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ABSTRACT

Deploying Inspection, Maintenance, and Repair
(IMR) robots using unmanned aerial vehicles
(UAVs) has emerged as a promising method for
wind turbine blade inspection due to lower costs
and higher accuracy. However, deploying these
robots remains a challenge due to the high-speed,
turbulent wind environments around wind farms,
making it difficult for UAVs to land on tur-
bine blades accurately. Using a novel discrete
stochastic turbulent wind field model, this study
evaluates a landing strategy for UAVs to land
at higher speeds compared to typical UAV land-
ing speed (≤ 0.5 m/s) in turbulent wind fields to
minimise lateral landing errors. Based on 4800
simulations performed at various wind speeds
(3.0 - 12.0 m/s) and UAV landing speeds (0.5 -
3.0 m/s), it was observed that this landing strat-
egy provides lower mean landing errors (up to
37.7%) compared to existing UAV landing sys-
tems when the wind speed is below 9 m/s, im-
proving landing success rates by up to 30%.

1 INTRODUCTION

In recent decades, offshore wind farms have gained mo-
mentum due to fewer land-use constraints and access to
stronger, more consistent winds compared to onshore wind
farms [1]. However, the harsh marine environment has in-
creased the demand for blade inspection, maintenance and
repair (IMR), with blade damage being the most frequent and
costly [2].

Traditional manual methods for offshore inspection are
risky and expensive due to the unique geographical location
[3]. Although UAVs offer promising solutions for remote
blade inspection [4], they still face key limitations such as
flight instability in turbulence, limited inspection accuracy,
and battery capacity constraints. Moreover, maintenance and
repair still require manual intervention, limiting full automa-
tion and cost reduction.

To address these challenges, a multi-robot platform was
proposed in [3], where UAVs deploy and retrieve IMR robots
for close-contact blade tasks. Among the mission phases, the
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Figure 1: The illustration of the impact of (a) constant wind,
(b) wind gusts and (c) wind turbulence on the positional error
of the UAV.

landing poses the highest risk due to direct contact between
the UAV and the blade under potentially high-speed turbulent
environments.

The risks primarily arise from two factors: (1) lateral dis-
placement caused by gusts and turbulence, which can reduce
landing accuracy or lead to a landing near the blade edge,
potentially causing the UAV to fall or collide with surround-
ing structures; and (2) vertical shear that might increase de-
scent speed, resulting in elevated impact energy and con-
tact forces, posing a risk of damaging both the UAV and
the blade. While most existing studies adopt low descent
speeds (typically ≤ 0.5 m/s), which allow sufficient time to
compensate for gust-induced deviations [5], such approaches
may be inadequate in highly turbulent conditions where wind
speed and direction vary rapidly. Therefore, this study pro-
poses a hypothesis that increasing descent speed can reduce
the UAV’s exposure time to wind disturbances and thereby
improve landing accuracy, if the kinetic energy can be ad-
equately dissipated during the landing process. To validate
this hypothesis, we developed a simulation framework with
a UAV platform and a height-varying stochastic turbulence
field to evaluate landing performance across multiple wind
and descent speed scenarios.

1.1 Background and Related Work

As illustrated in Figure 1, wind disturbances affecting
UAV landing can be broadly classified into constant wind,
gusts, and turbulence [6]. Constant wind refers to steady air-
flow that causes persistent deviations from the intended path,
while gusts are short-term variations in speed and direction
that lead to temporary trajectory shifts. Turbulence, the most
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complex type, involves chaotic multidirectional fluctuations
and is also observed in offshore environments [7]. Due to the
time-varying nature of both wind magnitude and direction in
turbulent conditions, UAVs may exhibit highly diverse and
unpredictable landing trajectories.

Although most commercial UAVs report a wind resis-
tance rating of up to 10 m/s [8], perfectly constant wind
conditions are rarely observed in real-world environments
[6]. Hence, most existing studies focus on reducing trajec-
tory deviations under gust scenarios. Depending on the ro-
bustness of the controller and its compensation mechanisms,
UAVs may recover their trajectories after such disturbances
[9]. Most control approaches are based on Proportional-
Integral-Derivative (PID) or Model Predictive Control (MPC)
frameworks, enhanced with additional feedback, constraints,
or compensation terms. These methods have been validated
experimentally using high-power fans or through simulations
with step-like gusts. More recently, reinforcement learning-
based control strategies have also been explored and shown
to be effective for mitigating gust-induced errors [10, 11].

However, simplified gust models with fixed direction and
magnitude are insufficient to capture the complexity of the
highly dynamic wind environment observed near offshore
wind farms. For instance, the model in [11] introduces a lin-
ear ramp with Gaussian noise to simulate variability, but is
limited to the horizontal plane and neglects vertical wind ef-
fects. In contrast, turbulent wind models incorporating time-
varying fluctuations across three dimensions offer a more re-
alistic representation of offshore wind environments.

Turbulent wind fields can be accurately simulated using
computational fluid dynamics (CFD) [12], but the high com-
putational cost makes CFD unsuitable for large-scale simu-
lations required to assess the influence of descent speed and
wind intensity on UAV landing performance.

To address this, many UAV studies adopt stochastic tur-
bulence models based on power spectral density (PSD), such
as the Dryden and von Kármán models [13, 14]. These mod-
els, grounded in stochastic theory and empirical data, provide
a balance between accuracy and efficiency [6].

1.2 Summary of the Related Work

Section 1.1 reviews various wind field modelling ap-
proaches, as well as control and landing strategies to reduce
landing errors. Table 1 summarises the key elements of the
discussed UAV landing systems.

Most existing research on UAV landing strategies has
concentrated on landing controllers for lightweight platforms
(≤2.5 kg) operating under unidirectional gust conditions,
leaving three key gaps: (1) the influence of multidimensional
variability in wind speed and direction on UAV landing ac-
curacy has been largely overlooked; (2) the applicability of
these strategies to high-payload UAVs remains uncertain; and
(3) most importantly, except for the study by Olaz et al. [11],
which specified a descent speed below 0.8 m/s, the role of

descent speed in landing accuracy has been substantially un-
derexplored, despite its direct impact on the UAV’s exposure
time to disturbances [5].

To address these gaps, this study develops integrated
models of the UAV system and the three-dimensional turbu-
lent wind field to provide a novel investigation into the ef-
fect of descent speed on the landing accuracy of high-payload
UAVs under stochastic turbulent wind conditions.

2 DESIGN SPECIFICATIONS FOR UAV SAFE AND
ACCURATE LANDING

Deploying IMR robots onto wind turbine blades us-
ing UAVs in turbulent environments requires the systematic
quantification of key parameters related to the UAV platform,
blade characteristics, environmental conditions, and the IMR
robot. Currently, there is a lack of standardised design re-
quirements for UAV landings on wind turbine blades under
turbulent conditions. To ensure that the model aligns more
closely with real-world offshore environments and applica-
tion scenarios, this study proposes a set of design require-
ments for achieving safe and accurate UAV landings on wind
turbine blades.

2.1 UAV platform and IMR robot specifications
A custom-built UAV platform named Goliath was devel-

oped in [3] for deploying a 4.5 kg IMR robot. Its capa-
bility to land on wind turbine blades was validated through
field experiments under wind speeds of approximately 7.2
m/s and gusts reaching 9.2 m/s. The UAV was built upon
a 3DXR-IND1000 octocopter frame with overall dimensions
of 800 mm in width and depth and 500 mm in height. The
UAV has an approximate mass of 14 kg. It was powered
by eight X-U8II-KV85 motors equipped with MF2815 pro-
pellers, controlled via ALPHA 60A HV electronic speed con-
trollers (ESCs), providing sufficient thrust to support a maxi-
mum take-off mass (MTOM) of approximately 30 kg.

2.2 Design requirements for Accurate and Safe Landing on
Wind Turbine Blade Surface

In this study, wind turbine blades were designated as land-
ing targets. Several design requirements were made based on
a combination of existing literature, relevant regulations and
standards, and field data collected from real-world offshore
environments.

To ensure safe operation, the UAV must maintain a mini-
mum stand-off distance of 5 m from the blade during inspec-
tion to prevent collision [19]. Therefore, the landing height
range in this study was defined as a 5 m interval from the com-
pletion of the inspection to the landing on the blade surface.
Furthermore, during the landing process, the UAV landing
system should be capable of maintaining its attitude within
30 degrees even under variations in wind magnitude and di-
rection [20].

A wind turbine blade can be divided into three sections:
the root, the mid-section, and the tip [21]. While the root sec-

NOVEMBER 3-7, 2025, SAN ANDRÉS CHOLULA, PUEBLA, MEXICO 52



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2025-6 16th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

Table 1: Comparison of UAV landing systems in different wind conditions.

Study Methodology Wind type Max. wind speed
(m/s)

Landing error
(mm)

System mass
(kg) Validation

Todeschini et al. [15] MPC + hierarchical
feedback controller Constant wind (3D) 3.0 N/A 11.0 Simulation

Ghadiok et Al. [16] Extensive filtering
& altitude estimation Gust (1D) 2.8 <500 1.4 Fan

Alexis et al. [14] MPC + Piecewise Affine Gust (3D) 4.3 N/A 2.5 Fan
Hentzen et al. [9] MPC Gust (1D) 12.0 <150.0 0.7 Fan
Mendez et al. [17] Wind-preview-based MPC Gust (1D) 10.0 <200.0 2.4 Simulation

Saj et al. [10] RL Gust (1D) 5.0 <50 1.4 Fan
Olaz et al [11] RL Gust (2D) 10.0 <500.0 N/A Simulation

Sydney et al. [18] Feedback linearisation controller Turbulence (3D) 2.0 <400.0 N/A Simulation

tion has the longest chord length, its high curvature makes it
unsuitable for UAV landing due to the increased risk of flip-
ping over. In contrast, the mid-section and tip have shorter
chord lengths (approximately 2.7 m, based on the DTU 10-
MW reference wind turbine [22]) but offer flatter surfaces.

To further enhance landing safety, operations near the
blade edges should be avoided. A 0.2 m buffer zone was re-
served on each side to reduce the risk of UAV fall-off, result-
ing in a defined landing zone width of 1.8 m, with 0.9 m on
either side of the blade’s central axis, as shown in Figure 2.

2.7m

Blade 

axis

Safe zone (0.2m)

Landing gear of 

the UAV 

0.5m

Maximum lateral 

displacement 

Blade edge

Figure 2: The illustration of the appropriate landing zone on
the wind turbine blade surface and the maximum lateral dis-
placement for the UAV to land accurately and safely on a
wind turbine blade.

Offshore wind farms are subject to highly variable wind
conditions, resulting in unpredictable wind speeds. To char-
acterise typical conditions, a dataset of maximum wind
speeds recorded from March to September 2013 at the Methil
offshore wind farm, UK was analysed [3]. The results showed
that wind speeds followed a normal distribution (7.82± 3.89
m/s). Wind speeds below 12 m/s account for 86.2% of all
observations, supporting the selection of 12 m/s as the maxi-
mum threshold in this study.

3 UAV LANDING STRATEGY AND PLATFORM MODEL

3.1 UAV Landing strategy

Before modelling the UAV platform and the wind field,
the UAV landing strategy must first be established. We as-
sume that once the UAV carrying an IMR robot moves above
the wind turbine blade, it has already identified a suitable

landing spot during the scanning phase and hovers above it.
After stabilising its attitude, the UAV accelerates from 0 m/s
to the desired speed and then descends to the blade surface at
this controlled speed through the wind field.

3.2 UAV Platform Model
The UAV platform model is based on the concepts pre-

sented in [20] and consists of four modules: kinematic, dy-
namic, control effectiveness, and propulsor models.

The UAV model is simplified as a six-degree-of-freedom
(6-DOF) rigid body with four motors mounted in a cross
configuration. Two right-handed coordinate frames of the
Aircraft-Body Coordinate Frame (ABCF) and the Earth-
Fixed Coordinate Frame (EFCF) are defined and denoted by
the subscripts b and e.
3.2.1 UAV Kinematic Model

The position vector of the UAV’s centre of mass (COM)
is defined in the Earth-Fixed Coordinate Frame (EFCF) pe =
[xe, ye, ze]

T ∈ R3 with units of m, and its time derivative
ṗe = ve represents the UAV’s velocity in m/s.

The attitude of the UAV is represented using quaternions
to avoid the singularity problem associated with Euler angle
representations. The rotation from EFCF to ABCF is repre-
sented by qbe ≜ [q0 q1 q2 q3]

T ≜ [q0 q
T
V ]
T (dimensionless,

with |qbe| = 1). The relationship between the quaternions and
angular velocities of the UAV body can then be expressed as

q̇be =

[
q̇0
q̇V

]
=

1

2

[
−qTV

q0I3 + [qV ]×

]
ωb, (1)

where ωb = [ωx ωy ωz]
T represents the angular velocity

vector of the UAV body in rad/s, I3 is an identity matrix
(dimensionless), and [qV ]× is the skew-symmetric form of
qV (dimensionless).
3.2.2 UAV Dynamic Model

The UAV dynamic model consists of translational and ro-
tational representations, which are derived using the Newton-
Euler equations [20]:

V̇e =




0
0
−g


+

1

m
Reb



0
0
fz


+

1

m



−kxẋe
−ky ẏe
−kz że


 , (2)
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J · ω̇b = −ωb × (J · ωb) + τ , (3)

where g is the gravitational acceleration in m/s2, m is
the UAV mass in kg and fz denotes the total thrust gen-
erated by the propellers in N . The coefficients kx, ky ,
kz are dimensionless drag coefficients along the respective
axes. J = diag(Jxx, Jyy, Jzz) ∈ R3×3 is the UAV’s mo-
ment of inertia matrix with units of kg · m2, and the vector
τ ≜ [τx τ y τ z] ∈ R3 represents the body-frame torques gen-
erated by the propellers in N ·m.

The rotation matrix Reb from ABCF to EFCF was ob-
tained from qbe using the standard conversion of quaternion to
DCM (Direction Cosine Matrix). Both Reb and qbe are dimen-
sionless. For simplicity, the gyroscopic torques generated by
the spinning motors were neglected in this model.
3.2.3 Control effectiveness and propulsor model

The propeller thrust and dynamic reaction torque pro-
duced by each motor were modelled as:

Ti = CTϖ
2
i , (4)

Mi = CMϖ
2
i + JRP ϖ̇i, (5)

where CT and CM are the dimensionless coefficients of
thrust and torque. The total thrust and torques of the UAV are
then determined by the angular velocities of the propellersϖi

in rad/s:




f
τx
τy
τz


 =




CT CT CT CT√
2dCT
2

−
√
2dCT
2

−
√
2dCT
2

√
2dCT
2√

2dCT
2

√
2dCT
2

−
√
2dCT
2

−
√
2dCT
2

CM −CM CM −CM







ϖ2
1

ϖ2
2

ϖ2
3

ϖ2
4


,

(6)
where d denotes the distance from each motor to the

UAV’s COM in m.
In turbulent environments, accurately modelling the mo-

tor’s dynamic response is essential for capturing the UAV’s
real-time behaviour and landing performance. Therefore,
this study incorporates both the motor and the ESC in the
propulsor model. The ESC outputs a pulse width modulation
(PWM) signal, which is converted to a dimensionless throttle
command σ ∈ [0, 1]. At steady state, the motor speedϖss (in
rad/s) is assumed to vary linearly with the throttle input:

ϖss(σ) = CRσ +ϖb,

where CR and ϖb are the dimensionless gain and offset, re-
spectively. To model the motor’s response delay, a first-order
dynamic response function with a time constant Tm is used,
resulting in:

ϖ(s) =
1

Tms+ 1
(CRσ +ϖb), (7)

where Tm denotes the time required for the motor speed
to reach 63.2% of its steady-state value (in s).

3.2.4 UAV control system
To evaluate the impact of descent velocity on UAV land-

ing performance, a classic cascaded PID control system is
adopted, commonly used in commercial UAVs [23]. The
control system comprises four modules: position controller,
attitude controller, motor controller, and the UAV platform
model. The position controller includes vertical and horizon-
tal sub-controllers.

The quadrotor UAV is an underactuated system with four
control inputs—total thrust f ∈ R and body-axis torques τ ∈
R3—but six outputs: position p ∈ R3 and attitude Θ ∈ R3.
Consequently, only the desired position pd and yaw angle Ψd
are directly tracked, while the desired roll ϕd and pitch θd are
computed from the horizontal position controller using the
desired yaw angle and desired acceleration along the x and y
axes.

Thrust and attitude commands are calculated by the PID
controller and mapped to motor throttle inputs. To preserve
attitude control margin, the thrust output was capped at 90%
of the UAV’s maximum capacity.

4 STOCHASTIC WIND TURBULENCE MODEL

As mentioned in Section 1.1, PSD-based methods are
more suitable for simulating turbulent offshore environments
for UAV landing scenarios. Compared to the Dryden model,
the Von Kármán model shows better agreement with con-
tinuous turbulence measurements [24]. In this study, a
stochastic wind turbulence model is constructed based on
the Von Kármán model provided in the MATLAB/Simulink
Aerospace Blockset (MIL-F-8785C).

4.1 Von Kármán Wind Turbulence Model

The von Kármán wind turbulence model generates time-
varying wind velocities by applying frequency-domain tur-
bulence filters to white noise inputs. These filters, defined as
functions of the Laplace variable s, shape the spectral charac-
teristics of wind disturbances in the longitudinal, lateral, and
vertical directions. The corresponding transfer functions for
each direction are given as follows:

ΦVwindu (s) =
2σ2

uLu
πV

· 1
[
1 +

(
1.339LuV s

)2]5/6 (8)

ΦVwindv (s) =
σ2
vLv
πV

· 1 + 8
3

(
1.339LvV s

)2
[
1 +

(
1.339LvV s

)2]11/6 (9)

ΦVwindw (s) =
σ2
wLw
πV

· 1 + 8
3

(
1.339LwV s

)2
[
1 +

(
1.339LwV s

)2]11/6 , (10)
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where ΦVwindu , ΦVwindv , and ΦVwindw are the power
spectral densities of wind velocity in the x, y, and z direc-
tions, respectively. V represents the relative velocity between
the UAV and the ambient wind. The parameters σu, σv , and
σw indicate the turbulence intensities, while Lu, Lv , and Lw
correspond to the turbulence scale lengths in each respective
direction. These transfer functions are applied to white noise
signals generated by a random source, producing fluctuations
in external wind speed that characterise the temporal evolu-
tion of turbulence [25]. Different noise seeds yield distinct
stochastic wind profiles.

According to the military specification MIL-F-8785C
[26], the turbulence intensity σ and scale length L can be
computed as functions of flight altitude h using the follow-
ing:

Lw = h,

Lu = Lv =
h

(0.177 + 0.000823h)1.2
,

(11)

σw = 0.1W20,

σu
σw

=
σv
σw

=
1

(0.177 + 0.000823h)0.4
,

(12)

where h is the flight altitude of the UAV and W20 defines
the average wind speed at 20 feet (6 m).

4.2 Discrete Turbulent Wind Field Varying with Altitude
In a classical von Kármán turbulence model, both mean

wind speed and turbulence intensity are assumed constant.
However, real wind farm environments exhibit vertical wind
gradients, leading to varying wind speeds along the blade
height, typically within 1 m/s per metre [27].

To capture this effect, the vertical space between the blade
and the UAV is discretised into five uniform height inter-
vals. Each interval is assigned a unique W20 to reflect lo-
cal wind intensity. The wind speed at the mid-height is de-
fined as Vmid, with random perturbations introduced via two
sequences Θ1 = [x1, x2, . . . , xn2 ] and Θ2 = [y1, y2, . . . , yn2 ],
where 0 < xi < 1 and −1 < yi < 0. Wind speeds are in-
creased above and decreased below the mid-level by sequen-
tially adding these values, yielding a smoothly varying verti-
cal wind profile, as illustrated in Figure 3.

5 SIMULATION SETUP AND METHODOLOGY
SUMMARY

To evaluate whether higher descent speeds improve land-
ing accuracy under turbulence, the UAV’s descent velocity
was varied from 0.5 m/s (a typical UAV landing speed [5]) to
3.0 m/s, the maximum descent speed limited by most com-
mercial UAVs. Six discrete values: [0.5, 1.0, 1.5, 2.0, 2.5,
3.0] m/s were selected.

According to the design requirements in Section 2.2, the
maximum wind speed is limited to 12 m/s. Since most UAVs

Wind turbine blade

0 m

����

���� � �� � ��

���� � ��

���� � 	�

���� � 	� � 	�

Wind intensity

1 m

2 m

3 m

4 m

5 m

Figure 3: The illustration of the vertical wind gradients above
the wind turbine blade.

can maintain landing accuracy under light breeze conditions
(up to 3 m/s) [25], four representative values as [3.0, 6.0, 9.0,
12.0] m/s were selected for simulation.

Given the stochastic nature of the wind model, each simu-
lation run generated a unique wind profile based on different
random noise seeds. These seeds, along with the parame-
ters Θ1 and Θ2, were recorded to ensure repeatability. For
each wind speed setting, the same set of noise seeds was used
across all descent speeds to enable a fair comparison.

Each combination of descent speed and wind speed was
simulated 200 times, yielding a total of 4800 trials for statis-
tical analysis. The choice of 200 trials per setting balances
computational cost and statistical robustness, and is sufficient
to capture the variability in landing outcomes caused by the
stochastic wind conditions.

Simulations were conducted in MATLAB/Simulink using
the ODE4 solver with a fixed time step of 0.001 s.

To provide a clearer overview of the simulation process,
the integrated framework of the methodology is illustrated in
Figure 4.

6 SIMULATION RESULTS AND DISCUSSION

In order to evaluate the UAV’s landing accuracy and
safety across varying wind speeds and descent velocities, this
section considers the distribution of descent trajectories, the
final touchdown locations, and the overall landing success
rates under different scenarios.

6.1 Landing trajectories

In the process of UAV landing, maintaining a stable verti-
cal descent trajectory is essential to avoid collisions with tur-
bine structures. Figure 5 presents representative 3D landing
trajectories for descent speeds of 0.5 m/s and 3.0 m/s under
turbulent wind conditions with a maximum wind speed of 6
m/s.
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(a) Simulation Inputs
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(b) Integrated model of the UAV system and wind turbulence

(c) Performance Metrics

1. Landing Trajectories

2. Landing Position

3. Success Rate

Figure 4: The summary diagram of the overall simulation
flow, including (a) the simulation inputs; (b) the integrated
model of the UAV system and the stochastic wind turbulence,
where the wind model is embedded into the UAV dynamics;
and (c) the performance metrics used to evaluate landing per-
formance.

The results show that despite the inherent randomness of
the wind field, which could cause significant fluctuations in
individual trajectories, a consistent overall descent pattern re-
mained observable. A slower descent speed (0.5 m/s) leads
to greater trajectory deviations, whereas a faster speed (3.0
m/s) results in trajectories more tightly concentrated around
the vertical path. This also results in lower accuracy for the
0.5 m/s group, compared to the 3.0 m/s group, in terms of
successfully reaching the designated landing zone.

The trajectories are colour-mapped according to the
UAV’s instantaneous descent speed, with visible colour fluc-
tuations along some paths. These variations indicate distur-
bances in vertical motion caused by wind forces along the
z-axis, which impair the UAV’s ability to maintain its target
descent speed.

6.2 Landing position evaluation

Figure 6 illustrates the landing positions of UAVs de-
scending at speeds of 0.5 and 3.0 m/s under turbulent wind
fields with maximum wind speeds of 3, 6, 9, and 12 m/s.
Each marker represents the UAV’s touchdown location on the
turbine blade in a single simulation, while the red circle de-
notes the designated landing zone. The colour gradient of
each point indicates its lateral displacement from the target,
with lighter shades signifying a greater displacement.

All landing points exhibit a uniform radial distribution
from the centre outward, suggesting the stochastic turbulent
field affects the UAV symmetrically in all directions.

The results reveal that as wind speed increases, landing
deviations become more pronounced, leading to more land-
ings outside the designated target zone. However, across all
wind conditions, UAVs descending at 0.5 m/s show a wider
spread of landing positions and more outliers deviating from
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Figure 5: 20 samples of landing trajectories of UAV land-
ing in 3D space when maximum wind speed is 6 m/s and a
desired landing speed of 0.5 m/s and 3 m/s. The red box in-
dicates the designated landing zone. The trajectories at 3.0
m/s are visibly more concentrated around the vertical descent
path, while those at 0.5 m/s show greater lateral deviation.
This suggests that descending at a higher speed in stochastic
turbulent environments helps reduce the risk of collision with
turbine structures.

the central region. In contrast, at a descent speed of 3.0 m/s,
the landing points are more concentrated near the centre. This
improvement is particularly evident under wind speeds of 3.0
m/s and 6.0 m/s, with the most significant effect observed
at 6.0 m/s, where the mean, median and standard deviations
are reduced by 37.7%, 39.6% and 40.9%, respectively. How-
ever, under higher wind conditions (9.0 m/s and 12.0 m/s), the
improvement diminishes, with the smallest gains observed at
12.0 m/s with reductions of 16.9%, 9.3% and 20.3%.

6.3 Landing success rate

Considering the safe landing zone defined in Section 2.2,
Figure 6e presents a heat map illustrating the landing success
rates across all tested scenarios. In every case, increasing the
descent speed results in an improved success rate. Under rel-
atively calm wind conditions with a maximum wind speed of
3 m/s, the UAV consistently maintained a success rate above
85%, reaching as high as 97.0% at a descent speed of 3.0
m/s—the highest success rate observed among all conditions.
In contrast, within a 6 m/s wind field, the success rate only ex-
ceeded 50% when the descent speed was greater than 2.0 m/s;
all other configurations failed to meet this threshold. How-
ever, the baseline success rate at 3 m/s wind speed was al-
ready high, resulting in relatively modest gains. Conversely,
in the 6 m/s wind condition, the success rate improved sig-
nificantly by approximately 30% as descent speed increased
from 0.5 m/s to 3.0 m/s. This suggests that under moder-
ately disturbed wind conditions, where UAV control is not
completely compromised, increasing the descent speed can
effectively enhance the probability of a successful and safe
landing if the additional kinetic energy can be dissipated and
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𝑉௪௜௡ௗ ൌ 3.0 𝑚/𝑠

Mean = 0.57
Median = 0.46
S.D. = 0.42

Mean = 0.38
Median = 0.29
S.D. = 0.32

𝑉௪௜௡ௗ ൌ 6.0 𝑚/𝑠

Mean = 1.62
Median = 1.39
S.D. = 1.10

Mean = 1.01
Median = 0.84
S.D. = 0.65

𝑉௪௜௡ௗ ൌ 9.0 𝑚/𝑠

Mean = 2.56
Median = 2.12
S.D. = 1.78

Mean = 1.90
Median = 1.69
S.D. = 1.13

𝑉௪௜௡ௗ ൌ 12.0 𝑚/𝑠

Mean = 3.26
Median = 2.80
S.D. = 2.06

Mean = 2.71
Median = 2.54
S.D. = 1.64

（a） （b）

（d）（c）

（e）

Figure 6: The bullseye graph displays the 200 samples of landing position of a UAV descending at 0.5 m/s and 3 m/s speeds in
wind turbulence conditions of (a) 3 m/s, (b) 6 m/s, (c) 9 m/s, and (d) 12 m/s.

not transferred to the wind turbine blades.

7 CONCLUSION AND FUTURE WORK

In this study, we proposed a landing strategy that employs
higher-than-typical UAV landing speeds to reduce landing
errors in turbulent environments. The results have demon-
strated that UAVs descending at higher speeds exhibit more
stable and concentrated landing trajectories under identical
maximum wind speed conditions, and can improve landing
success rates by up to 30%. This offers a promising direction
for enabling autonomous offshore wind turbine blade inspec-
tion, maintenance, and repair by multi-robot platforms.

Higher descent speeds cause a quadratic increase in ki-
netic energy. In this study, an 18.5 kg UAV descending at
0.5–3.0 m/s generates kinetic energy ranging from 2.3 J to
83.3 J, which may further increase under turbulence. If this
energy exceeds the safe threshold for either the UAV or the
wind turbine blade, structural damage may occur.

However, the structural interaction between UAVs and
turbine blades was not comprehensively considered in this
work, nor was the ground effect. Therefore, future inves-
tigations should incorporate detailed UAV–blade interaction
models and aerodynamic effects near surfaces to define the
safe threshold.

Building on this safe threshold, landing gear can be de-
signed to dissipate excess energy, ensuring safer and more ac-
curate landings. Current energy-absorbing systems for UAVs
often introduce significant additional mass, which further ele-
vates kinetic energy. As such, the development of lightweight
landing gear with high energy absorption capacity presents a
promising direction for future research.

Finally, this work was conducted solely in the simulation
domain using MATLAB and SIMULINK toolboxes. Experi-
mental validation under real-world field conditions is there-
fore necessary to confirm the applicability of the findings.

Furthermore, the control analysis was limited to a classic
PID controller, which constrains the scope of performance
evaluation. Future work should explore more advanced con-
trollers, such as Model Predictive Control (MPC), adaptive
control, or learning-based approaches, both to rule out poten-
tial limitations of relying solely on a PID controller and to
assess whether high-speed descent strategies can be extended
to more severe turbulent environments.
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