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ABSTRACT

We propose a novel UAV path planning and nav-
igation solution for urban environments, inte-
grating radio path loss into a modified A* path
planning algorithm. The proposed algorithm is
based on a fast raytracing algorithm, which en-
ables any 3D scenario to be modeled for spe-
cific radio link conditions. The radio coverage
map is then fed along with an obstacle occupancy
grid to the algorithm to find the optimal path that
avoids obstacles and minimizes path loss. Addi-
tionally, we introduce a smoothing step to gen-
erate UAV-suitable paths while maintaining ra-
dio performance. To verify the implementation,
a test case environment has been proposed in the
campus of the Public University of Navarra. Ac-
cording to the proposed test cases, the overall
path loss is reduced up to 24.12% by using our
methodology.

1 INTRODUCTION AND RELATED WORKS

Autonomous aerial mobility in densely built environ-
ments is rapidly transforming urban transportation, provid-
ing novel approaches to alleviating traffic congestion and im-
proving logistical efficiency. Integrating Unmanned Aerial
Vehicles (UAVs) into urban airspace offers significant poten-
tial for accelerating deliveries, transporting medical supplies,
and enhancing emergency response capabilities.

Effective UAV navigation in urban scenarios presents sig-
nificant challenges due to the presence of obstacles such as
buildings and the need to maintain reliable radio communica-
tion. Ensuring optimal path planning that balances obstacle
avoidance and communication quality is critical, especially
in communication-sensitive tasks. According to [1], nearly a
third of civil UAV accidents experienced communication loss.

A growing body of research examines the integration of
collision avoidance strategies within path planning, ensur-
ing safety during UAV operations. López et al. propose
collision risk management strategies for multi-UAV systems,
where autonomous navigation is critical to avoid obstacles
and maintain airspace safety [2]. The utilization of arti-
ficial intelligence (AI) in path planning can also enhance

*Email address(es): contact author@mail.com

the responsiveness of UAVs to dynamic urban environments
through real-time adjustments and risk-aware strategies, as
demonstrated in [3]. These advancements are increasingly es-
sential as the complexity of urban environments demands so-
phisticated algorithms capable of adjusting to sudden changes
during flight.

The safety of urban air mobility is further compromised
by the risk associated with third-party damage. Path planning
must account for third-party risk while ensuring compliance
with regulations governing UAV operations, particularly in
urban areas crowded with obstacles. Path planning method-
ologies that consider the avoidance of high-risk zones are
gaining attention as effective strategies for mitigating these
risks; Tang et al. introduce a risk modeling approach to in-
form UAV flight paths in urban settings [4].

Traditional path planning algorithms such as Dijkstra’s
[5], A* [6], and RRT* [7] prioritize spatial optimization, of-
ten neglecting radio coverage considerations, which can lead
to signal degradation in dense urban areas. A systematic re-
view on recent advances in autonomous mobile robot naviga-
tion can be found in [8]. Other authors propose radio map-
based UAV path planning [9, 10, 11], but rely on statistical
models or only consider topographic data.

To address this gap, we propose a novel modification of
the A* algorithm that incorporates radio propagation data,
derived from a fast raytracing simulator based on a Multi-
path Radio Tracer (MURT [12]) for 3D urban photogramme-
try data. By integrating path loss (PL) values directly into
the cost function of the A* algorithm, our approach gener-
ates paths that not only avoid obstacles but also maximize
signal strength. In addition, a smoothing step is applied to
enhance the trajectory of the UAV while respecting the radio
coverage requirements. This method ensures efficient UAV
navigation, making it highly suitable for applications such as
UAV-assisted wireless networks and urban emergency oper-
ations. A simplified overview of the proposed contributions,
organized by steps is shown in Figure 1.

2 MATERIALS AND METHODS

Let the environment be represented by a discrete voxel
grid G(i, j, k), where each voxel represents a position in the
3D space. Let path loss PL(i, j, k) be a scalar value associ-
ated with each voxel. The goal is to find the path that mini-
mizes the overall PL between start location s = (xs, ys, zs)
and final location e = (xe, ye, ze).
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Figure 1: Step by step process diagram for obtaining a radio coverage-aware path plan for UAV flight in dense urban scenarios.

PL is the attenuation of the signal as it propagates through
space and is affected by: (a) grid location: the position of
the voxel (i, j, k); (b) transmitter location: the position of
the transmitter (xtx, ytx, ztx) as the source of the radio con-
trol signal; (c) frequency: the frequency of the signal impacts
how it interacts with materials and how it propagates through
space; (d) material properties: different material properties
cause different levels of absorption, reflection, and diffraction
of the signal, based on their electromagnetic properties (di-
electric constant, permeability, conductivity); (e) obstacles:
obstacles between transmitter and receiver (e.g. walls, build-
ings) affect the direct line-of-sight path, leading to additional
losses due to shadowing effects and multipath; (f) interfer-
ences caused by other emitting sources such as other aircrafts.

2.1 Obtaining a PL model for a given scenario
Using Google’s Photorealistic 3D tiles API1, urban sce-

narios can be downloaded for a set of coordinates as .obj
files that may be directly imported into the simulator. The
mesh is then voxelized to calculate the number of points to be
simulated using trimesh [13]. This voxelized map facilitates
obtaining the binary occupancy grid that will later be used to
search for optimal collision-free paths. For fast computation
of PL in all voxels, a modified version of MURT is used [12].
MURT is a Python ray-tracing engine for multipath propaga-
tion of radio waves, with the ray-tracing core engine imple-
mented in Python C++ Extension. This ray tracing algorithm
computes the PL for the most common propagation mecha-
nisms: direct line-of-sight, reflection, and diffraction [14].

The direct PL calculation is based on the Friis transmis-
sion equation[15], and is used to compute the free-space path
loss (FSPL) over a direct line-of-sight path between the trans-
mitter (xtx, ytx, ztx) and the receiver (xrx, yrx, zrx):

PLLOS(d, f) = 20 log10(d)+20 log10(f)−20 log10
(
4π

c

)
,

(1)
where d is the Euclidean distance between the transmitter and
the receiver, f is the transmission frequency in Hz, and c is
the speed of light in m/s.

1Google Photorealistic 3D Tiles official website: https:
//developers.google.com/maps/documentation/tile/
3d-tiles

The reflection PL accounts for the reflection of the sig-
nal off a surface, using Fresnel reflection coefficients. The
reflection coefficient depends on the angle of incidende com-
puted using Snell’s law: n1 sin θ1 = n2 sin θ2, where n1 and
n2 are the refractive indices of air and the material, and θ1
and θ2 are the angles of incidence and transmission, respec-
tively. The reflection coefficient also depends on whether the
wave is transverse electric (TE) or transverse magnetic (TM)
polarized:

R∥ =
n1 cos θ1 − n2 cos θ2
n1 cos θ1 + n2 cos θ2

, R⊥ =
n2 cos θ1 − n1 cos θ2
n2 cos θ1 + n1 cos θ2

(2)
The reflection coefficient is used to adjust the PL equa-

tion:

PLr(dtot, f, R) = 20 log10(dtot) + 20 log10(f)

− 20 log10(|R|)− 20 log10

(
4π

c

)
,

(3)

where dtot is the total distance traveled by the reflected path.
The diffraction PL is computed using the knife-edge

diffraction model, which approximates diffraction around ob-
stacles like edges. The diffraction parameter ν is computed
as:

ν = h

√
2dtx−rx

λdtx−edgededge−rx
, (4)

where h is the effective height of the obstacle relative to the
LOS path and λ is the wavelength of the transmitted signal.
The diffraction loss uses the Fresnel integral approximation:

PLd(ν) = 6.9 + 20 log10

(√
(ν − 0.1)2 + 1 + ν − 0.1

)
.

(5)
Lastly, the total PL is computed considering the contribu-

tions of multiple propagation paths and summing their effects
in the linear domain:

PLtotal = −10 log10

(
n∑

i=1

10−
PLi
10

)
(6)

Summing PL directly (even in the linear domain) is an
oversimplification that ignores the phase-dependent nature of
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multipath propagation (particularly constructive and destruc-
tive interference effects). Averaging out multipath interfer-
ence effects over time when dealing with large distances or
in highly scattered environments is far less precise than con-
ventional raytracing simulators and neglects detailed fading
patterns [16]. However, it allows simulation times to be sig-
nificantly reduced to almost real time. Studies are currently
being conducted to compare the applicability and limitations
of this algorithm against a proven ray tracing simulator [17].

2.2 Finding the optimal path
Given a path P , which is a sequence of voxels P =

{p0, p1, ..., pn}, where p0 = s (start) and pn = e (end), the
total PL can be defined as the sum of PL through all the nodes
in the path:

L(P ) =
i=n∑

i=0

PL(pi), s.t. p0 = s, pn = e (7)

This is the cost function which we mainly aim to mini-
mize. The problem is subject to two constraints:

1. Occupancy constraint: the path can only pass through
free spaces, i.e., voxels that are not occupied by obsta-
cles. This is typically represented by a binary occu-
pancy grid:

G(pi) = 0,∀i = 0, 1, ..., n (8)

2. Movement constraint: The movement between adja-
cent voxels should follow one of the valid moves (e.g.,
six connected neighbors in a 3D space).

Each voxel of the binary occupancy grid can be associated
to a scalar value representing the path loss for a given radio
setup.

There are numerous path finding algorithms in the liter-
ature [18], but the classical A* algorithm [6] generally pro-
vides an intuitive well-performing solution to this problem.
The A* algorithm is a heuristic search algorithm that finds
the path with the lowest cost between two points. Each node
pi is associated with a cost function f(pi), which is the sum
of two components:

1. Cost of travelling from the start node s to the current
node pi: g(pi).

2. Heuristic: an estimate of the remaining cost to reach
the goal node e from the current node pi, denoted as
h(pi). A common choice is the Manhattan distance:
h(pi) = |xi − xe|+ |yi − ye|+ |zi − ze|

Thus, the total cost function at node pi is given by:

f(pi) = g(pi) + h(pi), (9)

where g(pi) represents a combination of the path loss (PL)
and the distance traveled from the start node to the current

node, and h(pi) is the estimated cost to reach the goal node.
We have opted for modifying the conventional step cost g(x)
to consider a weighted combination of distance and PL:

g(xi+1) = g(xi) + (1− λ)− λPLnorm (10)

where λ ∈ [0, 1] is the coverage-over-distance weight param-
eter, and PLnorm is the normalized path loss reward, where
PLnorm = 1 means best path loss and PLnorm = 0 is the
worst-possible path loss value.

This is a classical graph problem of heuristic search.
Dealing with multiple optimization criteria consists of finding
paths that are optimal according to more than one attribute. A
common approach to include multi-criteria into the search is
to define edge costs

∑
i λiwi, with

∑
i λi = 1. Albeit being a

popular approach in videogames, the optimization cost alge-
bra must be generalized to ensure the admissibility of the ex-
ploration algorithm, i.e., the fact that it solves the optimality
problem. As depicted in [19], a heuristic function h : V → A
with h(t) = 1 for each goal node t ∈ T is

• admissible, if for all u ∈ V we have h(u) ⪯ δ(u, T ),
i.e., h is a lower bound, denoting δ(u, V ) as the cost of
the optimal path starting at node u and reaching node v
in a set V .

• consistent, if for each u, v ∈ V and e ∈ E, such that
u

e−→ v, we have h(u) ⪯ ω(e)× h(v).

Therefore, the coverage-over-distance weight parameter
λ should be selected such that both conditions are met to en-
sure admissibility of the optimal path planning algorithm.

The algorithm uses an open list to add nodes from the
start node s up to the goal node e by selecting nodes with the
lowest f(pi). The path is then reconstructed by following the
parent pointers of each node.

The generated path based on contiguous movements in
a grid differs from the usual waypoint-based navigation em-
ployed with UAV. To reduce unnecessary waypoints and al-
low movement in any direction, a path smoothing algorithm
is used. The path smoothing algorithm works by iterating
over the given path and trying to remove unnecessary inter-
mediate points. For each point pi, it checks if the direct line
between pi and a later point pj is obstacle-free and that the
deviation of intermediate points between pi and pj from the
straight line is less than a specified maximum deviation dmax.
The pseudocode is detailed in Algorithm 1.
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Algorithm 1 Path Smoothing Algorithm
Require: Path P , grid G, maximum deviation δmax, buffer

b← 0
Ensure: Smoothed path S

1: S ← [P0]
2: i← 0
3: while i < |P | − 1 do
4: j ← i+ 1
5: while j < |P | do
6: if LINEOFSIGHT(G,Pi, Pj , b) then
7: if j − i > 1 then
8: δ ← j−1

max
k=i+1

DISTFROMLINE(Pk, Pi, Pj)

9: if δ > δmax then
10: break
11: end if
12: end if
13: j ← j + 1
14: else
15: break
16: end if
17: end while
18: Append Pj−1 to S
19: i← j − 1
20: end while
21: return S

The straight line is discretized using Bresenham’s 3D
Line algorithm [20], obtaining all grid points that lie approx-
imately along the straight line between two selected nodes.
The differences in each axis are calculated as follows: ∆x =
|x2 − x1| ,∆y = |y2 − y1| ,∆z = |z2 − z1| The dominant
axis is incremented step by step, while the other axes are in-
cremented according to a continuous error term to approxi-
mate the straight line. Line-of-sight check verifies that for
all points pi(xi, yi, zi) along the Bresenham-generated line,
the grid value at that point is: Gi(xi, yi, zi) ̸= 1 (obstacle).
Lastly, the distance of a point from a line segment is used
to ensure that the new path does not differ from the optimal
PL path, so that the PL estimations remain valid through the
smoothed path.

2.3 Calculating conflicting path segments for enhanced de-
cision making

Given a PL-optimal smoothed path, the PL of each voxel
the path goes through can be obtained thanks to the Bresen-
ham algorithm. The PL for the maximum range can be ex-
pressed as:

PL = GTx +GRx + PTx − SRx − LM, (11)

where GTx is the transmitter gain, GRx the receiver gain,
PTx the transmitter power, SRx the receiver sensitivity, and
LM the link margin. Since the link margin, transmitter gain,
and receiver gain are typically fixed during flight, the trans-

mitter power and receiver sensitivity can be dynamically ad-
justed at specific locations where PL is expected to exceed the
threshold that allows direct communication with the aircraft.
By having this information before the flight, the transmission
and reception power needs can be intelligently planned to
adapt it dynamically during the operation, avoiding saturat-
ing the radio channel in urban environments and increasing
power efficiency.

3 RESULTS AND DISCUSSION

The proposed system has been implemented in
Python and is publicly accessible from the Github
repository (https://github.com/UPNAdrone/
UrbanPathPlanner). The PL at each position is
obtained from the ray launching simulation and converted
into a point cloud matching the voxel grid coordinates.
The binary occupancy grid is also extracted from the ray
launching simulation setup. The voxel mesh is generated
using trimesh. Lastly, pyvista is used for interactive
3D visualization of the original mesh and an interactive slice
map of the radio coverage for the selected height.

To verify the implementation, a test case environment
has been proposed in the campus of the Public University of
Navarra. Following the steps described in the previous Sec-
tions, the coverage map for a 868 MHz transmitter at different
locations has been obtained, and the optimal path has been es-
timated for different paths between different locations of the
campus. Four randomized transmitter locations are selected,
along with two random initial and final locations from a pool
of flyable take-off and landing zones. The results are shown
in Table 4. As can be seen, the overall PL is reduced from
6.21% up to 24.12% by using our methodology.

For reference, in Figure 2 the path selected by A* using
the conventional cost function where only distance is consid-
ered is shown on the left, the path selected using our proposed
cost function (considering PL) is shown on the middle, and
the coverage map for each experiment is shown on the right.

4 CONCLUSION

Throughout this paper, we have proposed a novel UAV
path planning and navigation solution for urban environ-
ments, integrating radio PL into a modified A* path planning
algorithm, including a fast raytracing algorithm, a binary oc-
cupancy grid, and a path-smoothing algorithm. As a comple-
ment to this work, we propose using the expected coverage
information at each point of the path to adjust the transmitter
and receiver power in complex urban scenarios in real time,
providing the aircraft with greater intelligence and autonomy.
Although this work is based on a modification of A*, the al-
gorithm is currently being generalized to any heuristics-based
path planning algorithm.

For future works, we propose using real-time planning
algorithms that allow the flight path to be adapted based on
changing conditions and new information that may be avail-
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Figure 2: Experiments 1, 5 and 8. On the left: path generated by A* without considering PL. On the middle: path generated
considering PL. On the right: PL map slice for reference.

able. Finally, we propose replacing the simplified ray tracing
algorithm with one that considers aspects such as different
materials, interference effects for multipath, and other com-
plex phenomena.
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