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Abstract

Autonomous visual navigation in un-
manned aerial vehicles (UAVs) can
eliminate the need for global position-
ing systems and predefined maps, fa-
voring more flexible solutions. This
work presents an intelligent vision-
based path-following controller for a
commercial DJI drone. The controller
relies on a Convolutional Neural Net-
work (CNN), developed in Python us-
ing TensorFlow-Keras, which is trained
to predict the desired drone position
from a path marked with tape cap-
tured by the camera. The training
data is obtained manually from super-
vised flights with automatic labeling.
A nonlinear controller forces the drone
to achieve the desired position, allow-
ing it to travel the path. The re-
sults obtained using the Shape Context
descriptor method demonstrate that
the proposed strategy achieves effec-
tive route tracking.

1 Introduction
Computer vision is now a widely used technology;

its application has grown significantly since the 2010s,
particularly with the development of the Convolutional
Neural Network (CNN) AlexNet, which dramatically
reduced the error rate in image classification tasks
(ILSVRC 2012) [1]. As a result, computer vision is now
routinely applied to a wide range of domains, includ-
ing object detection [2], facial feature recognition [3],
medical image analysis [4], crop monitoring [5], and au-
tonomous navigation [6].
In the context of autonomous systems, computer vision
provides a rich, passive sensing modality that enables
mobile robots to interpret their environment using vi-
sual data. This characteristic is especially valuable for
Unmanned Aerial Vehicles (UAVs), where autonomous
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navigation based on computer vision provides a versatile
and cost-effective alternative to traditional localization
systems, such as the Global Positioning System (GPS),
particularly in urban canyons, indoor settings, or where
reliance on satellite-based localization is infeasible. The
ability to follow visible paths using only onboard cam-
eras minimizes dependency on external infrastructure.
The backbone for solving autonomous navigation tasks
using computer vision is the integration of CNNs that
enable robust perception of the environment through
learned feature hierarchies, are the driving force behind
key capabilities in vision-based navigation such as se-
mantic segmentation [7], monocular depth estimation
[8], obstacle detection, and visual odometry [9]. These
tasks are crucial for real-time autonomous decision-
making, enabling UAVs to map their environment, nav-
igate around obstacles, and plan safe trajectories.
CNNs are used in two main navigation paradigms: Me-
diated perception approaches, where CNN-based per-
ception modules extract high-level features or semantic
maps that inform downstream modules for planning and
control [10]. Behavioral reflex approaches, where visual
inputs are directly mapped to control commands using
deep CNNs trained with imitation learning [11] or rein-
forcement learning [12].
Path planning is one of the key challenges in autonomous
navigation. For example, in [13], the authors address
the problem of computing minimum-time trajectories for
first-person-view (FPV) drones navigating through clut-
tered environments. Their approach leverages reinforce-
ment learning to generate time-optimal paths while en-
suring obstacle avoidance. In the domain of self-driving
vehicles, computer vision techniques utilizing onboard
cameras are employed for tasks such as image segmenta-
tion and object detection. Specifically, geometric shapes
of particular colors are identified through visual process-
ing, and this information is used to estimate the appro-
priate steering angle, enabling the vehicle to follow a
predefined path [14].
Nevertheless, several challenges remain in deploying
CNNs for autonomous navigation in the wild. These
include generalization across diverse environments, han-
dling sensor noise and occlusion, and real-time inference
constraints on embedded platforms. Addressing these
issues has led to research in domain adaptation [15],
uncertainty-aware modeling [16], and hybrid systems
that integrate learning-based perception with traditional
robotics pipelines [17].
This work focuses on the design of a vision-based path-
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following control system for commercial quadrotors em-
ploying a CNN as the perceptual core. The system in-
terprets images captured by a front-facing camera to de-
termine the direction to follow, allowing direct visual
tracking of a path defined by a colored tape. The CNN
is trained under the mediated perception approach to re-
place the image processing of a navigation strategy based
on the center of mass (CMSS) of the viewed path. The
implementation is carried out on a DJI mini 3 pro drone,
utilizing a laptop as the processing unit, with a solu-
tion developed in Python using TensorFlow-Keras. This
configuration aims to maximize portability and leverage
resources available in the commercial environment.

2 Real-time video stream processing
2.1 Drone video acquisition
The primary tool for communication with the drone is
an Android 14 smartphone with the 5.12.0 version of the
DJI Mobile SDK (MSDK) [18] pre-installed on it and
connected, via a USB Type-C cable, to the DJI remote
controller (RC). The MSDK app was modified by adding
two virtual buttons for activating and deactivating Vir-
tual Sticks. The Virtual Sticks allow for commanding
the drone’s translational velocities and rotational speed
around the vertical axis.
Two servers are running on an Acer laptop with an In-
tel(R) Core(TM) i7-9750H CPU @ 2.60GHz, 16.0 GB
RAM, 3.01 TB storage with an NVIDIA GPU GeForce
GTX 1660 Ti: one for collecting video frames using
MediaMTX [19], an open-source software that allows
for publishing video streams with Real-Time Messaging
Protocol (RTMP) over a TCP connection on port 1935.
The stream is captured in Standard Definition (SD)
landscape orientation (848 x 480 px) from the MSDK
app, with a maximum frame rate of 30 FPS. The other
one is a TCP-gRPC server through which commands to
control the drone are transmitted via Wi-Fi from the
laptop to the drone radio controller. This experimental
setup was designed in [20]. Consult the official drone
documentation [21]

2.2 Image processing with OpenCV library
The video frames are captured in the three-channel RGB
color format by a down-facing camera integrated into the
drone. Since a particular blue tape defines the desired
path, the RGB format is converted to HSV format, which
separates color tone (H) from intensity (S) and luminos-
ity (V) [22]. Then, color segmentation is implemented by
defining a range between [100, 150, 50] and [140, 255, 255]
within the HSV space where the blue color of the tape
exists. The frame is then cleaned using morphological
operations, such as "close" to fill in the gaps formed by
black pixels within the white areas, and "open" to elimi-
nate small isolated pixels, since any noise, gaps, or false
spots in the mask directly affect the location of that cen-
ter. Finally, the pixel values are normalized by dividing
the mask by 255, resulting in values between 0 and 1.
In practice, this process is equivalent to applying a blue
color filter, where ones represent the detected path and
zeros correspond to the background. The pseudoalgo-
rithm in 1 illustrates the workflow of this image process-
ing procedure, while Figure 1 presents the effect of the
image processing on a image frame.

Algorithm 1 Color Detection using CMSS
A Input: frame, lower_color, upper_color, kernel_size
Output: (x_cmss, y_cmss), mask_clean

B hsv ← ConvertColor(frame, BGR_to_HSV)
C color mask ← InRange(hsv, lower_color, up-
per_color)
kernel ← Ones(kernel_size, kernel_size)
mask closed ← Morph(mask, MORPH_CLOSE, ker-
nel)
mask clean ← Morph(mask_closed, MORPH_OPEN,
kernel)
D mask clean ← mask clean
binary mask ← mask clean / 255

if Sum(binary mask) == 0 then
return None, mask clean

com ← CenterofMass(binary mask)
if isnan(com.x) or isnan(com.y) then

return None, mask clean
else

x_cmss ← int(com.x) y_cmss ← int(com.y)
return (x_cmss, y_cmss), mask_clean

Figure 1: Image processing on a non-augmented sample using
Algorithm 1. The input (A), BGR to HSV (B), the color
mask (C) and clean mask (D) are shown.

3 Drone model and control
Considering the RC control inputs, the DJI drone flying
at a constant altitude can be modeled by the follow-
ing differential equations [20]. The altitude dynamics
are omitted in this model because the drone’s onboard
control system maintains a nearly constant altitude au-
tomatically during flight. This simplification allows the
model and controller to focus on horizontal motion, while
altitude variations are effectively handled by the drone’s
internal stabilization.

Ẋ = RψU, Ṙψ = RψS(r) (1)

with X = [ x y ]⊤ the quadrotor inertial position, U =
[ u v ]⊤ the quadrotor longitudinal velocity in body
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coordinates,

Rψ =
[
cψ −sψ
sψ cψ

]
∈ SO(2)

the drone attitude with
SO(2) =

{
Rψ |R⊤

ψRψ = I, det(Rψ) = 1
}

and r the drone angular speed around its vertical axis1.
Moreover,

S(r) =
[

0 −r
r 0

]
∈ so(2)

with so(2) the Lie algebra of SO(2).
At each frame, see Figure 2, it is considered that the
inertial reference system is located at the center of the
image so that the drone position is X = 0. Moreover, the
CoM position is defined as the desired drone position Xd

and the angle between the 0xi axis and the line that joins
the center of the image and the position of the CMSS is
equal to ψ.
To ensure compatibility between the image coordinate
frame and the drone coordinate frames, all positions are
expressed in pixel coordinates. The image coordinate
system 0xvyv is translated to the center by summing to
all image measurementsXv

c = [ cx cy ]⊤ with cx = 424
and cy = 240, which represent the center of an image of
848× 480 pixels.
Using OpenCV the CMSS of the path viewed in the cur-
rent frame is defined as Xv

CMSS = [ cmssx cmssy ]⊤,
thus

Xv
d = Xv

CMSS +Xv
c

The position error at each frame is defined as
X̃ = Xd −X

with Xd = R(−π/2)X
v
d , since at each frame the drone

position is assumed to coincide with the image center, it
follows that X = 0. The angle ψ can be computed as

ψ = arctan
(
ỹ

x̃

)
(2)

The control objective is stated as follows.

Control objective. Assume that XCoM is available.
Design U and r such that between image frames X̃ and
ψ approach zero. The control objective is satisfied with
the following controller. For the translational position

U = R⊤
ψ X̃ (3)

For the angular position the controller is designed follow-
ing [23]. The desired attitude is ψd = 0 so that Rψd

= I.
The attitude error is R̃ψ = Rψ. Thus,

r = −krPa(Rψ)∨ (4)
with

Pa(R̃ψ) = 1
2

(
R̃ψ − R̃⊤

ψ

)
∈ so(2)

and (·)∨ : so(2)→ R.

1In the following, sψ = sin(ψ) and cψ = cos(ψ).

4 Navigation strategies
Once each frame from the video stream is processed,
it is used to define a control strategy that guides the
drone along the path. The intelligent control strategy
was developed as follows. First, the processed image
is employed to determine a point over the path that
the drone must follow. This point is computed using
OpenCV commands such as the CMSS of the detected
path with respect to the image center. A yaw angle is
also determined as the angle between the line that joins
the CMSS location and the center of the image and the
vertical axis of a reference frame attached to the image
frame. The point location and angle are fed into the
controller, which drives the drone to travel along the
path. Then, using the data from this navigation strat-
egy, a CNN is trained to determine the point location
and angle that are fed to the controller.

Figure 2: Inertial frame 0xiyi origin (yellow point). Path
CMSS Xd (red point). Yaw angle ψ.

4.1 Navigation without the CNN
The pseudoalgorithm 1 ends with all the information to
implement the controller (3), (4). In the results section
is shown that the drone is able to track the path.

4.2 Navigation with the CNN
Now, data from four flights of navigation without the
CNN were saved; this data consists of an image frame
labeled with the corresponding CMSS location and saved
to a CSV file organized in three columns. This data was
used to train the CNN and compute the path based on
CMSS location predictions.

Data collection
From the navigation experiments without CNN, one
frame out of every six frames was saved, resulting in
a total of 2065 samples organized into four folders: two
corresponding to clockwise (CW) route tracking and two
to counterclockwise (CCW). This division was necessary
because, in practice, the route is not always followed in
exactly the same way. By structuring the dataset in this
way, we ensured that both directionality and variability
in the path execution were adequately represented for
training and evaluation.
To strengthen CNN training for color and shape detec-
tion in scenarios where luminosity may vary, data aug-
mentation was employed. For each image sample, five
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versions of it were generated, two to vary the bright-
ness and one for contrast, using the following relation-
ship [24]:

g(i, j) = α · f(i, j) + β

where f(i, j) and g(i, j) denote the original and new pixel
values at position (i, j), respectively. The parameter α ∈
(0, 1) adjusts contrast, while β controls brightness: β < 0
darkens the image, and β > 0 increases brightness.
In the fourth and fifth images the gamma value was mod-
ified according to the formula [24]:

O =
(

I
255

)γ

· 255 (5)

where O are the mapped output values from the image,
I are the input values; for 0 < γ < 1 light areas appear
darker and γ > 1 darker areas appear lighter. The CMSS
position label was only copied to the extra five variations
of each frame.
After data augmentation the dataset has 38,778 image
frames and labels. Figure 3 shows the augmented data
and the original frame.

Figure 3: Sample of the dataset after the data augmentation.

4.3 CNN
The CNN was trained with TensorFlow. The input for
model is a dataset binarized and resized to 300x169 px,
with a single channel (grayscale) normalized in the range
[0, 1]. The structure of the network is composed of three
convolutional blocks, see Table 1, with ReLU activation
and max-pooling, followed by dense layers that perform
the regression of two continuous values, the coordinates
of the CMSS XCMSS .
From the augmented dataset, only 20,000 samples were
selected for training, due to the size of the processing
unit memory in the GPU which is 6 GB. The maxi-
mum number of samples was determined by trial and
error. The 80% was used for training and the rest for
validation. The model was trained for a maximum of
100 epochs with a batch of 16 and the Adam optimizer
with the default learning rate. Regarding the training
errors, the Mean Square Error (MSE) is used as a loss
function while the Mean Absolute Error (MAE) is used
as an evaluation metric that represents the average de-
viation between model predictions and actual values. To

Layer Details
0 Conv2D (Input) 32 filters, 3×3 kernel, ReLU activation
1 MaxPooling2D 2×2 pool size
2 Conv2D 64 filters, 3×3 kernel, ReLU activation
3 MaxPooling2D 2×2 pool size
4 Conv2D 128 filters, 3×3 kernel, ReLU activation
5 MaxPooling2D 2×2 pool size
6 Flatten Converts 3D tensor to 1D
7 Dense 128 units, ReLU activation
8 Dense (Output) 2 units (linear activation for regression)

Table 1: CNN Architecture.

avoid overfitting, Early Stopping strategies were imple-
mented, and the model was saved with the lowest loss in
validation using Model Checkpoint. The combination of
software and library versions that allowed running the
Nvidia GPU for training correctly is presented in Table
2.

Software/Library Details
Operating system Windows 11
Python 3.11.4
TensorFlow 2.18.0
Sklearn 1.3.0
NumPy 1.24.3
CUDA Toolkit 12.7
cuDNN 8.6
GPU NVIDIA GTX 1660 Ti
NVIDIA driver 566.36
VSCode 1.102.1
Anaconda 2.6.3

Table 2: Computational resources for CNN training.

5 Results
5.1 Trained CNN
The training process took 42 epochs to complete, during
which the MAE and the loss function were monitored for
training and validation sets.
Figure 4 shows the evolution of the MAE. A continuous
decrease is observed in the training set, from 0.0330 to
0.0092, indicating that the model undergoes progressive
learning from the dataset. The validation set decreases
towards an oscillation phase between 0.0169 and 0.0207.
This variability suggests that the model reached a sat-
uration point in its capacity to generalize. The model
achieved a final MAE of 0.0154 over normalized coor-
dinates, equivalent of ≈ 13 px in X and ≈ 7 px in Y ,
corresponding to an average Euclidean distance of ≈ 15
px.
Figure 5 corresponds to the loss function (MSE) dur-
ing the training process. From epoch 10 onwards, train-
ing loss decreases until it stabilizes around 0.0006. In
the validation set, it stabilizes without showing relevant
changes, which suggests that the model does not incur
significant overfitting and maintains its generalization
capacity throughout training. The final loss (MSE) was
0.0012, whose root mean (RMSE) corresponds to an er-
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ror of ≈ 29 px in X and ≈ 17 px in Y , with an average
Euclidean distance of ≈ 34 px on the validation set. The
model learned around epoch 15–20, suggesting that con-
tinuing training beyond this point offers little improve-
ment. Model performance was confirmed by real-world
testing.

Figure 4: MAE vs Epoch graph.

Figure 5: Loss (MSE) vs Epoch graph.

5.2 Experimental tests
Two runs were performed using the CMSS calculation
and two more using the predicted values from the model,
CW and CCW. Figure 6 and Figure 7 were obtained from
these runs, where the trajectories were plotted using data
from an Optitrack system.
To verify the following of the real path, the Shape Con-
text algorithm was implemented, which is scale invariant
and reflects the structural difference between shapes [25],
estimating correspondences between points in the geom-
etry paths traced by both, predictions from the CNN
and CMSS. The result indicates that with the CNN pre-
diction method with a shape context distance of 64.6561
(CCW) and 123.3177 (CW) it has better similarity with
the original trajectory, while the shape context distance
of the CMSS was 71.5434 (CCW) and 133.6464 (CW)
making it further away in geometric structure.

6 Conclusions
This work presented the design of a control algorithm
calculated from CNN predictions of coordinates so that
a commercial DJI drone can navigate autonomously on
a reference, using freely available software tools that can
be used for real-time image processing with computer
vision. The system was validated through experiments
under real-world conditions. In the initial stage, track-
ing issues were identified due to light reflections in areas
on the floor where the blue tape was placed. This led to

increasing the training dataset by varying the illumina-
tion range of the images already taken. The capabilities
of the proposed system were tested and met the objec-
tive, as can be seen in the comparative graphs in Figure
6 and Figure 7 of the experimental routes and the differ-
ence calculated with the Shape context algorithm. The
result is that the predictions of a trained model com-
bined with computer vision can be an alternative for
solving real-time autonomous navigation tasks. To com-
plete the experiment, a full analysis of the CNN used
is currently underway. Consideration is being given to
strengthening the system by using deeper networks such
as CNN+LSTM, thus capturing the temporal evolution
of the tracking to provide early predictions. This would
open up the possibility of integrating more advanced pre-
dictive controllers.
Suplementary material at:https://youtube.com/playlist?
list=PLIFqXxbt6YQT_ZDaQDj3KNkFF3OEGUaGR&si=-vMcyr-
04_M1mLYf

Figure 6: Path traveled CW.

Figure 7: Path traveled CCW.
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