2 Propulsion system
The  model  of  brushed  DC-motor  is  divided  into  an 



electrical and mechanical part:

(23) e m

dIL u RI k
dt

ω= − −

(24) m
m m l

d
J

dt
ω

τ τ= −

where:
L -  motor inductance
I - motor current
u - motor input
R - motor resistance

ek - motor electrical constant

mω - motor angular speed

mJ - motor inertia

m mk Iτ = - motor torque

mk - torque constant

lτ - motor load
Because of the very low inductance of used small engines, 

the DC-motor  dynamics  can be  approximated  by the first 
order differential equation in the following form:

(25) m m m e
m m l

d k k k
J u

dt R R
ω

ω τ= − −

Block diagram of a motor dynamics is to be assembled from 
the above derivation and the result is in Figure 8.

Figure 8.  Block diagram of a DC-motor dynamics.

4 ATTITUDE CONTROL SYSTEM DESIGN

The entire closed loop system is presented in Figure 2.  
The quadrotor model described by equations (11)−(25), will 
be used to design the attitude control system that achieves 
the  angular  stabilization  and  regulation  by  tracking  a 
reference  signal.  The  control  task  is  stated  as  a  tracking 
problem for the following variables:

( ) ( )0lim 0
t

t tφ φ
→ ∞

 − = 

(26) ( ) ( )0lim 0
t

t tθ θ
→ ∞

 − = 

( ) ( )0lim 0
t

t tψ ψ
→ ∞

 − = 

where  ( ) ( ) ( )0 0 0, ,t t  tφ θ ψ  are  the  desired  values  of  the 
considered variables.

In  addition,  we  require  that  transient  processes  have 
desired dynamic properties,  are mutually independent and 
are independent of quadrotor parameters and disturbances. 

Feedback  data  for  the  regulator  are  three  variables: 
, ,φ θ ψ . Control signals are motors inputs:  1 2 3 4, , ,u u u u . In 

this case:

(27) ( ) ( )dim dimy u≠

Therefore the control system is divided into two subsystems: 

first – MIMO DCM controller, second – output block.

4.1 DCM controller
The  inverse  dynamics  of  (1),  (2)  are  constructed  by 

differentiating  the  individual  elements  of  y  sufficient 
number of times until a term containing  u  appears in (3). 
From  equations  of  quadrotor  motion  (17)−(25),  and 
following (3), the below relationship becomes:

(28)

( )

( )

( )

2 1

2 2

32

4

u
f

u
f B

u
f

u

φ

θ

ψ

φ

θ

ψ

             = +                 
Let us assume that the desired dynamics are determined 

by a set of mutually independent differential equations:

(29) ( ) ( )
0

122 2 φφφατφτ φφφ +−−=

(30) ( ) ( )2 12
02θ θ θτ θ τ α θ θ θ= − − +

(31) ( ) ( )2 12
02ψ ψ ψτ ψ τ α ψ ψ ψ= − − +

Parameters  iτ  and  iα  ( , ,i φ θ ψ= ) have very well known 
physical  meaning  and  their  particular  values  have  to  be 
specified by the designer.

The  dynamic  part  of  the  control  law from (9)  has  the 
following form:

(32)

( ) ( )

( ) ( )( )
2 12

,1 ,0

2 12
0

2

                       2

d d

k

φ φ φ φ φφ φ

φ φ φ φ

µ ν µ ν ν

τ φ α τ φ φ φ

+ + =

− − − +

(33)

( ) ( )

( ) ( )( )
2 12

,1 ,0

2 12
0

2

                       2

d d

k

θ θ θ θ θθ θ

θ θ θ θ

µ ν µ ν ν

τ θ α τ θ θ θ

+ + =

− − − +

(34)

( ) ( )

( ) ( )( )
2 12

,1 ,0

2 12
0

2

                       2

d d

k

ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ

µ ν µ ν ν

τ ψ α τ ψ ψ ψ

+ + =

− − − +

4.2 Output block
The main goal of the second subsystem is to  accomplish 

an algorithm of quadrotor control, and provides  decoupling 
of control channels in steady state. Thus the control inputs 
from  DCM  controller,  about  each  axis  , ,φ θ ψν ν ν ,  are 
combined to generate the control inputs 1u  through 4u , for 
motors 1 through 4:

(35) 1 thu u θ ψν ν= + +

(36) 2 thu u φ ψν ν= + −

(37) 3 thu u θ ψν ν= − +

(38) 4 thu u φ ψν ν= − −

where:
, ,φ θ ψν ν ν - control inputs about axis , ,x y z , respectively,

thu - collective control command for each motor.



5 STRUCTURE AND TEST BENCH

The  development  of  a  attitude  control  system  for 
quadrotor  requires  the  development  of  an  adequate  test-
bench  for  needs  of  the  controller  tuning,  at  least  for  the 
initial  experiments.  It  can  help  to  lock  three  degrees  of 
freedom in order to reduce tuning controller complexity and 
avoid  system  damage.  For  the  preliminary  control 
experiments we use the test-bench (Figure 9), which consists 
of:  (1)  quadrotor  airframe  with  propulsion  system,  (2) 
AHRS,  (3)  PC  with I/O  card,  (4)  power  supply,  (5)  RC 
transmitter, (6) stand. The frame composed of carbon tubes 
attached  to  a  plastic  hub,  and  at  the  other  ends  with 
propulsion  systems.  To  the  airframe  added  AHRS sensor 
and  electronic  circuitry.  The  miniature  MTi  Xsens AHRS 
estimates with a Kalman filter the 3D orientation data and 
gives  the  calibrated  data  of  acceleration  and  angular 
velocity.
It weights 50g and communicates at 115kbps by the external 
converter RS-232/USB. For needs of the controller tuning, it 
was decided to use a stationary ball joint base, as shown in 
Fig.9.  This  stand  gives  the  quadrotor  unrestricted  yaw 
movement and around 50o± pitch and roll angles. The height 
is  around  1.7m,  and  it  eliminates  the  influence  of 
disturbances  in  the  form  of  air  stream  reflection.  The 
quadrotor  has  four  propulsion  systems,  each  one  is 
composed of a brushed DC-motor driven by PWM signal, 
gear box with a speed reduction ratio of 9:1, and two-bladed 
propeller. Experimental testing has been performed, with a 
sampling frequency of 1 kHz, using a stationary PC with I/O 
card  Inteco  RT-DAC4 as  a  Data Acquisition and  Control 
Device. The Matlab and Simulink software in combination 
with  Real-Time  Workshop  and  RT-CON  allows  an  easy 
implementation  of  the  control  system  in  block  diagram 
format  via  Simulink,  with  real-time  tuning  the  controller 
parameters.  This structure of experimental  setup was used 
for a fast prototyping of designed DCM controller, as well as 
the attitude control system concept, in the hardware in the 
loop system. 

Figure 9:  Quadrotor experimental setup.

In  practice,  the  motion  of  the  quadrotor  in  three-
dimensional space is achieved by the operator (onboard or 
through  a  RC transmitter)  by specifying  the  desired  total 
thrust, roll, pitch and yaw, while the attitude is automatically 
controlled according to the algorithms proposed in previous 
section. 

The  entire  closed  loop  scheme  with  attitude  control 
system is shown in Figure 10.

Figure 10:  Control implementation.

6 RESULTS OF CONTROL EXPERIMENTS

In  this  section,  we  present  the  results  of  experiment 
which  was  conducted  on  the quadrotor,  to  evaluate  the 
performance of a designed attitude control system.

At first, in order to predict the performance of quadrotor, 
a simulation system was developed under Matlab/Simulink 
platform.  This  helpful  tool  was  used  to  determine  the 
reference models for each control channel. The significant 
task ,during the angular stabilization, fulfill the roll and pitch 
channels,  therefore  the  dynamics  of  reference  models  for 
both angles were assumed faster than yaw channel.

Next step includes the angular stabilization, regulation, 
and investigation in area of robustness performed on the test-
bench. The presented maneuver consisted in transition with 
predefined dynamics from one steady-state angular position 
to  another.  Hereby,  the  control  system  accomplished  a 
tracking task of reference signal. The experiment was chosen 
to expose a robustness of the controller under transient and 
steady-state   conditions.  During the experiment,  the entire 
control system was subjected to external disturbances in the 
form  of  a  wind  gust.  Practically  this  perturbation  was 
realized  mechanically  by  pushing  the  quadrotor  frame  in 
different directions ( ( )50,65t ∈ [s] and ( )95,105t ∈ [s]). 

After  several  simulations  and  tests  performed  on  the 
experimental setup, it was time to test an autonomous flight. 
First  flights  were successful  without additional  tuning the 
controller  parameters.  Only  the  influence  of  some 
perturbations, introduced by the sensor and control cables, 
were observable.



Figure 11:  Time history of roll angle φ [deg]

Figure 12:  Time history of pitch angle θ [deg]

Figure 13:  Time history of yaw angle ψ [deg]

Figure 14:  Time history of control signal 1u



Figure 15:  Time history of control signal 2u

Figure 16:  Time history of control signal 3u

Figure 17:  Time history of control signal 4u

7 CONCLUSION

Autonomous quadrotor  can  make possible  many potential 
applications for unmanned aerial vehicles. In this paper, the 
problem of attitude stabilization and regulation of an indoor 
unmanned  aerial  vehicle,  known  as  a  quadrotor, was 
considered. The paper includes vehicle dynamic modeling, 
investigation  of  DCM  theory,  MIMO  controller  design, 
experiments.  The applied DCM theory allows to create the 
expected  outputs  for  multi-input  multi-output  nonlinear 
time-varying physical object, like an quadrotor, and provides 
independent  desired  dynamics  in  control  channels.  The 
peculiarity of the propose approach is the application of the 
higher order derivatives jointly with high gain in the control 
law. This approach and structure of the control system is the 
implementation  of  the  model  reference  control  with  the 
reference  model  transfer  function  which  is  equal  to  the 
inverse of the controller ”dynamics”.  The DCM technique 
was  explored  from  theoretical  development  to  final 

experiments.  It  becomes  that  the  proposed  structure  and 
method is insensitive to external disturbances and also plant 
parameter changes, and hereby possess a robustness aspects. 
Simulations and test-bench experiments prove the ability, of 
the  designed  DCM  regulator,  to  control  the  orientation 
angles in the presence of perturbations. The successful first 
autonomous  flight  validates  the  previous  all  stages  of 
attitude control system design.
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