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ABSTRACT

In this work, we present a reinforcement-
learning-based approach for optimal guidance in
landing a Variable Skew Quad Plane (VSQP) on
a moving ship platform. We develop a reinforce-
ment learning framework that computes the op-
timal acceleration inputs for the inner adaptive
incremental nonlinear dynamic inversion-based
controller. Through simulations, we evaluate the
performance of various reward function combi-
nations based on the key metrics: touchdown ve-
locity, deviation, and duration. With the opti-
mal reward for the given landing problem, we
validate the approach on real ship data. Our
results indicate that the reinforcement-learning-
based approach outperforms the benchmark lin-
ear controller in achieving smoother and safer
landings even under complex motion character-
istics.

1 INTRODUCTION

Unmanned Aerial Vehicles have found use in a wide va-
riety of applications, including environmental monitoring,
search and rescue missions, and surveillance [1, 2] thanks to
their capability to cost-effectively collect real-time data while
being able to operate in remote and hazardous locations. And
while sea environments constitute a large part of the planet,
operations are often limited since the recovery of the UAV on
the ship requires advanced autonomous landing technology.

The complexity of autonomous landing is a challenging,
high-performance task. A big part of the challenge comes
from the unpredictable motion under the effect of external
disturbances and uncertainties [3]. In the case of ship land-
ings, the unpredictability of the sea environment adds an extra
layer of difficulty.

An autonomous landing problem has been extensively
studied [5, 6, 7, 8, 9, 3] in terms of its sub-phases: target
detection, relative state estimation, tracking and landing. The
majority of studies rely on vision-based systems for target de-
tection and relative state estimation tasks, with methods dif-
fering according to the characteristics of the landing platform
(static vs dynamic). Vision-based systems are appreciated in
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maritime operations [10, 11] since reliance on inertial navi-
gation alone is not feasible.

Concerning control, autonomous landing has relied on a
variety of methods, ranging from PID controllers [8, 12, 13],
adaptive control techniques [14, 15], robust flight [16] to
model predictive control [17, 18] methods. While these tech-
niques are effective in certain cases, they come with their own
set of challenges. Classical feedback controllers often face
problems with robustness due to dependency on fixed gains
and perform poorly under the effect of external disturbances
[19]. More advanced controllers like model predictive and
robust flight control techniques require a detailed model and
obtaining a perfect representation of the real-world system is
often challenging. Moreover, the full formulation of the land-
ing as an optimal control problem is numerically heavy. This
highlights the need for more efficient and robust solutions in
autonomous landing.

Reinforcement learning as a machine learning algorithm
has gained significant popularity in recent years and found
use in solving guidance and control problems [20, 21]. While
optimal control techniques often require complete knowledge
of the system dynamics, reinforcement learning is able to
learn from raw environmental data without having prior in-
formation on the system and adapt to unknown dynamics and
unpredictable changes in the environment.

In this work, we use reinforcement learning, particularly
Proximal Policy Optimization (PPO), to develop an optimal
guidance policy for landing the Variable Skew Quad Plane
(VSQP) on a moving platform (ship). We feed the opti-
mal control inputs (accelerations) and feed them back into
an adaptive incremental nonlinear dynamic inversion-based
controller, which includes a Weighted Least Squares (WLS)
based optimization routine for control allocation. We account
for the motion in the z-direction and search for the best ob-
jective function to minimize landing impacts and lateral off-
set within a given time. Finally, we test our approach with
real-world ship data and compare it with a PID controller.

2 RELATED WORK

Reinforcement learning has become an effective approach
for solving autonomous landing problems. One of the earli-
est studies by Polvara et al. [22] utilized Deep Q-Networks
(DQN) for landing on a static platform using low-resolution
images coming from a downward-facing camera. Later, Lee
et al. [23] developed an actor-critic framework where they
included a PID-based inner attitude controller, a ground-
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(a) VSQP in quad-mode configuration.

(b) VSQP in transition
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(c) VSQP in forward flight configuration.

Figure 1: The configuration modes of the VSQP: Variable Skew Quad Plane [4]

looking camera model, and a laser rangefinder to enable pre-
cise autonomous landing on a static target. The challenge of
landing on a dynamic target was addressed by Rodriguez et
al. in [24], where they used Deep Deterministic Policy Gra-
dient (DDPG) with Gazeebo. Xie et al. [25] later divided
the problem into two parts: perception and relative pose esti-
mation on the one hand, and trajectory optimization and con-
trol on the other. In contrast to the previous studies, they
also accounted for sensor noise, intermittent measurements,
randomness in UAV movement, and incomplete or inaccurate
observations. Moreover, they explored a hybrid approach that
combined reinforcement learning with heuristic methods for
tracking and landing tasks.

In the context of ship landing, Saj et al. [26] claim that
previous studies lack the robustness component, which leads
to the development of not fully efficient algorithms for ship
landing problems. They adapted the twin delayed DDPG
(TD3) algorithm for a vision-based ship landing. To over-
come the reality gap problem, they applied a domain random-
ization approach [27] through a variation of environment pa-
rameters. They showcased the superior performance of their
framework over a PID controller in the real-life tests made
under varying wind conditions. These studies collectively
highlight the capabilities of reinforcement learning in solv-
ing autonomous landing problems.

3  VARIABLE SKEW QUAD PLANE (VSQP)

The Variable Skew Quad Plane is a hybrid UAV designed
by the Micro Air Vehicle Laboratory (MAVLab) at TU Delft.
The VSQP has two modes of operation - hover and cruise.
It is controlled through the skew angle A. In hover mode
(A = 0deg), the drone operates as a quadrotor with an extra
pusher propeller. In the cruise mode (A = 90), it operates as
a fixed-wing aircraft and achieves forward speed with a push
propeller located at the tail. The VSQP, with an intermedi-
ate skew angle, resembles an Oblique Flying Wing (OFW)
plane. This design offers better gust rejection in hover mode
as the wing hides against the fuselage and lower drag during
cruise mode since the hover motors hide in the fuselage. The
configuration modes of the VSQP are shown in Figure 1.

The guidance and control model of the VSQP incor-
porates an Adaptive Incremental Nonlinear Dynamic In-

version (ANDI) controller with the Weighted-Least-Square-
based control allocation, as the VSQP is an overactuated sys-
tem [28]. This controller is implemented as a “one-loop” ar-
chitecture as opposed to cascaded controller approaches in
previous ANDI work [29]. This allows the control to dis-
tribute the load optimally throughout the control surfaces of
the VSQP. The diagram showing the overall guidance and
control scheme of the VSQP is given in Figure 2. Within
the G&C structure, the WLS block takes the virtual control
parameters calculated by the error controllers for the position
and attitude. The reference model is used to shape the given
desired setpoint into reference signals that are feasible for the
platform.

Desired
Reference Model .
o Waypoint
Position ..
Position

Error Controllers [ WLS —'l Actuators I—'I Plant

Reference Model
Attitude

Figure 2: Adaptive Incremental Nonlinear Dynamic Inver-
sion (ANDI) controller with WLS-based control allocation

To perform the optimal path planning, the guidance
scheme of the VSQP is replaced by a reinforcement learning-
based model to learn the optimal acceleration setpoints. The
simplified diagram for the reinforcement learning framework
is shown in Figure 4. The reinforcement learning framework
contains a deep neural network structure and takes the states
of the VSQP as inputs and generates the corresponding opti-
mal acceleration inputs, which are denoted as ag4es. The re-
sponse of the vehicle with its ANDI controller, symbolized as
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Qreal, corresponds to the actual accelerations resulting from
the applied control inputs. To effectively map the given com-
mands to the actual accelerations and use them in the training
process, a simplified model for both the UAV and the con-
troller is necessary. While previous ANDI work [30] suggests
a first-order transfer function for normal quadrotor dynamics,
the optimization routine in the VSQP is more complex.

In addition to the existing actuators of the VSQP, the WLS
also uses pitch and roll angles as its virtual control inputs
within its optimization routine, which are later fed back to
the attitude reference model. These Euler angles have the
slowest response among all actuators, therefore limiting the
vehicle’s response to the given control input. A simplified
model for the VSQP is therefore obtained by modeling the
attitude response of the complete ANDI+VSQP. The result is
a transfer function that maps the desired accelerations to the
actual ones. It was mathematically derived from the Simulink
model and is given in Eq. 1.

2065°4-861.15%4-2875+95.68 (1)

ACCtf = $6120.2255+143.352 468255+ 102152 +340.25+95.68

The response of the transfer function to a step input is
shown in Figure 3. To improve the numerical stability, an
equivalent fourth-order model is used to avoid the numerical
issues.
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Figure 3: Response of the VSQP to a step input

4 REINFORCEMENT LEARNING BASED PROBLEM
FORMULATION

Reinforcement learning has an agent interact with an en-
vironment to take actions that maximize a cumulative reward
over time. At each time step ¢, the agent receives a state
s¢ from a state space S and chooses an action a; from an
action space .4, based on a policy 7(a; | s¢). The policy
could be stochastic 7w(a | s), with a probability associated
with each possible action, or deterministic 7(s), indicating
the agent’s decision-making process from states to actions.
The agent receives a reward r, for its actions and transitions to
the next state s;1, according to the reward function R (s, a)
and state transition probability P(s¢11 | st,a¢). This pro-
cess continues until the agent reaches a terminal state and
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restarts. The cumulative reward is defined as the return func-
tion Ry = Y o, ¥*rs4y discounted with a factor v € (0, 1].

The expectation of cumulative reward for a specific policy
is represented as V'™, the value function, and is given as:

Vﬂ (St) =K [Rt | St, a4y = T (St)] (2)

The action-value function Q™ in Eq. 3 is equivalent to the
value function for every action-state pair (s, at).

Q™ (s,a:) =7 (sg,a8) + 720 (5¢41 | 56,06) V™ (5641) ()

The goal is to find the optimal policy 7* as in Eq. 4 that
maximizes the value function. The corresponding value func-
tion is called the optimal value function.

7 = argmaxV™ (s¢) 4
Policy gradient methods are a class of reinforcement
learning algorithms that are particularly effective in environ-
ments with continuous state and action spaces. In a policy
gradient algorithm, the policy is presented as my where 6 are
neural network parameters. Given that the expected return
is J(0) = Eg4[Vz,(s)], the goal is to find optimal parame-
ters 0* = argmaxy J(#) through a gradient ascent update
Op+1 = O + axVJ (0)) where «y is the learning rate. The
gradient of J(6) is calculated using the policy gradient theo-
rem, which is given by:

v‘](a) = ETFG [Qﬂ'e (Sa a)v log 71—9(57 a)] (5)

There are many types of policy gradient algorithms, such
as TRPO [31], SAC [32], and PPO [33]. In this work, we
adapt the PPO algorithm to solve the landing problem of the
VSQP on a moving platform. PPO is a highly stable and ef-
ficient policy gradient algorithm that introduces techniques
like clipping the objective and using an adaptive penalty co-
efficient to improve the stability and efficiency of the learning
process [33]. It employs an actor-critic model where the actor
takes output actions and the critic evaluates its performance.

PPO uses the following objective:

LEMP(9) = R, [min (rt(ﬂ)zzlt, clip (r¢(8),1 — e, 1 +¢) At)] (6)

To(ai|se)

where 7,(0) = o

represents the probability ratio of

the action under the new and old policies, Ay is advantage at
timestep ¢, and € is a hyperparameter that defines the clipping
range to keep the ratio within reasonable bounds.

Problem Formulation

The UAV landing problem can be described as a Markov
decision process (MDP). Typical MDP can be defined as a
four tuple (S, A, R, ), where S is the state space, A is the
action space, R(s, a) represents the immediate rewards, and
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Figure 4: Reinforcement learning framework integrated into the existing control structure

Q) is the observation space. Based on this model, the landing
problem is formulated as:

1.

State Space S 4: The state space S, represents the states
of the UAV. Give the 4th order transfer function model
of ANDI+VSQP, the state space for the drone consists
of extra three acceleration derivatives aq, Gq, @4 on
top of the position p,, velocity v, and acceleration
ay components:

S= {pd’vdaadaddaa’dv a'd} (7)

State Space S: The state space S, represents the states
of the ship platform. It consists of platform position pj
and velocity v, components:

Ss = {p,, vs} (®)

The motion of the ship is characterized by sinusoidal
signals that are governed by specific frequencies, am-
plitudes, and initial conditions. The definitions for po-
sition and velocity are defined as:

pi(t) = Apisin (wit + &) + Pinit,i +&i(t) (9
v;(t) = wiAp i cos (wit + ¢;) +ni(t)  (10)

where A, ; is the amplitude of the sinusoidal motion for
each axis ¢, w; denotes the angular frequency, ¢; is the
phase shift, and finally 7;(¢) captures the random walk
component. This random component helps to simulate
unpredictable movements or external disturbances af-
fecting the ship’s motion.

Observation Space (): The input to the reinforcement
learning algorithm is given as the relative position p,
and velocity v, components of the drone with respect to
the moving platform, along with the real acceleration
a4 of the drone:

SS = {p'r'av’l‘aad} (11)

4. Action Space A: The action space Eq. 12 A consists

of desired acceleration components a,,, ., Ge,, ., Ad,,,
determined based on the inputs of the reference model:

A= {a'ndes ) Qegess a'ddes} (12)

Within the reinforcement learning framework, the con-
trol input parameters a,, and a. are used to steer the
drone onto the platform, while a4 is mainly used to find
the right time to accomplish landing.

5. Reward Function R: Designing a reward function that

is suitable for a landing on a moving target problem is
not a straightforward task. Several options are defined
and we classify the reward function in terms of three
components: position tracking, velocity tracking, and
collision penalty.

(a) Position Tracking: The reward function R, in
Eq. 13 is designed for tracking of the moving plat-
form by the minimization of the deviation in both
vertical and horizontal planes relative to the tar-
get:

RP =k |pr0]dv | — k1 |p?”newv |

+k2‘ (13)

Proa, || - k2||prnewh

The parameters p,,, —and p, .~ represent the
old and new vertical distances; py,,, and pr,,,
represent the horizontal distances between the
UAV and the target, respectively. The term
|Prog, | = [Pra, | Tewards the agent based on
the absolute difference in vertical position and
[Proewy, | = [[Pryes,, || uses the norm of both x and
y components together to compute the difference.
The relative importance is defined by the weights
ky and ko, which are determined to be 2 and 1,
respectively.

(b) Velocity Tracking: The velocity reward R,, is de-
signed to ensure that the speed of the UAV is ad-
justed in a way that it slows down while it gets
closer to the ship. Similarly to the position re-
ward R,,, the parameters vy, and vy, represent
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the old and new relative velocities in the verti-
cal plane, whereas vy, and v, represent the
corresponding parameters in the horizontal plane.
The reward function is dynamically scaled by a
factor that depends on the drone’s height above
the ship.

hi+h
Rv = kl (/UroldV - ’U"'newy) ( th—if_ )

+ ko (vmdh - Urncwh) (ht}:_ h) (14)

t

(c) Collision Penalty: The collision penalty is de-

signed to directly penalize the UAV’s speed at
the touchdown point. To assess the performance
of the landing, two different reward functions are
considered based on relative velocities and abso-
lute velocities.
The first reward function R, as given in Eq.15 is
defined as the relative velocity collision penalty
that penalizes the relative velocity of the UAV
with respect to the platform. The constants k3 and
k4 allow tuning the sensitivity of the penalty to
the different directional velocities, avoiding lat-
eral collisions as well as maintaining a safe de-
scent speed.

R, =k; ‘Urnewv ’2 + Ky Hvrnewh (15)

The second collision reward R.,, absolute veloc-
ity collision penalty, focuses on the vertical veloc-
ity components at the point of landing. The vq,,,
indicates the vertical velocity of the drone, and
Up,e, T€fers to the platform’s vertical velocity.

2 4 ke v, | (16)

Rcz = ks ’Udnewz

These collision rewards only get active at the fi-
nal point of landing. This approach resembles a
form of Cliffwalk [34] since the agent does not re-
ceive intermediate rewards till the point of touch-
down. While this makes the search for an optimal
policy more challenging, the agent gains greater
freedom in its actions as opposed to the reward
functions used in the previous studies [24, 26, 25],
which defined a separate reward function for each
altitude range.

These reward functions are strategically combined to
identify the most effective objective for the given problem.
The table 1 outlines the combinations used in this study. Re-
ward R1 only consists of the position reward Iz, encourag-
ing the agent to minimize the difference between the old and
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new positions. R2 and R3 incorporate the collision penalties
R, and R., along with the position reward. Lastly, rewards
R4 and RS combine everything, including the velocity reward
R, with the collision penalties.

Table 1: Reward combinations used in the study

Reward Number  Combination
R1 R,
R2 Ry, +R¢;
R3 R, +R.,
R4 Ry, + Ry + R,
RS Ry + Ry +Re,

5 TRAINING

For training the reinforcement learning framework, a gym
environment including classes for both the UAV and the ship
platform dynamics was created in Python.

The ship model uses sinusoidal signals with mixed fre-
quencies and random walk components to simulate a wide
variety of signals that resemble real ship motion. This variety
in the ship motion is critical to prevent overfitting during the
training process. In alignment with the observation space €)
from Eq.11, the relative position, relative velocity, and real
drone accelerations are given to the model at every time step.
The outputs are the desired accelerations, which are later used
to propagate the states of the drone.

Since the ship is moving at a slow constant speed and
this study focuses on relative landing control, the constant
forward motion of the ship is ignored, and only the wave-
induced hard-to-predict random motions are modeled. In the
horizontal plane, the relative navigation of the UAV is evalu-
ated by selecting different UAV initial conditions. The train-
ing process is repeated for all the combinations indicated in
Table 1. The simulations are ended when any of the follow-
ing conditions are met: a ground collision occurs, the drone
exits the designated area, the maximum number of steps is
reached, or the drone achieves a landing condition of being
below 0.1m above the platform.

5.1 Initializing the drone dynamics

For training, a vectorized environment is used to run sev-
eral environments in parallel. To do so, initial drone states are
uniformly sampled from the following integrals:

pa € [—1,1] + pa,
va € [-05,05  (17)
ag € [~0.05,0.05]

pe S [717 1] ere!
ve € [—0.5,0.5]
ae € [~0.05,0.05]

pn S [717 1] +pn,
v, € [=0.5,0.5]
an € [—0.05,0.05]

Here, py,,, Pe,;, P4, Tepresent the initial position elements
of the drone. The parameters p,,, and p., are chosen in a
way that the drone aligns itself with the platform and pg,
is determined to be 10 meters as the starting altitude at the
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Figure 5: The analysis of reward combinations in terms of performance metrics

beginning of the training procedure. Additionally, nine ad-
ditional state elements which are the derivatives of acceler-
ations (aq, G4, @ 4) up to a third degree are also initialized
with a value of zero with the given state elements.

5.2 Initializing the ship dynamics

Similarly to the drone model, ship states are uniformly
sampled from the intervals:

A, € [-0.1,0.1]
fz €[-0.1,0.1]

A, €[-0.1,0.1]
fy € [-0.1,0.1]

A, €[-0.1,01]+ A,

f2 €1-0.1,0.1] + f. (18)

For the ship, wave parameters amplitude A and frequency
f are used to initialize the sinusoidal motion characteristics.
To create variation in the generated sinusoidal motions addi-
tional parameters such as mix frequency f;,;,, random walk
step size rwys, and low pass filter coefficient «v are also given
as an input to the model. The values for these parameters are
determined as 0.2, 0.01, and 0, respectively.

6 EVALUATION

The performance of reward functions from Table 1 is as-
sessed based on three key metrics: touchdown velocity, devia-
tion, and duration. This evaluation is completed for a specific
test case scenario defined as follows. A sinusoidal wave in
the z-direction is generated using the characteristics:

A, €[-01,01]+ A, f.€[-0.1,01]+f (19

The touchdown velocity is a critical metric for assessing
the safety and smoothness of the UAV’s landing. Too high ve-
locities result in UAV damage or even a crash. The deviation
metric measures the accuracy of the UAV’s landing by eval-
uating how close the UAV lands to the intended target point.

Lastly, time to collision represents the duration that a landing
takes.

The assessment of the drone is visualized with box plots
in Figure 5. The left subplot shows the distribution of touch-
down velocities for each reward combination. The y-axis rep-
resents the vertical descent velocity vg4, in meters per second
(m/s), and the x-axis lists the reward combinations (R1 to R5)
and the final (RS with tuned coefficients). R1 has the highest
median touchdown velocity at around 3.0 m/s. In contrast,
the value of the median velocity drops significantly for R2
and R3, while the latter has a slightly lower median value.
This shows that having a collision penalty, either absolute or
relative, has a significant effect in reducing touchdown veloc-
ity. With the addition of the velocity element in R4 and RS,
the velocity values further decrease, with touchdown veloci-
ties close to zero, indicating the landing is extremely smooth
and controlled.

The middle box plot shows the deviation from the target
center (d,,) in meters for each reward combination. While
the deviation values are all within landing margins, for re-
wards R2, R3, and R4, the deviation is less, while R1 and
RS show that the drone deviates a bit more from the center.
Finally, the right plot shows the landing duration in seconds.
As expected, the duration gets longer as the velocity values
decrease, resulting in a less aggressive flight.

While different performance parameters can be of impor-
tance, in practical flights, more importance is put on having
lower velocities. Based on the results given in the top-left fig-
ure, the reward function RS, which uses the absolute veloc-
ities of the drone, has been identified as having the optimal
form for the given problem.

Further analysis was conducted to determine the effect of
coefficients (k5 and kg) on the UAV’s performance, which
was previously given a value of 1. Both coefficients k5 and
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Figure 6: The analysis of reward combinations in terms of performance metrics

kg are tested with the values of 10, 25, 50, 75, and 100, re-
spectively. The results are given in the Figure 6, which show
the effect of the different coefficients on the UAV’s perfor-
mance, for the chosen reward combination.

The first plot on the left again shows the distribution of
touchdown velocities, but this time for the same combina-
tion, RS. Among the coefficients, k:100 achieves the lowest
median value of a mere 0.01 m/s. It was also observed that
much higher values than 100 either lead to extremely long
flights or no landing at all. Specifically, high penalty values
for the collision make the drone extremely hesitant to take
any action. These are left out of the plot as they were deemed
unsuccessful.

The graphs indicate that coefficients between 10 and 100
provide a good balance in terms of performance metrics, but
do not show a very linear trend. Considering the negative ef-
fect of higher penalties on performance and the low deviation
values, the coefficient k:25 was chosen for R5. The final form
of the reward function is thus given as:

sz'nal = ’pmdv

- |p7"new,u + 2 Hp?‘nldh -2 Hprnewh

hi +h

he +h
+ 2 (’UToldh - /UT'newh) < th >
t

2

(20)

+ 25 |vd ? +25 |vpmz

new ‘

7 VALIDATION

To determine if the reinforcement framework could suc-
cessfully land on waves, validation with real ship data is per-
formed. Real ship data was gathered at a frequency of 5 Hz

and interpolated using a quadratic fit to the 10 Hz used in
previous simulations. A sample portion is shown in Figure 7.

10
position interpolated position
8 velocity interpolated velocity
. 6 W
<
a
a
£ 4
7
2 4
0 4

0.0 25 50 75 100 125 150
Time (s)

Figure 7: Measured ship motion data for validation

The performance of the reinforcement learning frame-
work was tested on the real ship data using the final form of
the reward function (see Eq. 20). Additionally, the RL frame-
work was compared against two benchmark controllers.
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Figure 8: Validation box plots

Figure 8 shows the comparison with PID-based con-
trollers that were designed for position and velocity track-
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Figure 9: Validation trajectories

ing, namely, PID,..; and PID,;s. The former takes the rela-
tive velocity of the drone with respect to the platform, while
the latter generates velocity commands based on the position
tracking only.

The left plot in Figure 8 compares the vertical descent
velocities (vq,) of the RL framework and the two PID con-
trollers. While the figures show that PID,..; works slightly
better than the PID,; in terms of downward velocity, the RL
framework achieves the lowest median velocity among them,
with values close to 0.1 m/s. As the limit for damage sits at
around 0.5 m/s, these results indicate that RL shows a supe-
rior performance with much smoother landings, even leaving
some margin in velocity. The statistics for the reinforcement
learning and PID controllers are given in Table 2.

Finally, Figure 9 visualizes the trajectories of a drone con-
trolled by both PID controllers (PID,.;) and the reinforce-
ment learning framework using real ship data not seen during
training across six different scenarios. The y-axis indicates
the height (in meters) and the x-axis shows the duration of
the flight (in seconds). The trajectories are color-coded to in-
dicate the downward velocity (vq4_) of the drone, with green
representing low velocities and red representing high veloci-
ties. The impact velocities are indicated for both controllers.

The trajectories controlled by the PID consistently result
in landings with high touchdown velocities, despite having
relative velocity control. In each scenario, PID tries to slow
down when approaching the ship, but does not always suc-
ceed in adapting to the ship’s motion due to its feedback con-
trol structure and UAV inertial. In contrast, the reinforcement

learning framework displays significantly different landings.
It closely tracks the wave patterns of the ship and appears to
wait for good conditions before landing. It consistently shows
lower touchdown velocities with stable and controlled flights
as opposed to the PID control that often results in impact ve-
locities over 0.5m/s instead of successful landings.

Table 2: Summary Statistics for RL and PID Controllers

Label Min Max Mean Std Dev
RL-vz 0.0176 0.2265 0.1017 0.0453
PID,.¢;-vz 0.0617 1.3303 0.4779 0.2459
PID.ps-vzZ 0.0325 1.2563 0.4828 0.3082
RL-xy 0.0258 0.1320 0.0692 0.0243
PID,-xy  0.0001 0.0433 0.0073 0.0091
PIDgps-xy  0.0002 0.0453 0.0084 0.0097
RL-ttc 12.4600 19.7600 15.3107  1.6582
PID,.¢;-ttc 5.9500 14.0100 9.0416 1.9637
PIDps-ttc 5.700 12.990 8.5610 1.7039

8 CONCLUSION

This study demonstrated the effectiveness of a reinforce-
ment learning-based framework for the autonomous landing
of the Variable Skew Quad Plane on a moving ship. Several
simulations performed with randomized sinusoidal signals re-
vealed that the reinforcement learning could adapt to a wide
variety of sinusoidal ship motions and generate realistic ac-
celeration commands that effectively adjust the drone’s speed
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and trajectory to achieve successful landings.

The validation with real ship data, which incorporated
non-sinusoidal and unpredictable movements, confirmed the
robustness and adaptability of our framework. Compared to
the benchmark controller, reinforcement learning achieved
significantly lower impact velocities that resulted in con-
trolled, safer landings, closely tracking the wave patterns of
the ship and waiting for an acceptable landing moment.

This work highlighted the capabilities of reinforcement
learning for a challenging autonomous landing task, which re-
quires enhanced performance against environmental variabil-
ity and operational uncertainty. The integration of reinforce-
ment learning as a guidance model within the control loop
promotes safer and more reliable autonomous operations.

Future work may expand upon this study by performing
real-life experiments and especially investigating the robust-
ness of the proposed algorithm in various sea states. In addi-
tion to that, different network structures (e.g., Recurrent Neu-
ral Networks) could enhance the results by better learning the
patterns in large amounts of sea state data. Lastly, a more de-
tailed analysis of the reward elements may be performed to
incorporate ship characteristics further into the objective.
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