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A LiDAR-Based Deep Reinforcement Learning
Autonomous Navigation System in Unknown
Environments
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ABSTRACT

This study develops an autonomous, UAV nav-
igation system based on an end-to-end deep re-
inforcement learning algorithm. While conven-
tional autonomous flight systems rely on con-
structing environmental maps or prior knowl-
edge, the proposed method directly utilizes ob-
stacle range data from a LiDAR sensor, along
with the UAV’s own position and velocity infor-
mation, as inputs to the Proximal Policy Opti-
mization (PPO) algorithm. The policy is trained
to derive optimal flight paths based on real-time
environmental perception, enabling navigation
to target locations without building any environ-
mental maps. To evaluate the effectiveness of the
proposed method, flight simulations were con-
ducted in a physics-based simulator featuring ob-
stacle environments. Furthermore, indoor real-
world experiments confirmed that the trained
policy demonstrated high adaptability and ro-
bustness in actual environments. This study con-
tributes to the realization of autonomous flight in
more realistic and complex environments with-
out the need for environmental maps, laying the
groundwork for future practical applications.

1 INTRODUCTION

In recent years, Unmanned Aerial Vehicle (UAV) tech-
nology has advanced significantly. UAVs offer several ad-
vantages over manned aircraft, including smaller size, lower
cost, and ease of operation. Moreover, UAVs are particularly
well-suited for complex mission environments such as for-
est search and rescue operations [1] and bridge inspections
[2]. However, such environments often present challenges,
including scattered obstacles and unreliable communication
or satellite signals [3]. In particular, efficient obstacle avoid-
ance and rapid target acquisition are critical in search and res-
cue missions. Therefore, navigation capabilities such as au-
tonomous navigation and obstacle avoidance are essential for
next-generation UAV systems [4, 5].

Conventional non-learning-based methods suffer from
limitations such as the need for explicit path planning and in-

*Email address(es): suzuki-s@chiba-u.jp

efficient use of computational resources and memory [6, 7].
To address these issues, a previous study proposed a novel
learning-based and model-free approach to UAV navigation
in unknown and complex environments [8]. This approach
utilizes reinforcement learning, which enables the UAV to
learn from patterns and make informed decisions based on
data [9]. As a result, the UAV can learn optimal control poli-
cies from flight data and reach its destination quickly and
safely while avoiding various obstacles. However, in that
study, both the UAV and obstacle positions were predefined
in simulation. The real-world experiments simply replicated
the simulated environment by placing obstacles at the same
coordinates as in the simulation. Therefore, the experiments
were limited in scope and did not demonstrate the ability to
generalize to unknown real-world environments.

In this study, we envision future applications in complex
environments such as forests, where visibility is poor and the
use of GNSS or vision sensors is difficult. To this end, we ex-
tend previous models by incorporating a LIiDAR sensor and
develop an end-to-end navigation system that enables a drone
to reach target locations while avoiding unknown obstacles
through reinforcement learning and LiDAR. Furthermore, we
verify the effectiveness of the proposed system through both
simulations and real-world experiments, while evaluating its
generalization performance in environments with unseen ob-
stacles

The organization of this paper is as follows. Section 2
describes an overview of the system developed in this study.
Section 3 explains various aspects of the reinforcement learn-
ing design used in the simulation. Section 4 presents the sim-
ulation environment, experimental setup, and discusses the
results and their analysis. Finally, Section 5 concludes the
paper and outlines future work.

2 NAVIGATION SYSTEM USING DEEP
REINFORCEMENT LEARNING

As shown in 1, this study proposes a guidance framework
based on direct policy search and optimization through re-
inforcement learning. The aim of this framework is to en-
able obstacle-avoidance navigation for UAVs to reach target
destinations in unknown environments. In this framework,
low-level angular velocity, attitude, and speed are controlled
by a well-tuned cascading PID, while high-level path plan-
ning and position control are integrated into a control policy.
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Figure 1: RL controller for learning

This control policy is implemented as a fully connected neu-
ral network that takes as input raw sensor measurements from
the LiDAR, together with additional state information such
as the current UAV velocity, the relative position to the tar-
get, and the previous action. The network outputs an action
distribution that represents the probability distribution over
target speed commands. Specifically, the actor network pro-
duces the mean vector of a Gaussian distribution, while the
covariance matrix is fixed to a constant value (0.6). Thus,
the policy can be expressed as

a~mplals)=N(ug(s), 0.61) ()

This design allows stochastic sampling during training to
ensure exploration, although the variance remains constant
throughout learning. Finally, the actual action is sampled
from this distribution and sent to the low-level controller, en-
abling both exploration during training and robust execution
during deployment.

2.1 Low-Level Controller

In this study, a cascaded control architecture combining P
and PID controllers operating at different frequencies is em-
ployed as the low-level control system to accurately execute
the velocity commands from the high-level RL controller. As
shown in Figure 2, the outer loop computes the desired ac-
celeration from the target velocity, which is then converted
into the desired attitude angles in the intermediate layer. The
inner loop subsequently controls the attitude angles and an-
gular rates. The thrust commands in each direction are finally
transformed into motor rotational speeds, enabling stable and
responsive flight control. Each control loop operates at a dif-
ferent frequency according to its responsiveness: 50 Hz for
velocity control, 250 Hz for attitude control, and 1 kHz for
angular rate control.

2.2 High-Level Controller

This study aims to address the problem of high latency
in environment recognition and to maximize the agile ma-
neuverability of UAVs through path planning in complex en-
vironments. To achieve this, we utilize the Proximal Policy
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Figure 2: Low level controller

Figure 3: Drone model

Optimization (PPO) algorithm [10], a type of reinforcement
learning method [11], to process environmental and UAV
state information collected in parallel from both onboard and
external sensors. In the proposed system, the PPO algorithm
generates control commands (i.e., velocity commands) based
on inputs such as the relative position to the target point and
the UAV ’ s velocity, obtained from either the simulator or the
motion capture system, as well as obstacle range data from
the LiDAR sensor. These commands are then directly sup-
plied to the low-level control system in an end-to-end man-
ner.

3 SIMULATION

3.1 Problem Setup

The Gazebo simulator, Robot Operating System (ROS),
and reinforcement learning algorithm run on a desktop com-
puter running Ubuntu 20.04. The main hardware configura-
tion is an Intel i9-14900K CPU, Nvidia 4080 GPU, and 32GB
RAM. In this study, we used the model (Figure 3) from [12],
which was designed for simulation in ROS and Gazebo and
a 2D LiDAR sensor was used to obtain a point cloud of the
forward range except for the backward 90°at a distance of up
to Sm from the UAV.

3.2 Hyperparameter

The hyperparameters in Table 1 were used to learn the
control policies in all designed learning environments.

3.3 State, Action

The input state to reinforcement learning is s =
[sd”,s”el,s”d”,act(t_l)]. Here, s%* denotes the relative
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position to the target point, represented by the differences in
the x and y coordinates (Az, Ay), expressed in the global
frame (i.e., world coordinates). This requires global localiza-
tion, which is provided by the OptiTrack system in real-world
experiments and by the simulator during training. sV¢ is the
velocity of the UAV in the x and y directions, and s'*#°" is the
range data from the LiDAR sensor, consisting of 417 points.
In addition, act, the output of the network one step before, is
added as a state quantity to stabilize the output of the network.
Here, the network output, action act, is a velocity command
to the low-level controller in the x- and y-directions. In or-
der to ensure stable learning, the state variables S fed into the
network are normalized within the range of -1 to 1.

3.4 Neural Network

For the actor network and the critic network, two neural
networks with a three-layer network structure with the same
number of parameters and structure shown in Figure 4 were
prepared. Both neural networks use the LeakyReLLU func-
tion as the activation function and are connected between the
input and hidden layers and between the hidden and output
layers.The input layer takes S in Section 3.3 as input in both
networks. The difference between the actor network and the
critic network is the output layer: the output layer of the ac-
tor network has ¢ = 1, while the output layer of the critic
network has ¢ = 2.

3.5 Rewards

The reward function is a measure of the quality of one
step of an action, and both the value function and the action
value function are built on this basis. Therefore, the design of
the reward function must be able to enable the control policy
to avoid obstacles and fly to the destination; the PPO algo-
rithm uses a clip function, and the size of one policy update is
constrained by the hyperparameters. Therefore, to guarantee
stable convergence and avoid local optima, the reward func-
tion should be continuous and differentiable. Based on these
considerations, we designed a synthetic reward function with

Parameter Name Value
Control period 0.02s
Max steps 2 x 108
Max step per episode 800
Dimension of states 423
Dimension of actions 2
Timesteps per batch 4056
Discount rate of reward 0.99

Parameter update times per iteration 20
Learning rate 3x1073

e of clip function 0.2

Covariance matrix element value 0.6

Table 1: Hyperparameter
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Figure 4: Network structure

the following five components and their weights.

Ryl = Rgis + Ry + R, + Rgoal + Rng )

The first term Ry, is defined by Equation 3 based on the
distance Dis, between the UAV and the target location at the
current step. This term rewards the UAV based on the amount
of change in the distance between the UAV and the destina-
tion, and a positive reward is given when the UAV approaches
the target.

kdis(DiSt—l — DiSt), if DiSt_l - DiSt >0
Rgis = .
0, otherwise

3

R, is a constraint on the horizontal speed, denoted by

Equation 4, which provides a negative reward if the horizon-

tal speed of the UAV v, exceeds speed,,,. In this study, we
limit it to 3m/sec.

R, — 0, if v, < speed,,, @
k’ll(|vt - speedmaxD?

R, is a penalty based on the UAV’s velocity change, as
expressed in Equation 5. It is defined as the sum of the abso-
lute differences between the UAV’s velocities in the X and Y
axes at time ¢ and those at time ¢ — 1. This term suppresses
abrupt velocity changes and promotes smooth and stable mo-
tion, while contributing to reduced energy consumption and
improved learning stability.

if v, > speed,,,
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Ry = ka(Jva@) — ve—1)l + [vy) — vye—nl)  5)

The Ryoal is represented by Equation 6, which gives an
additional positive reward if the target point is reached within
aradius of 1 meter from the target point and a negative reward
if the target point is moved away from after the target point
is reached. This reward formulation is designed to encourage
the agent to not only reach the target point but also to remain
at the target location.

Kieave if leave the destination

kooar  if reach the destination
Rgoal = { gon (6)

Ry, provides a large negative reward as punishment if the
UAV collides with an obstacle or reaches the maximum num-
ber of time steps in an episode without reaching the target
point, as expressed in Equation 7. The episode is terminated
when these conditions are reached in order to increase learn-
ing stability and efficiency.

k if collide with obstacl
Rng:{obs if collide with obstacle 7

kstep if max step

The weights of each reward function are as shown in Ta-
ble 2.

4 EXPERIMENT
4.1 Experiment Environment

Experiments were conducted in an indoor environment,
as shown in Figure 5. The UAV used in the experiment was
the one shown in Figure 6. The size of the UAV is about
45 cm X 45 cm and it is equipped with a LiDAR sensor and
an on-board computer. The onboard computer was a Jetson
Orin Nano from NVIDIA Corporation. Motion capture by
OptiTrack was used instead of GNSS to acquire self-position.

4.2 Learning

In this study, since the validation experiments using the
actual UAV were conducted indoors, we first examined the
impact of environmental elements such as walls, excluding
obstacles, on the learned policy. For this purpose, we con-
structed four types of learning environments that simulate in-
door conditions. These included enclosed environments with

kas 2.5
ky 0.1
kq 0.01
kgoal 10
kleave -3
kobs -5
kstep -3

Table 2: Weights of reward function
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(a) envl (b) env2~env4

Figure 5: Experiment environment

Figure 6: UAV for experiments

dimensions of 6m x 6m, 9m x 9m, and 12m x 12m, as well as
an open environment without any walls, as illustrated in Fig-
ure 7. The position of the wall opening was fixed at z = 1.0
and y = 0.5 to 2.0. The effective utilization rates of the
LiDAR sensor in each environment were approximately 100
percent in the 6m x 6m environment, between 70 and 90 per-
cent in the 9m X 9m environment, and around 50 percent in
the 12m X 12m environment, as shown in Figure 8. To as-
sess the generalization performance, we conducted 100 trials
under each training condition using the random environment
shown in Figure 10. The success rates were 65 percent for
the policy trained in the 6m x 6m environment, 33 percent for
the 9m x 9m environment, and 11 percent for the 12m x 12m
environment. In addition, the policy trained in the open en-
vironment was able to reach the target when tested under the
same open conditions, but failed to do so in any of the in-
door environments. These findings indicate that a higher uti-
lization rate of LiDAR data during training is associated with
improved generalization performance in unfamiliar environ-
ments.

Based on these results, for the verification experiment
with the actual device, training was conducted in a Gazebo
environment like that shown in Figure 9, where the wall dis-
tance, start position, target location, and gap position were
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Figure 8: Number of valid data for lidar data in the study

randomly varied as shown in Figure 10.

4.3 Result

To validate the performance of the proposed algorithm in
a real-world environment, we designed the tasks of avoiding
two cylinders and moving through three different gaps be-
tween two walls, as shown in Table 3. The UAV performs the
tasks of avoiding obstacles or passing through gaps, reach-
ing the destination, and hovering. The low-level controller
runs on Pixhawk hardware, while the high-level control pol-
icy runs on a Jetson Orin Nano. The data nodes of the motion
capture system run in ROS and communicate via a network
interface. The UAV is then controlled to perform its mission
in the real environment using the policies learned in the Fig-
ure 10 environment. An overview of the system used in this
experiment is shown in Figure 11.
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Figure 9: Simulation environment

The results of the position and velocity are shown in Fig-
ure 12 and Figure 13, respectively. The actual trajectories of
the UAV are shown in Figure 14, and all experiments were
conducted using the same policy. Results showed that the
UAV was able to avoid obstacles and hover at the target point
in all four environments using the same policy. This experi-
ment demonstrates that in indoor environments, our method
can control the UAV to complete the task of navigating com-
plex real-world environments while sensing the environment
using LiDAR sensors. In addition, by learning in a space
surrounded by walls on all four sides with randomized wall
distances and obstacle locations, we were able to obtain some
generalization performance against obstacles, which was con-
firmed in an actual UAV. In particular, the experimental re-
sults of env1 showed that the robot was able to avoid obstacles
with configurations and shapes that were not present in the
learning process, confirming its generalization performance
that can cope with unknown environments.

5 CONCLUSION

In this study, we applied deep reinforcement learning with
end-to-end mapless navigation using LiDAR sensors in en-
vironments with unknown obstacles. While previous stud-
ies faced challenges in generalizing to new obstacle layouts,

start goal(r=1.0) | obs(r=0.3) gap
envl x=-2.0 x=2.0 x =0.25 -
y=0 y=0 y=0,0.6
env? x=-1.5 x=25 — x=0.5
y=-1.0 y=0 y=-05~1.0
x=-1.5 x=25 x=0.5
env3 10 y=0 ~ y=-05~ 1.0
envd x=-1.5 x=2.0 - x=0.25
y=1.0 y=0 y=-15~0

Table 3: Experiment environment
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Figure 10: Randomized environment

Figure 11: Real drone system

our approach successfully achieved navigation adaptable to
different obstacle placements, as confirmed through simula-
tions and real-world experiments. We also investigated the
impact of the effective data ratio from LiDAR on policy gen-
eralization. However, several issues remain. In real environ-
ments, elements such as luggage not present in simulations
act as noise and degrade performance. Additionally, since
LiDAR operates in two dimensions, high-speed navigation
limits ground detection, reducing speed. The current experi-
ments were based on simple obstacle layouts, so future work
will explore more complex scenarios. Moreover, as the UAV
currently relies on external sensors for localization, we plan
to implement internal sensor-based estimation for onboard-
only operation. Future evaluations will also include outdoor
environments such as forests.
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