IMAV2017 Bond Graph based design tool for a passive rotation flapping wing

enciennes

d'ingénieurs

centra elille

ULLE

Le Anh Doan*, Christophe Delebarre, Eric Cattan, Sebastien Grondel University of Valenciennes and Hainaut-Cambresis *<u>LeAnh.Doan@etu.univ-valenciennes.fr</u>

Université

de Lille

iemn Institut d'Electronique, de Microélectronique et de Nanotechnologie

UMR CNRS 8520

Content

1

➢Introduction

≻Word Bond Graph for MAV

Bond Graph representations of sub-systems
Motor driver
Geared motor
Wing
Optimization

≻Experiment

≻Conclusion and perspective

Introduction

Usually it is enough to predict the wing kinetics and aerodynamics of flapping MAV by a set of dynamic equations, there are still benefits in presenting the system by the Bond Graph (BG) formalism. Several advantage are listed as follows:

- Making simpler the building of models for **multi-disciplinary** systems.
- Showing up explicitly the **power flows** through the system
- Giving insight into the **inter-relationships** of the **state variables**.
- Making the system **clear** and **straight forward**. This may point out the possibility of **simplifying assumption**.

In this work, we build a BG model for our flapping MAV and use it **enhance** the **system performance** by **optimizing** the **key parameters**.

Introduction

Bio-inspiration: humming bird (wing flaps and rotates during stroke) Principle :

Driven by motors

Added helical spring (the system is capable to work at resonance)

Passive rotational flapping wings (use of flexible parts)

MAV size: wing length: 8.5 cm; maximum chord length: 3.5 cm ,total mass: 2.8g.

Word Bond Graph of our flapping MAV

v, i: driving voltage and current

 τ_l and ω_l : output torque and angular velocity of geared motor

 $\boldsymbol{\theta}$ and $\boldsymbol{\varphi}$: flapping and rotational angles

 P_{in} : supplied power, $P_{mechanic}$: power given to wings

Model is built for ONLY half of prototype (1.4 g)

Motor driver and geared motor models

R₀: the motor winding resistance GY: the motor's armature constant, k_a . J_m : the rotor inertia, b_m : the motor rotational damping TF: the gearbox with the gears ratio, η . R: the gearbox efficiency.

Institut d'Electronique, de Microélectronique et de Nanotechnologie

Wing is presented by two systems of mass spring and damper corresponding to its flapping and rotation movements $t E_3$

 K_s : stiffness of added helical spring; $b_0 = \eta^2 b_m$

Microélectropique et de Nanotechnologi

 K_w and b_w : Wing rotational stiffness and damping related to flexible part

 J_w : wing inertia moment; F_{aero} : aerodynamic forces

Wing model

Values of I_{flap} and I_{rot} can be found from Lagrangian equation describing the wing movements

$$L = T - V = \frac{1}{2} m_w \vec{v}. \vec{v} + \frac{1}{2} J_w \vec{\omega}. \vec{\omega} - \frac{1}{2} K_w \phi^2 - \frac{1}{2} K_s \theta^2$$
$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\phi}}\right) - \frac{\partial L}{\partial \phi} = \vec{M}_{aero_rot} - b_w \dot{\phi} \qquad \qquad \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}}\right) - \frac{\partial L}{\partial \theta} = \vec{M}_{drive} + \vec{M}_{aero_flap}$$

where \vec{M}_{aero_rot} and \vec{M}_{aero_flap} are moment generated by F_{aero} on corresponding axes

Aerodynamic:
$$F_{aero} = F_{trans} + F_{rot} + F_{air}$$
 (Quasi-steady)

Optimization

Objective:

Find values of key parameters for a proper wing kinetics which enhance the *Faero*

Key parameters

- Driving voltage: *v* and frequency: *f*
- Rotational stiffness of helical spring: K_s
- Rotational stiffness of wing: K_w
- Wing offset: d_w

Sensitivity to spring stiffness (K_s) and driving frequency (f)

Sensitivity to wing stiffness (K_w) and wing offset (d_w)

tronique, de Microélectronique et de Nanotechnologie

Sensitivity to wing offset

Optimized parameters

	Parameter	Value	Unit
Motor and motor driver	K _s	2.956e3	mN.mm/rad
	Α	4.27	V
	f_0	10	Hz
Wing mechanical characteristics	K_{w}	220	mN.mm.rad
	d_w	35	mm
	b_w	1.5	mN.mm.s/rad
Wing kinematic	$arphi_{amplitude}$	$\pi \backslash 4$	rad
	$ heta_{amplitude}$	$\pi \backslash 2$	rad
	ϕ_{lag}	$\pi \backslash 2$	rad
Aerodynamic force	F _{peak}	0.03	Ν

Simulation

Diagram of experiment set-up

Experiment set-up

Experiment results

Rotation angle ($\varphi = 45^{\circ}$)

	Parameter	Simulation	Experiment	Unit
Wing kinematic	$arphi_{amplitude}$	$\pi \backslash 4$	$\approx \pi \backslash 4$	rad
	$ heta_{amplitude}$	$\pi \backslash 2$	$\approx \pi \backslash 2$	rad
	ϕ_{lag}	$\pi \backslash 2$	$\approx \pi \backslash 2$	rad
Lift force	F_{peak}	0.017	0.018	Ν

Lift to weight ratio = $\frac{1.8}{1.4}$ = 1.28

Take-off demonstration

As the lift weight ratio is equal 1.28, it is possible to lift the prototype

Conclusion and Perspective

- We can conclude that our flapping MAV generates enough force to lift our prototype, which validates the results of our Bond Graph model.
- A 2g electronic circuit including motor driver, IMU unit, microcontroller, and radio device has been developped by our group.
- Future work focuses on improving the lift force by increasing the wing speed (U) but remaining the same wing kinematic as before.

$$F_{trans} = \frac{1}{2}\rho U^2 c(r) \left[C_l^2(\alpha) + C_d^2(\alpha) \right]^2 dr$$

Electronic circuit (2g)

THANKS FOR YOUR ATTENTION

