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ABSTRACT

Measuring air quality is a burning challenge,
and an increasing number of drones are now
equipped with pollution sensors to detect air-
borne pollutants. This paper presents a trajec-
tory tracking strategy that allows the drone to
fly along the edge of the plume, preventing it
from entering the plume where heat and gas con-
centrations are high. Algorithms developed in
Python were tested in simulation with virtual
plumes based on emulated GPS data, then val-
idated experimentally in the field and during a
real fire using an onboard particle sensor embed-
ded on a quadcopter.

1 INTRODUCTION

One of the most significant industrial fires in France in
recent years remains that of the Lubrizol and Normandie Lo-
gistique sites, which occurred on September 26, 2019, near
Rouen. This large-scale disaster ignited a hydrocarbon pool
covering more than 20,000 m2, releasing a massive plume of
black smoke over the city. More recently, on April 9, 2025,
a battery recycling plant exploded in Kilwinning, Scotland.
In the face of such events, understanding the composition of
these plumes becomes a crucial issue: it is not only a mat-
ter of improving risk management, but also of informing and
protecting populations.

When a fire breaks out, large quantities of fine particles
(PM ) and polluting gases – such as nitrogen dioxide (NO2),
sulphur dioxide (SO2) and carbon dioxide (CO2) – are re-
leased into the atmosphere [1]. Depending on the fire’s origin,
other gases like hydrogen fluoride (HF ), hydrogen chloride
(HCl), and similar compounds may also be emitted, partic-
ularly in the case of industrial fires. Exposure to these sub-
stances can have deleterious effects on the health of local pop-
ulations, depending on the duration and concentration of ex-
posure. Faced with these risks, the emergency services must
rapidly assess the situation to establish a safety perimeter and,
if necessary, organize the evacuation of areas at risk.
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In such contexts, drones have been extensively deployed
to monitor smoke plumes and the dispersion of pollutants.
The analysis of fire-related smoke, however, raises two major
challenges: should the measurements be conducted indoors,
as in the case of an apartment fire, or outdoors? In the former
case, the drone must operate directly within the smoke and
therefore requires an architecture capable of withstanding ex-
treme temperatures. The FireDrone project [2] addressed this
issue by introducing a thermally resistant UAV, equipped with
insulating materials and a biologically inspired phase-change
cooling system, enabling safe operation under harsh condi-
tions.

For outdoor smoke analysis, such as in wildfires or large-
scale industrial accidents, plumes can be transported over sev-
eral kilometers. To tackle these challenges, numerous re-
search initiatives—supported in France in particular by the
French National Research Agency (ANR) [3, 4]—have fo-
cused on developing innovative approaches for measuring
and mapping air pollution using fleets of drones. [5] proposed
a ConvLSTM-based model coupled with data assimilation to
map smoke dynamics in real time, with adaptive recalculation
of drone fleet trajectories. Similarly, [6] developed a coopera-
tive reinforcement learning approach to optimize multi-drone
coordination and produce reliable plume maps.

In this article, we focus on large-scale industrial fires, for
which the development of effective plume-mapping strategies
is essential. In the literature, two main classes of strategies for
mapping pollutant clouds can be identified: those in which
the drone penetrates the cloud, and those in which it navigates
along its boundary.

The first family consists of flying the drone inside the
cloud to collect measurements at the heart of the plume. For
example, [7] proposes strategies such as the rosette trajectory,
which involves 2D exploration by several internal passes, and
the oblique cone spiral, characterized by a helical movement
within the cloud. Other works, such as [8], use swarms of
drones to detect, explore, and map the boundaries of the cloud
using coordinated dispersion.

However, in the specific case of fire plumes, the high heat
and high concentrations of pollutants make it risky to fly di-
rectly through the cloud, both for the drone and its sensors,
that risk being saturated or damaged. Rather than using re-
inforced UAVs and sensors [2], a parsimonious approach is
favored by limiting flight to the periphery of the plume.

We are interested in the second family of cartography
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strategies, in which the drone evolves only on the border
of the cloud. In [7] notably, two approaches are distin-
guished: the “Trinity” strategy, which consists of loop tra-
jectories around the periphery of the cloud ; and the “Lace”
strategy, where the drone follows arcs along the border of the
cloud (see Figure 2) similar to the methods presented in [8, 9].
The adopted strategy is derived from the latter.

More specifically, this study presents the development
of an autonomous system built around a quadcopter drone
equipped with a particle sensor, designed for real-time map-
ping of smoke plumes and for monitoring pollutants along
the plume boundary. Following the description of the drone
prototype and its onboard detection system (Section 2), the
article examines the proposed flight control strategy (Section
3), details the experimental campaigns (Section 4), and dis-
cusses the results obtained (Section 5).

2 ARCHITECTURE

2.1 Drone Prototype

The prototype used in this study is a quadcopter based on
the X500 kit from Holybro. The carbon fiber frame adopts an
X configuration. It measures 50 cm in diameter and has an
empty weight of 978 g. The kit includes all the components
necessary for assembly: a Pixhawk 4 autopilot, four brush-
less motors, four electronic speed controllers (ESCs), a PM07
power distribution board, a GPS module, propellers, a radio
telemetry module, a FrSky XR8 receiver, as well as power
and communication cables. Manual control of the drone is
provided by a FrSky Taranis X7ACCESS remote controller,
which transmits instructions to the Pixhawk 4. To enable
autonomous missions, a Raspberry Pi 3B+ mini-computer is
also onboard. It communicates with the Pixhawk via a USB
connection and hosts the adaptive flight algorithms. Addi-
tionally, the Raspberry Pi receives sensor data through an SPI
connection with an Arduino Mega, which serves as an inter-
face for collecting environmental measurements.

2.2 Onboard Measurement System

The measurement module mounted on the drone inte-
grates the following components:

• An OPC-R2 20 particle sensor,
• A GSM communication module,
• A GPS module,
• A SD card reader,
• An Arduino Mega.

The OPC-R2 sensor, which operates based on light
diffraction principles, enables the detection and classification
of airborne particles. The data collected by the sensor are
processed by the Arduino Mega, and then transmitted to an
online database via a 2G connection provided by the GSM
module. In parallel, the measurements are geolocated using
the GPS module and stored locally on an SD card.

The collected data are also sent to the onboard Raspberry
Pi for further processing via an SPI connection. The entire
system is powered by a 4S 3700 mAh Tattu LiPo battery. An
overview diagram of the system is presented in Figure 1.

OPC-R2
Level
Shifter

Arduino Mega

GPS

Level
Shifter

GSMRaspberry Pi

Pixhawk
Drone’s

GPS

TelemetryRadio
receiverESCs

SD card

Figure 1: Architecture of the measurement system.

3 PLUME-EDGE TRACKING STRATEGY

3.1 Navigation Strategy: the ‘Lace’ Approach

As part of our application, the adopted navigation strategy
is inspired by the ‘Lace’ method described in the paper [7]
and illustrated in Figure 2. This strategy is based on a trajec-
tory pattern composed of successive circular or elliptical arcs,
alternating inside and outside the area to be mapped. When a
particle concentration threshold is exceeded, the drone initi-
ates a trajectory along the boundary of the cloud, alternating
between approach and bypass phases.

This strategy can be innovatively reimagined by redefin-
ing its core approach. For example, one novel adaptation in-
volves exclusively performing exterior trajectories, see Fig-
ure 3, thereby circumventing sensor saturation that would
otherwise result from the high particle concentrations found
at the core of the cloud. Similarly, the shape of the trajecto-
ries can be adapted: instead of following a perfect circle, an
ellipse or a polynomial curve can be used to better match the
actual shape of the cloud.

Figure 2: Lace adaptive flight pattern derived from [7].

NOVEMBER 3-7, 2025, SAN ANDRÉS CHOLULA, PUEBLA, MEXICO 157
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Figure 3: The ‘Petals’ strategy used in this work.

3.2 Strategy Process
The Lace strategy is divided into several steps:

1. Initial Approach: the drone flies in a straight line to-
ward the estimated position of the cloud.

2. Boundary Detection: as the drone enters the cloud (de-
fined by a particle concentration threshold), it stops its
forward movement.

3. Looped Trajectories: the drone then performs circular
or elliptical trajectories around the concentration zone
each time it detects the cloud boundary.

4. Mission Completion: Once the mission-ending con-
ditions are met (e.g., low battery), the drone au-
tonomously concludes the tracking of the cloud.

Simulations were conducted using the QGroundControl
software, which allows for aerial visualization of the drone’s
trajectory.

3.3 Algorithmic Architecture
The proposed control algorithm is represented by the

flowchart in Figure 4. The adapted ‘Lace’ strategy – after-
wards called ‘Petals’ – workflow is as follows:

• Takeoff preparation: switch to “STABILIZE” mode while
awaiting user instruction.

• Takeoff: Switch to “GUIDED” mode, arm the drone, and as-
cend to the target altitude.

• Navigation toward the cloud: fly toward the predefined GPS
coordinates corresponding to the suspected area.

• Position hold and trajectory calculation: In “LOITER” mode,
the drone holds its position and computes the GPS waypoints
forming the elliptical trajectory.

• Trajectory execution: move in straight lines between the GPS
waypoints of the ellipse.

• Boundary loss: if the cloud boundary is lost, adjust the el-
lipse parameters to relocate it. Loss of boundary is detected
when the drone has traveled through all the GPS points of
the current ellipse. At that point, its axes are multiplied by
1,3 for the next ellipse, and this process repeats as long as
the boundary remains undetected. As soon as the boundary
is found, the ellipse returns to its original size. Additionally,
with each iteration, the ellipse’s angle is shifted by 0,7 radi-
ans to improve the search for the cloud’s boundary.

• End of mission: once the mission-ending conditions are met,
the drone executes an exit procedure.

Start

Getting ready for take-off

C telepilot No

Yes

Take-off

Move to the cloud’s GPS point

C PM No

Yes

”LOITER” mode and trajectory
calculation

Elliptical trajectory

C end

No

C lost

C PM

No

No

Yes

End of cloud boundary tracking
procedure

End

Lost drone: parameter
adjustments

Yes

Yes

Figure 4: Flowchart of the adaptive flight pattern algorithm
(Processes are shown as orange rectangles, and transition

conditions as yellow diamonds).

The transition conditions between each of these steps are
as follows:

• C pilot: the drone takes off once the user activates “AUTO”
mode.

• C PM: when the particle concentration (PM1 or PM2.5) ex-
ceeds 70 µg/m3, the drone considers that it has entered the
cloud.

• C end: if the battery level becomes critical, the mission is
interrupted to ensure the drone’s safety.

• C lost: this condition is triggered if the drone completes
an elliptical trajectory without detecting any variation in the
C PM condition, indicating a loss of the cloud boundary.
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4 EXPERIMENTS AND RESULTS WITH THE PARTICLE
SENSOR

4.1 Simulations and Experiments on an Emulated Sensor
In order to validate the flight strategy, initial tests were

conducted using a simulated sensor. This device emulates
the concentration measurements of the artificial cloud based
on the drone’s GPS position. The main objective of this first
flight test campaign was to evaluate the “Petals” flight strat-
egy without using the actual particle sensor, by following the
planned trajectory along the boundary of a cloud artificially

(a) GPS position: comparison of the theoretical trajectory of the drone ob-
tained through simulation (in purple) with the trajectory measured during the
flight test (in black).

(b) 2D trajectory of the drone around the cloud generated during the mission.

Figure 5: Flight carried out during the mission at the model
aircraft field in Brumath, Alsace, France.

generated by the Raspberry Pi. This approach aimed to iden-
tify any weaknesses in the strategy and suggest areas for im-
provement before deploying it with an operational particle
sensor. During the mission, the drone followed the trajectory
shown in Figure 5 at the model aircraft field, under favorable
weather conditions (sunny weather and no wind). A good
fit between the two curves can be observed when comparing
the simulated and experimental trajectories (Figure 5a). This
closeness indicates that the simulation results accurately re-
flect the drone’s actual behavior during real-world testing.

This test made it possible to validate, through field experi-
ments, the proper functioning of the adaptive flight scheme by
demonstrating its ability to accurately reproduce the expected
trajectory as simulated. The main issues identified and re-

solved during this phase concerned sudden altitude variations
as well as an irregular drone trajectory, particularly during
elliptical paths. In conclusion, these experimental tests con-
firmed the effectiveness and robustness of the ‘Petals’ adap-
tive flight algorithm, developed in Python. The autonomous
strategy for tracking pollutants at the edge of a smoke plume
was thus validated in a real environment using a simulated
sensor. The next step involved testing this approach on a real
smoke plume, using a drone prototype equipped with an on-
board particle sensor.

(a) Smoke cloud produced by the smoke bomb.

(b) Trajectory during a smoke bomb test.

Figure 6: Experimental test on smoke bombs in a field.

4.2 Experimental Results on a Smoke Bomb

Before performing a test on an actual fire, an initial way to
ensure that the adaptive flight strategy works with the particle
sensor is to first test it on smoke puffs generated by a smoke
bomb. The smoke bomb generated a small cloud (Figure 6a)
lasting only about 2 minutes. This is too short to fully map
and follow the boundary, but sufficient to verify the correct
triggering of the program’s different processes.
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The threshold set for the smoke plume boundary is 70
µg/m3 for PM1 and PM2.5. PM1 and PM2 are particulate
matter sizes, with PM1 being particles smaller than 1 mi-
crometer and PM2.5 being particles smaller than 2.5 microm-
eters. This choice was made from experiments conducted
using smoke from a barbecue and a smoke bomb. The tra-
jectory followed by the drone during the test with a smoke
bomb is shown in Figure 6b. During this experimental test,
the weather was sunny with a northwest wind at 10 km/h and
occasional gusts. This test with a smoke bomb confirmed
that the program was functioning correctly, enabling subse-
quent testing on the smoke plume from a controlled fire cham-
ber. Indeed, the drone stops and switches to “LOITER” mode
when the threshold is exceeded, then performs elliptical tra-
jectories along the edge of the smoke puffs.

4.3 Experimental Results on a Fire Training Container
The final experimental test was in sunny weather with a

East/Northeast wind. The objective of this test was to evalu-
ate the adaptive flight pattern over a smoke plume originating
from a fire training container. For this purpose, a member
of The Bas-Rhin Fire and Rescue Service (SIS67) ignited a
fire using wooden pallets inside a container, as shown in Fig-
ure 7a. A GPS point at the center of the plume was defined,
and the input parameters for the algorithm were as follows:

• An ellipse radius of 5 meters: a major axis of 6 m (1.2 × 5 m)
and a minor axis of 4 m (0.8 × 5 m)

• A flight altitude of 10 meters
• 35 GPS waypoints generated for each ellipse
• An angle between successive ellipses of 85 ◦C
• A maximum flight speed of 1.4 m/s during the elliptical path
• A GPS point distance factor of 2 during the elliptical trajec-

tory
• Ellipse orientation set at 45 ◦C, given the wind from the

East/Northeast
• PM1 and PM2.5 entries threshold into the plume: 70 µg/m3

• PM1 and PM2.5 exits threshold from the plume: 70 µg/m3

In Figure 7b, the drone’s flight path over the fire training
container area is shown. Figure 7c shows the drone’s trajec-
tory re-plotted in MATLAB, both in a 3D perspective. The
drone initiates its strategy approximately 25 meters from the
fire source.

5 ANALYSIS OF THE RESULTS

Several test campaigns were conducted using the OPC-R2
particle sensor to monitor real smoke plumes, with continu-
ous readings of PM concentrations. Preliminary trials with
smoke bombs were instrumental in calibrating the detection
threshold and resolving issues related to particle concentra-
tion readings. As detailed in Section 4.2, these tests led to
a functional integration of the sensor with the adaptive flight
algorithm: the drone successfully followed an adaptive flight
pattern around the smoke generated by the bombs. However,
smoke bombs present certain limitations – their plumes are
low, not very dense, and short-lived (less than two minutes).
These constraints make it difficult to fully evaluate the flight
strategy in such conditions.

(a) Smoke plume from the fire training container.

(b) GPS drone trajectory during the fire training container test (the drone tra-
jectory is marked in yellow, the green arrow indicates wind direction, and the
red cross marks the fire source).

(c) 3D trajectory flown by the drone around the smoke plume.

Figure 7: Experimental test on a fire training container in the
industrial zone of Drulingen, Alsace, France.

To overcome these limitations, a final test on a real fire-
generated smoke plume was carried out, as described in Sec-
tion 4.3. The results were promising: the drone correctly
identified and tracked the edge of the plume using the adap-
tive trajectory. Nonetheless, the flight was brief, as the drone
had to be retrieved early due to collision risks.

One challenge encountered was the drone’s ability to lo-
cate the plume at the start of the mission. The predefined
GPS point, intended to lie within the plume, was sometimes
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outside the actual smoke zone due to inaccurate positioning,
overly strict PM detection thresholds, or suboptimal flight al-
titude. These three parameters – initial GPS point, PM thresh-
old, and flight altitude – require fine-tuning to ensure proper
activation of the adaptive strategy. Future trials are needed
in safer environments with fewer obstacles, along with better
control over parameter settings. Overall, these tests confirm
the functionality of the adaptive flight algorithm for mapping
and tracking pollutants along smoke plume boundaries.

6 CONCLUSION

This work develops and evaluates an autonomous drone
system for tracking airborne pollutants along smoke plume
edges. A trajectory-following strategy, based on adaptive
path planning, was developed, simulated, and experimentally
validated through a series of tests using both smoke bombs
and a controlled fire training container. A total of 27 test
flights were conducted over 9 days, amounting to 1 hour and
5 minutes of total flight time with the prototype. The result
is a first operational prototype of an autonomous quadcopter
equipped with a functional OPC-R2 particle sensor. The
drone is capable of detecting variations in PM1 and PM2.5
concentrations and autonomously adapting its trajectory to
follow the boundaries of a smoke plume.

However, this prototype remains an initial proof of con-
cept, and multiple avenues for improvement are identified for
future development. Algorithmically, enhancements could
include replacing elliptical trajectories with polynomial path
generation for better adherence to irregular plume shapes,
implementing more robust boundary-loss recovery strategies,
and enabling 3D mapping of the smoke plume. The imple-
mentation of performance criteria for flight paths is also part
of the ongoing work.

To date, testing has been limited to small-scale con-
ditions, covering distances of approximately 100 meters,
whereas the ultimate objective is to map large-scale smoke
plumes extending over several kilometers. To achieve this
goal, flight endurance will need to be improved through
higher-capacity UAV platforms and more robust, integrated
electronic architecture. Our team is currently developing a
VTOL-type drone designed to enable longer flight durations,
thereby improving flight performance while reducing battery
consumption. Future sensor integration could also involve
the addition of gas sensors, humidity sensors, and tempera-
ture probes to enrich the environmental data collected. The
long-term goal is to develop a deployable system that could
assist firefighting units in real-time plume tracking and pollu-
tant monitoring during active fire events.
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