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Autonomous UAV Landing with Visual Servoing and
Semi-Markov Decision Processes
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ABSTRACT

This paper presents an innovative approach to
autonomous UAV landing on moving platforms
by integrating a Semi-Markov Decision Pro-
cess (SMDP) framework with a visual servoing
control strategy. The proposed method models
the UAV’s position relative to the landing tar-
get using a semi-Markov state space, accounting
for varying visibility conditions and the precise
positioning required for a successful landing.
By incorporating a reward function, the SMDP
framework enables the UAV to evaluate trade-
offs between different actions and dynamically
optimize its trajectory. This approach enhances
the UAV’s ability to adapt to platform movement,
handle uncertainty, and improve landing perfor-
mance in unpredictable environments. The con-
tribution of this work lies in the novel applica-
tion of SMDPs combined with visual servoing,
offering a robust, adaptable solution to the chal-
lenges of autonomous landing in real-world, dy-
namic conditions.

1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have rapidly ad-
vanced in response to the growing demand for real-time appli-
cations in dynamic environments. Consequently, autonomous
landing systems have become essential for various tasks [1],
including package delivery [2], search and rescue [3], and
aerial inspections requiring timely decisions [4].

These systems depend on advanced algorithms and sen-
sors to perform precise, reliable landings. Among state-of-
the-art methods, visual servoing [5, 6] stands out as a popular
approach [7, 8], providing accurate control by processing vi-
sual feedback to guide the UAV during descent. However, vi-
sual servoing faces significant challenges related to environ-
mental variability, occlusions, sensor inaccuracies, and com-
putational limitations, demanding more sophisticated strate-
gies for robust operation [9, 10].
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To address these issues, Kalman filters have been widely
adopted to model and manage uncertainty during landing ma-
neuvers [11]. While effective for filtering noise and esti-
mating states, they may struggle under highly unpredictable
conditions—particularly when vision-related problems arise,
such as lighting changes, occlusions, target motion, and UAV
inclination variations, especially without gimbal stabilization.

To improve robustness under uncertainty, alternative
probabilistic frameworks like Markov chains have been ex-
plored. By modeling the landing process as discrete states
with transition probabilities, Markov chains enable detailed
analysis of possible outcomes based on UAV actions. Extend-
ing this concept, Markov Decision Processes (MDPs) [12] in-
troduce decision-making into the framework, allowing UAVs
to handle stochastic environments by associating actions with
rewards and transition probabilities [13].

The use of Markov models represents a significant step
toward overcoming UAV landing challenges, improving reli-
ability and adaptability in uncertain scenarios [14]. However,
standard Markov processes assume sojourn times follow ge-
ometric or exponential distributions, limiting their flexibility.
Semi-Markov systems address this limitation by allowing any
probability distribution for sojourn times [15].

This work aims to improve autonomous UAV landing on
moving platforms by integrating a Semi-Markov Decision
Process (SMDP) framework with visual servoing. The SMDP
models the UAV’s state relative to the target, accounting for
varying visibility and precise positioning needed for target
locking and landing. A reward function guides the UAV to
evaluate trade-offs and select actions that maximize landing
success probability. This approach enables adaptation to plat-
form motion, uncertainty management, and trajectory opti-
mization. The main contribution is this novel combination of
SMDP and visual servoing, offering a robust, adaptable solu-
tion for real-world UAV landing scenarios.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the proposed methodology; Section 3 details
the visual servoing control strategy; Section 4 presents the
SMDP framework for autonomous decision-making; Section
5 discusses the experimental validation; and Section 6 pro-
vides conclusions and future perspectives.

2 METHODOLOGY

The proposed solution integrates Visual Servoing and
Semi-Markov Decision Processes (SMDPs) to train a reli-
able UAV landing system, as illustrated in Figure 1. Visual
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Servoing is responsible for state estimation, providing real-
time information about the relative position of the landing
platform. SMDPs, on the other hand, enable decision-making
by modeling the system’s behavior over time.

The system processes two main inputs:

1. Real-time platform position (Input 1a): The UAV’s
onboard camera captures the relative position of the
landing platform. This information is converted into
discrete states representing the platform’s location in
relation to the UAV.

2. Experimental flight data (Input 1b): A dataset is col-
lected from previous flights, recording the observed
states, actions taken, and corresponding outcomes.
This historical data is used to estimate the probabili-
ties of different system behaviors over time, forming a
transition probability matrix.

Using this probability matrix, the system evaluates the ex-
pected rewards for different actions in each state. It com-
putes the optimal action the UAV should take to maximize its
chances of a successful landing. Once computations are com-
pleted (Steps 3, 4, 5, and 6 in Figure 1), the drone controller
(acting as the pilot) selects the most effective decision for the
given scenario.

Transition State value
Experiment | probability matrix estimation
data P(s'ls,a) vis) —» State value
la 2a 3 a4
A
Platform Position to Optimal
position drone state policy
1b 2a
! v
Optimal Pilot maxl?r?wligtion
decision (Maximize [¢
action) 7 6

Figure 1: UAV landing decision process algorithm diagram

This structured approach allows the UAV to dynamically
adapt its landing strategy based on real-time observations and
learned experience, improving accuracy and reliability.

The relative pose of the moving platform is estimated by
detecting visual markers (e.g., QR codes) from the camera
feed. The visual data is interpreted and converted into a series
of discrete states (detailed in Section 4), which are used to
ensure real-time awareness of the system’s status.

Then, a SMDP, models the problem as a sequence of
states, actions, and rewards. The state space captures the
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UAV’s relative position to the target and the status of the land-
ing platform, with terminal states representing either a suc-
cessful landing or a failed attempt. The action space defines
the UAV’s possible maneuvers, such as adjusting circular ve-
locity, moving in specific directions, or centering the target
based on visual feedback.

State transition probabilities account for system uncer-
tainties, representing the likelihood of moving from one state
to another after performing a specific action. The reward
function is designed to promote behaviors that guide the UAV
toward the target while penalizing inefficient actions.

The objective is to find an optimal policy 7*(s), which
is a function that maps each state s to an optimal action a,
maximizing the expected cumulative reward:

Z ’YtR(Stv at)] )

t=0

7*(s) = argmax E
s

where 1y is the discount factor that determines the importance
of future rewards. The reward function R is carefully crafted
to minimize the landing error and ensure that the UAV makes
decisions that lead to a safe and accurate landing.

The optimal policy is computed using linear program-
ming techniques. These algorithms enable the UAV to learn
the optimal policy through trial and error, updating its actions
based on the observed rewards. The integration of Visual Ser-
voing and SMDPs allows the system to adapt dynamically
to the changing environment, making real-time adjustments
based on the current state.

The system operates in a feedback loop, where Visual
Servoing continuously estimates the platform’s position and
the SMDP evaluates the state and selects an optimal action.
This loop ensures that the UAV can adjust its trajectory in re-
sponse to platform motion and other uncertainties, improving
the likelihood of a successful landing.

3 UAV MODELING AND VISUAL SERVOING
STRATEGY

The UAV’s dynamics are governed by:

mp = R(q) - f, — mg, (1
Jo=7—-wx (Jw), 2)

where m € R is the UAV mass, p € R3 its acceleration (in-
ertial frame), R(q) € R3*3 the rotation matrix from quater-
nion q € H, J € R3*3 the inertia matrix (body frame), and
w = [w; wy w,]T the angular velocity. Gravity is given by
g=1[0,0, —9.81]7 m/s?.

The internal control system operates as follows:

Desired translational
]T

e Inputs:
[vd, V4, va.

velocity vq =
and yaw angular velocity w,, € R.

* Outputs: Thrust force f, € R and control torque T €
R3 (body frame).
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Assumption 1 The internal controller (provided by the man-
ufacturer) ensures that v.— vq, and w — [0, 0, w,,]T,
where v = [v, v, v,)T = P is the translational velocity
(inertial frame) and w the angular velocity (body frame).

3.1 Visual Servoing for Autonomous Landing

The use of Image-Based Visual Servoing (IBVS) in UAV
control relies on image feedback to achieve precise position-
ing [16]. Unlike position-based methods, IBVS operates di-
rectly in the image plane, reducing dependency on accurate
3D scene reconstruction. This approach is particularly effec-
tive for tasks such as landing, object tracking, and navigation
in dynamic environments. The operational scheme of Image-
Based Visual Servoing (IBVS) for multirotor UAVs is illus-
trated in Figure 2, highlighting the feedback loop between
visual data and control commands. The diagram represents
the relationship between the image plane and the drone po-
sition plane. The UAV moves along the x, y, and z axes,
representing the spatial coordinates in which it can maneuver
freely.

The image plane is a two-dimensional (2D) representa-
tion of the captured scene, where positions are defined in
pixel coordinates (u,v). The observed image is composed
of pixel coordinate sets, with the image center defined as
(up, vp). To align the image center with a target, we calculate
the distance between the center and any point in the image
plane, denoted as p = [u, v].

Once the desired trajectory is determined in the image
plane, mapping it to the drone’s movement requires a trans-
formation into the position plane, where coordinates are ex-
pressed as p = [xz,y, z]. This transition between the image
plane and the position plane is achieved using the Jacobian
matrix, which establishes the mathematical relationship be-
tween pixel displacement and UAV motion. More details on
this transformation are provided in the following sections.

z

p=lz,y27": Position plane

Figure 2: IBVS control scheme for a multirotor UAYV, illus-
trating image plane error correction for precise target align-
ment.

16" INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

3.1.1 Error Definition

The error in IBVS is defined as the distance difference be-
tween an actual point and our desired position:

e=p;—p; 3
where: p; = [u, vi]T denotes the observed image feature
position, and p; = [u},v;]T represents the desired image

feature position.

The image position is represented in the image frame,
described by the camera position. The transformation with
the jacobian matrix help transform the desired position in the
camera frame to the a desired velocity for the UAV.

3.1.2 Pixel Velocity Control Law

To understand the pixel velocity of an image it is important
to compute the relationship between the pixel velocity and
the camera velocity, to achieve this we multiple the camera
velocity by the image Jacobian matrix which is given by:

pi=Jv 4
where:
e p; = [u,0]T: pixel velocity.
ev = v W7 = [vmvy,vz,wm,wy,wz]T: UAV
translational and rotational velocities.

e J: Jacobian matrix relating UAV velocities to image
feature velocities:

2
R A e
o L owmouw _uiv; s
d; d; fy fy g
&)

where f,, f, are the focal lengths, d; is the depth of the
feature, and u;, v; are the coordinates of the feature in
the image plane.

3.1.3 Control Law

Considering Assumption 1, a control law that computes the
desired camera velocity can be expressed as:

vy = -MTe (6)

where \ denotes a positive gain, while J' is the pseudo-
inverse of the Jacobian matrix. Introducing (6) into (4) yields

pi = —JAJTe = —)e, 7

considering p;, ~ € = —\e results in the convergence of
e — 0.

Considering Assumption 1, then w,, ~ w, =~ 0, therefore,
the desired velocities for the UAV are computed as

va, 100000

va,| |01 00 0 0]
|~ o o100 07 @
wa 000001
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4 SEMI-MARKOV DECISION PROCESS FOR
AUTONOMOUS LANDING

Before introducing semi-Markov Decision Processes
(SMDP), we will present some necessary mathematical con-
cepts for their understanding, such as the concept of Markov
chains.

4.1 Markov chains

A Markov chain is a mathematical model that describes a
sequence of random variables where the probability of tran-
sitioning to the next state depends only on the current state
and not on the previous states (the Markov property). For-
mally, let N := {0, 1, 2, ..} be the set of natural numbers. The
sequence {X;}reny which takes values in state space S is a
Markov chain if it satisfies the following equation:

P(Xt+1:j|Xt:i7Xt—1:’7"~7X0:')
:P(Xt+1:j|Xt:i), VZM]GS

Markov chains are essential for modeling dynamic systems
where the next state depends only on the current state. How-
ever, as discussed in the introduction, the primary limitation
when utilizing Markov chains for system modeling lies in the
sojourn time in a state. The sojourn time is a random variable
that must be modeled by a geometric distribution (in the dis-
crete case) or by an exponential distribution (in continuous
time). To generalize this hypothesis in this article we pro-
pose a SMDP to achieve the landing aircraft decision. Before
introducing the decisions equations we shall introduce semi-
Markov processes.

4.2 semi-Markov processes

Let us consider a complete probability space (92, F,P)
on which all processes and random variables are defined. Let
{X:}ten be a stochastic process which takes values in state
space S. Let us also define by {7, },en the consecutive time
instants when {X; }+en shifts its state. By definition 79 := 0
and

Tny1 :=1inf{t > 7, : Xy £ X}, n>0.

By convention inf @ = co. Observe that sequence {7, } nen
represents the renewal or jump points of process {X;}ten.
We shall denote by { B, }+cn the backward process of process
{X:}ien. Process {B; }+cn is mathematically defined as fol-
lows

B, :=t—max{r, : 7, <t} and B; :=t, if 14 > t.

Speaking generally, the backward process models the time
spent in the current state since the last state change.

We define N(t) := max{n € N : 7, < t} as the counting
process of the number of jumps in the interval time [1,¢] of
process {X; }+en. Let us denote by {V;, }nen a process which
records {X}; }+en at jump points {7, }nen, i.€., Vi = &, Or
equivalent X; = Yy (). We represent by {7, },en the pro-
cess that models the time interval between two consecutive
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jumps. By convention Ty := 79 and T}, 41 = Tpy1 — Tns
n € N. If the following condition is satisfied

PVni1 =4, Tnr1 =k | Vo= ..., Yn =i
77',’,7(:.>

=PVni1=J, Tnx1 =k | Vu=1) )

TO = "5+

then process {X;}:en is a semi-Markov chain (SMC) and
process { )y, }nen is know as the embedded Markov chain of
process {X;}ien. From now on to make the notation less
cumbersome, instead of writting {X; };cn we will write {X; }
and apply this simplification to all processes.

If the right-hand side of Equation (9) does not depend on n
then {X;} and {)),} are time homogeneous. In this article
we shall consider a homogeneous discrete-time semi-Markov
process {X;}. A discrete-time semi-Markov process is also
referred to as a semi-Markov chain (SMC). A SMC is fully
specified by its state space, in this case it will be denoted by S
and, its semi-Markov kernel K(¢) = {K;;(t); 4,j € S,t €
N} where

Kij(t) =PVnt1 =5, Tns1 =k |V =1), k>0,teN.
(10)
The cumulative semi-Markov kernel of SMC { &} is de-

fined by
Qii(t) =

t
= Y Ki(k), i,jeSteN
k=0

P(ynJrl = ja Tn+1 <t | yn = Z)

The cumulative distribution function of the sojourn time in
state ¢ € .S is defined by

Hi(t):=> > Ki(k)

k=0j€S

The conditional cumulative distribution of the sojourn time is

Fij(t) ==P(Tpsr < t| Jn =1, Juy1 = j)
- {ijj(t)’ if pij 7 0,
L

if Dij = 0.

The primary distinction between Markov and semi-Markov
discrete-time processes lies in the distribution function
F;;(t). For a Markov chain, this function follows a geo-
metric distribution with a success parameter of 1 — P(i,1),
where P represents the Markov transition probability matrix.
Conversely, in a semi-Markov chain, the distribution function
F;;(t) may be represented by any discrete-time distribution.
Throughout this article, note that we employ the index t € N
to denote calendar time, while the index n € N is used for the
renewal points of SMC { A} }.

(11)
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In this subsection, we provided a summary of the fundamen-
tal background on a SMC. In the following subsection, we
will present the Markov Decision Process (MDP). After that
we shall generalize the MDP into SMDP.

4.3 Markov Decision Process (MDP)

A MDP is a mathematical framework used for modeling
decision-making situations where outcomes are partly ran-
dom and partly under the control of a decision maker. It con-
sists of the following components:

* States S: A set of possible situations or configurations
the system can be in.

¢ Actions A: A set of possible actions the decision maker
can take from a state.

* Transition probabilities between states: The probabil-
ity of transitioning from one state to another.

* Rewards R: A numerical value received after taking an
action in a state, representing the immediate benefit or
cost of that action.

* Discount factor v: A constant number (0 < v < 1). If
v == 1 the system prioritiza future rewards by contrast
if v = 0 the system prioritize immediate rewards.

* Policy 7: A strategy or a plan that defines the action to
be taken in each state.

The goal of a MDP is to find an optimal policy that maxi-
mizes the expected value of long-term rewards. To achieve
this goal, Bellman equation is used.

The Bellman equation is a fundamental recursive equa-
tion in dynamic programming and reinforcement learning,
see for e.g., [13]. It helps to determine the optimal policy
in decision-making problems. The Bellman equation is typi-
cally written as

Vi(s) =max | Y P(s'|s, a) (R(s,a) +7Va(s) |, (12)

where
* Vi (s) is the value function, representing the expected
cumulative reward from state s applying policy 7.

* R(s,a) is the immediate reward received after taking
action a in state s.

* ~ is the discount factor (between 0 and 1), which deter-
mines the importance of future rewards.

* P(s'|s, a) is the transition probability of reaching state
s’ from s given action a.

e 7 is a plan or strategy that outlines the actions to be
executed in every given state.
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The idea of MDP is to chose a policy 77* such that

m*(s) = arg max Z P(s'|s,a) (R(s,a) + yVe«(s"))

13)
In others words, Bellman equation maximizes the ex-
pected value Vi .(s) = E[G,|X, = i], where G,, :=
> heo Y Buyies1-

Thus far, we have outlined the equations modeling MDPs,
but these models have certain limitations. In particular, the
sojourn time within a state is a random variable modeled by
a geometric distribution (in the discrete case). Therefore, the
next subsection will be introduced SMDPs, where the sojourn
time can be represented by any distribution function.

4.4  semi-Markov Decision Process (SMDP)

MDP have some disadvantages respect of the distribution

function of the sojourn time in a state, for this reason in this
article we propouse a SMDP to successfully achieve the land-
ing of a UAV on a moving platform.
It is well known that if process {X;} is an SMC then the bi-
variate process {X;, B;} is a Markov chain, see, e.g., [17],
where its transition probability matrix P is a function of the
semi-Markov kernell as follows

) s i o
TR = T
Ol - if i = jand by — by = 1.

(14
where Fl(b) = P(Tl >b | Vo = Z) =1- Hl(b>

We use bivariate process {X;, B} to select the best action
according with the state and the backward of the system, in
others words, we search a policy 7* such that

/

7 (s) = argmax | 3 P(s']s,b, a) (R(s,b, a) +7V,r ()

15)
The main difference between Equiations (13) and (15) is that
the transition probabilities and rewards now depend on the
time the system has spent in the present state which is a ran-
dom variable, modeled by any discrete time distribution func-
tion.

4.5 Implementation

A Semi-Markov Decision Process (SMDP) is employed
to enable UAV landing on a moving platform. The system
defines five discrete states and five possible actions, summa-
rized in Table 1.
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Table 1: SMDP States and Actions

State Description Action Description
S1  Platform not in sight Al Move in circles
S2  Platform in sight A2 Center code
S3  Platform below A3 Move forward
S4  Landed (fail) A4 Move backward
S5 Landed (success) Ab Land

Available actions are {Al, A3, A4, A5} in S1, and
{A1, A2, A3, A4, A5} in S2 and S3. States S4 and S5 are
absorbing; any action leads back to the same state with prob-
ability one.

Rewards guide the UAV’s decisions by encouraging
progress and penalizing undesired behavior. The reward
function is empirically set as:

* Progress to next state: 43
* Remain in current state: +1

* Return to previous state: —3

In a SMC the semi-Markov kernel compuetes transition
probabilities between states, see Equation (10). The empirical
estimator for the semi-Markov kernel used in this article is
given by following equation

K”(t,M) :W forZJES,tEN, (16)
where M € N* is a sensor time and N;; (¢, M) is the number
of transitions on the embedded Markov chain {); } from ¢ to
j up to time M, with sojourn time ¢ such that 1 < ¢t < M.
N;;(t, M) is formally defined by

N(M)
Nij(t, M) o= > 1y, miy.—jTu=t)
n=1
M
= > 1y =iV Tt <M}
n=1
Therefore

Ni(M) :=> "> " Ny(t, M)

t=0 j€S
Notice that 1y,_ 43 is the indicator function of event A, that
means
1 1 if z=A4;
=A} = .
{e=4} 0 otherwise.

The data for computing Equation(16) where taken from
several flights.
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4.6  Algorithm Implementation

The following steps outline the implementation of the
mathematical framework described in Section 4:

1. For every s € S initialize V;:(s), with V(s) = 0 for
non-absorbing states.

2. Tteratively update V(s) using the Bellman equation.
3. Compute the optimal policy 7* (s) based on Vy (s).

5 EXPERIMENTAL VALIDATION

Experimental validation is a key component of this study.
The UAV states, actions, and rewards are defined based on
manual landing trials. A DIJI Tello UAV is selected for its
compact size, efficiency, and ease of programming.

In the first experimental stage, landings on a platform
moving at constant linear velocity in one dimension are per-
formed. The UAV’s position is adjusted to match the plat-
form’s motion, while manual control is applied to simulate
approach, alignment, descent, and touchdown phases. Each
maneuver is associated with specific actions and rewards to
reinforce desired behaviors.

The collected data is used to refine the SMDP model, en-
abling more robust decision-making for autonomous landing.

After the first stage in experimentation the following com-
putations were obtained based on the provided transition data.

5.1 Transition Probability and Reward Matrices

Table 2 shows a sample of the derived transition probabil-
ity (P) and rewards (R) of the embedded Markov chain {);}
of SMC {A}} of the UAV.

Table 2: Transition Probability and Reward Matrices

State Action Next State (') P(s'|s,a) R(s,a)
1 1 2 0.0 1.0
1 1 3 0.0 1.0
2 2 3 1.0 3.0
3 3 4 1.0 -3.0

5.2 Value Function and Optimal Policy

The value function V. (s) after convergence and the opti-
mal policy 7*(s) are shown in Table 3. This table helps the
UAV understand the best decision based on its actual state.

Table 3: Value Function V() and Optimal Policy 7*(s)

State (s) Value (V(s)) Optimal Action (a)
1 12.76 1
2 11.76 5
3 9.99 3
4 0.0 -
5 0.0 -
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5.3  Results

The experimental results demonstrate a progressive im-
provement in the UAV’s landing performance as the SMDP
model undergoes training and parameter adjustments. Ini-
tial landing attempts showed a high failure rate, highlighting
the need for fine-tuning both the decision-making framework
and control parameters. However, as the system iteratively
learned from previous experiences, the success rate signifi-
cantly increased, reflecting the model’s ability to adapt and
optimize its performance over time.

By the end of the experimental phase, the UAV consis-
tently achieved successful landings with greater precision and
stability. To further illustrate the system’s evolution and final
performance, a demonstration video is provided, showcasing
representative landing sequences throughout the training pro-
cess:
https://youtu.be/FTAL1xdZ64E.

Some screenshots have been taken from the video and de-
picted in Figures 3a and 3b

(a) Drone approaching (b) Drone landing

Figure 3: Drone landing procedure

Following figures represent the results of a series of
flights. The first graph represents a comparative analysis of
the percentage of successful drone landings over five-flight
intervals using three different control strategies: manual land-
ing (Non-Markov), Markov, and Semi-Markov processes.

The experiment involved grouping 25 drone flights into
five segments of five flights each and calculating the success
rate for each method in every interval. The Non-Markov ap-
proach, which lacks probabilistic decision-making, showed
lower and inconsistent success rates. The Markov approach,
which uses memoryless transitions between states, performed
better but had fluctuations.

The Semi-Markov approach, which considers both state
transitions and time delays, achieved the highest and most
stable success rates as depicted in Figure 4.
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Comparison of Successful Landings in Groups of 5 Flights

—e— No Markov
100 { —#= Markov
—&— Semi-Markov

40

Successful Landings (%)

/

6-10 1-15 16-20 2125
Flight Intervals

Figure 4: Comparison of successful landings

The effectiveness of three different landing strategies
(Non-Markov, Markov, and Semi-Markov) is evaluated by
measuring the closest distance to the platform across five
flight trials, see Figure 5. Each strategy was applied to a
drone during landing attempts, and for each flight, the short-
est distance achieved from the target at the final stage of the
flight was recorded. The improvement in landing accuracy
over successive flights is represented in the graph, with the Y-
axis indicating the closest distance to the platform (0-30 cm,
where lower is better) and the X-axis showing the flight num-
ber. It is observed that the most precise landings are consis-
tently achieved with the Semi-Markov strategy, followed by
the Markov strategy, while the Non-Markov approach shows
the least improvement over time. These results suggest that
the drone’s landing accuracy is enhanced over repeated at-
tempts when probabilistic decision-making models, particu-
larly Semi-Markov processes, are incorporated.

Closest Landing Distance vs. Flight Number

—e— No Markov
—.— Markov
—— Semi-Markov

Average Closest Distance to Platform (cm)

30

15 610 1115 1620 2125
Flight Number

Figure 5: Comparison of distance from target

6 CONCLUSION

This paper demonstrates the effectiveness of Markov De-
cision Processes (MDP) and Semi-Markov Decision Pro-
cesses (SMDP) for UAV autonomous landing. These mod-
els provide robust tools for real-time decision-making under
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uncertainty, as validated by experimental results showing im-
proved performance over non-probabilistic approaches.

The system exhibited notable gains in robustness and de-
cision accuracy. Initially, high failure rates highlighted the
challenges of dynamic environments, but iterative learning
led to progressively higher landing success, reflecting the
adaptability of the SMDP framework.

A key advantage of SMDPs was their capacity to model
temporal dynamics, outperforming standard MDPs by ac-
counting for state transitions and time delays. This resulted
in greater landing precision and stability.

Future work will focus on mitigating the system’s ten-
dency to remain in certain states too long, improving respon-
siveness via enhanced temporal modeling and adaptive learn-
ing. Testing in more complex, unpredictable scenarios will
further assess scalability and robustness.

Probabilistic models (particularly SMDPs) prove valu-
able for improving UAV autonomy, offering a path toward
more reliable and efficient real-world deployment.
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