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ABSTRACT

The growing demand for accurate object detec-
tion across diverse applications has intensified
the need for efficient and adaptable dataset gen-
eration techniques. In this study, we explore the
use of synthetic datasets in the domain of Mi-
cro Air Vehicles (MAVs), addressing both in-
door and outdoor detection tasks. We propose
two procedural geometry-based approaches us-
ing Blender, a 3D modeling software, to sim-
ulate datasets for drone-based landing pad de-
tection and animal detection in competition sce-
narios. These datasets were validated through
participation in the Brazilian Robotics Compe-
tition 2023 and the IMAV 2024. Our results
demonstrate that synthetic datasets can signifi-
cantly reduce annotation effort, offer high adapt-
ability, and maintain dataset quality, provided
qualified personnel are available. We compare
these synthetic approaches with traditional real-
world dataset generation methods and highlight
their potential to streamline dataset creation in
robotics and AI.

1 INTRODUCTION

With the growing adoption of object detection technolo-
gies across various fields, the need for high-quality datasets
has become increasingly critical. In particular, applications
involving Micro Aerial Vehicles (MAVs), commonly known
as drones, require task-specific datasets due to variations in
operational scenarios and detection distances, thereby inten-
sifying dataset development challenges.

The traditional process of building datasets consist in cap-
turing real world images and manually annotating then, how-
ever it is too resource-intensive and time-consuming. This
process becomes unfeasible for highly specialized situations
(as with the MAV domain), thus some new processes seeks
to bypass the real world interaction, with varying degrees of
success.

We briefly present these different techniques and investi-
gate the application of synthetic datasets created by 3D mod-
eling and rendering. This investigation led to the development
of two datasets validated in MAV competitions and also high-
lighted some strengths and weaknesses of the methods used.

*Email addresses: guilhermesangabriel@usp.br, bruno as@usp.br

2 STATE OF THE ART

Recent research has explored the use of synthetic datasets
as an alternative to traditional real-world data collection. One
notable example is the FireFly dataset [1], developed with
Unreal Engine 4 to simulate a forest environment with re-
alistic fire-induced embers. Designed for firefighting-drone
scenarios, this dataset demonstrated that synthetic data can
achieve statistically comparable performance to real-world
datasets, thereby validating its use in practical applications.

Synthetic datasets for object detection are typically gen-
erated using two main approaches: image-based and proce-
dural geometry-based methods [2], as presented in Figure 1.

The image-based approach relies on existing images to
generate new ones, often using generative techniques such
as Transformer models, diffusion models, and autoencoders.
While effective, these methods requires a realistic image
dataset beforehand.

In contrast, the procedural-geometry approach uses 3-
D modeling tools to create fully controllable and realistic
scenes, offering greater flexibility in modifying elements such
as lighting, backgrounds, camera positions, and object place-
ments.

Figure 1: Taxonomy showing some options for synthetic data
creation.

Game engines and 3D CAD softwares are required tools
for the synthetic data generation:

• Game engines — Provide tools for procedural ani-
mation and scene variation. For instance, the People-
SansPeople dataset generator [3] built on Unity enables
semi-automated creation of labeled datasets for person
detection and human-pose estimation.
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• 3-D CAD tools — Offer object modeling and realis-
tic rendering capabilities. We could cite the software:
Blender, Maya, and SolidWorks Visualize [4].

Although these tools (Figure 1) are not traditionally in-
tended for dataset creation, most of them exposes scripting
interfaces that allow developers to design custom plug-ins
and to automate the generation pipeline. In this context, we
propose two geometry-based approaches for synthetic dataset
generation tailored to indoor and outdoor MAV scenarios,
each validated in real-world robotics competitions.

3 GEOMETRY-BASED SYNTHETIC DATASETS FOR
MAV DETECTION

Two primary advantages of geometry-based synthetic
datasets are (i) the elimination of manual annotation and
(ii) the flexibility in scene generation.

Manual annotation is labor-intensive and prone to incon-
sistencies arising from varying labeling guidelines. In our ap-
proach, object dimensions and positions are extracted via the
Blender API to automatically generate bounding boxes and
metadata, ensuring both large dataset size and labeling con-
sistency without human intervention. Additionally, the ability
to manipulate scene elements, lighting, and camera param-
eters enhances the representativeness of the generated data.
Assets such as 3-D objects and textures were sourced from
free repositories like PolyHaven and BlenderKit.

3.1 Landing-Pad Detection Dataset (CBR 2023)
In the 2023 Brazilian Robotics Competition (CBR), the

precision-landing challenge of the RoboCup Brazil Flying
Robots Trial League required drones to do indoor detection
of 1 m × 1 m landing pads, at distances ranging from 1 to 8 m.
Figure 2 illustrates the landing pad used for the competition.

Figure 2: Landing pad pattern used in the CBR 2023 compe-
tition.

The dataset was generated using Blender’s procedural-

Figure 3: Images created using technique 1.

geometry pipeline, controlled via a Python script. Two tech-
niques were employed:

Figure 4: Images created using technique 2.

1. Background-texture variation: The landing-pad
model was rotated and repositioned across varying dis-
tances and angles relative to the virtual camera. High-
dynamic-range imaging (HDRI) textures were proce-
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durally rotated and translated to provide contextual
variation [5]. Figure 3 presents some samples of the
generated images.

2. Scene-element variation: The landing pad was placed
on various planar terrains with randomized configura-
tions of surrounding objects. Both terrains and objects
were procedurally repositioned and rotated. Lighting
was modeled with a combination of ambient illumina-
tion and directional sources whose color temperatures
matched common indoor lights (e.g., fluorescent, halo-
gen, LED). Figure 4 presents samples produced in this
process.

Additional frames with close-up views and partial occlu-
sions were rendered to reflect realistic proximity scenarios
during landing. All annotations were generated automati-
cally.

3.2 Animal-Detection Dataset (IMAV 2024)

The 2024 International Micro Air Vehicle (IMAV) com-
petition posed an outdoor challenge requiring drones to de-
tect zebra-striped animal markers (Figure 5) from a bird’s-eye
perspective.

Figure 5: Examples of Top-down Images of Zebra for the
Census Task: © Yauheniya Piatrouskaya.

Using the presented technique, Blender scenes of zebra
markers embedded in outdoor environments were populated
with 3-D objects such as vehicles, vegetation, buildings, and
other animals. Lighting conditions simulated the sun’s tra-
jectory to introduce temporal variation, and select frames in-
cluded fog elements to emulate low-visibility conditions. All
annotations were generated automatically via scripting.

4 RESULTS

4.1 Hardware and software environment

Training was executed on a workstation with
Ubuntu 22.04 LTS (x86 64, kernel 6.5), Python 3.10.12,
PyTorch 2.7.1 built with CUDA 12.6, and Ultralytics
YOLOv8 v8.3.150 [6].

The available accelerator was an NVIDIA GeForce
RTX 4060 providing 7 808 MiB of addressable memory.

The YOLOv8-nano backbone was fine-tuned for 200
epochs on 720×720 px images with a mini-batch of 16 using:

yolo detect train data=˜/data.yaml \
model=yolov8n.pt \
epochs=200 imgsz=720 \
batch=16

A total of 1,883 procedurally rendered images were
used for training and 401 real photographs (460 annotated
landing-pad instances) for validation. The network converged
in 17 epochs.

4.2 Performance of the best epoch

The obtained model achieved the following performance
indicators:

• Precision: 0.926

• Recall: 0.895

• mAP @0.5: 0.966

• mAP @0.5:0.95: 0.804

• GPU memory: Under 3 GB

• Inference speed: 1.3 ms per frame on the RTX-4060

Figure 6: Confusion matrix for the real-image validation set
(460 ground-truth instances).
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Figure 7: Sample predictions on real validation images.

The confusion matrix (Fig. 6) indicates that 87% of
ground-truth objects were correctly detected (TP = 398 of
460), while 6% of predictions were false positives (FP = 26
of 398 + 26 predictions). The remaining 62 false negatives
stem largely from extreme viewing angles and harsh shad-
ows.

Figure 7 illustrates a subset of the real validation set used
for quantitative evaluation. The detection results shown were
produced by the model trained solely on synthetic images.
Despite variability in lighting conditions, viewing angles,
shadows, and partial occlusions, the model consistently lo-
calized the landing pads with accuracy and robust box place-
ment.

Mean Average Precision (mAP) is adopted as the prin-
cipal evaluation metric as it is the community standard for
ranking detectors in major challenges [7]. Balancing false
positives and false negatives, mAP integrates the entire preci-
sion–recall curve. Specifically, the COCO protocol computes
AP at ten progressively stricter IoU thresholds (0.50 to 0.95 in
0.05 steps) and then averages them, causing the final score to
reward both correct class prediction and tight box placement
while avoiding the arbitrariness of a single IoU cut-off.

The choice to validate on real images instead of synthetic
ones is deliberate. When training and validation come from
the same graphics engine, a detector may achieve high scores
simply by exploiting rendering regularities; such scores do
not guarantee transfer to flight conditions and encourage
over-fitting to synthetic artifacts. A real-image validation
set—shot under varied lighting, backgrounds and viewing
angles—acts as a proxy for deployment and makes the eval-
uation stricter. Taken together, the high detection metrics
(Fig. ??), low latency and small memory footprint demon-
strate that a lightweight network trained exclusively on proce-
durally generated data generalizes effectively to real imagery
and fulfils the accuracy and timing requirements of micro-air-
vehicle applications.

The validation used in the CBR 2023 dataset was not
applied to the one used in the IMAV 2024 competition. In
this case, the effectiveness of the dataset could be determined

anecdotally using the results of the actual competition. The
Skyrats drone team, using the dataset in question, was able
to detect all the zebra markers that the task positioned in the
flying area (Fig. 8), with no false positives, even when other
animals could be seen in the drone imaging.

Figure 8: 2 of 10 zebras detected at IMAV 2024 (conf. 0.73
& 0.76)

5 DISCUSSION

The dataset creation process revealed key distinctions be-
tween synthetic and real-world datasets:

• Dataset localization — not specifically related to the
task presented in the CBR competition but common in
other usages such as rescue missions in outdoors sce-
narios or the conservation situation presented in IMAV
2024 is the varied possible geographical locations. A
real life dataset that tries to offer detection in forests
may need the actual location, or something close to
it, to be effective in its task. If this is not possible, a
synthetic dataset can simulate the location needed pro-
vided that the designer knows the region well enough
to account for the specifics of it;

• Automated annotation — as previously noted, the au-
tomated annotation process is a huge benefit of the
method developed, skipping the need of an individual
to not only label the images correctly, but also to estab-
lish and follow the dataset labeling guidelines;

• Adaptability in new situations — Another big ad-
vantage of the synthetic method provided comes from
the adaptability component intrinsic of the method.
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If needed, as when an aspect of the dataset wasn’t
representative of real life situations, a new patch in
the dataset can be developed relatively easily, without
the need to do all the normal steps of data collection
and labeling after the fact. This is particularly use-
ful when prototyping a system that may need changes
that couldn’t be accounted for in the beginning or when
mixing real life data with the specific needs of the ap-
plication being currently developed;

• Need for qualified individuals — One of the chal-
lenges of the method developed is in how specific the
toolset required to create it is. The individuals in-
volved in the project had to have been exposed to the
tool (Blender) before, and also needed to have a highly
niche knowledge such as using the python API, some-
thing not part of the main workflow of the tool;

• Number of individuals needed — In a real life sit-
uation, the need for multiple pictures might force the
dataset to be created by a collective of individuals con-
currently so the process is faster. In the synthetic
method proposed, even though the individuals need
some relevant prior training in the tools involved, the
actual number of individuals can be massively de-
creased, leading to a smaller human footprint on the
project.

Table 1: Comparison Between Real-World and Synthetic
Dataset Methods

Criterion Real-World
Dataset

Synthetic Dataset

Localization Geographically
constrained

Region-flexible
(designer-
dependent)

Annotation
time

Manual / semi-
automated

Fully automated

Adaptability Slow, labor-
intensive

Rapid and modular

Tool qualifica-
tion

General labelling
tools

3-D tools & script-
ing required

Team size Larger teams Smaller, spe-
cialised teams

6 CONCLUSION

This work demonstrates the feasibility and advantages
of synthetic dataset generation for MAV applications us-
ing procedural geometry and open-source tools. The devel-
oped datasets addressed indoor precision-landing and outdoor
marker-detection tasks and were validated in robotics com-
petitions. Results show that synthetic datasets are not only
viable substitutes but can surpass traditional methods in flexi-
bility, annotation efficiency, and adaptability—despite requir-
ing specific technical expertise.

Next steps to the work presented come with the devel-
opment of a plug-in inside Blender specialized on helping
with synthetic dataset creation. To better validate the results
in these new cases, a comparison between the synthetic and
a fully real-life based dataset could help elucidate how well
both approaches function.
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