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ABSTRACT

This article reviews monocular SLAM systems
operating in challenging scenarios, with a par-
ticular emphasis on agricultural environments.
Key metrics such as pose accuracy, processing
time, and trajectory fidelity are examined across
complex datasets. To address the known limi-
tations of monocular systems in textureless or
repetitive scenes, we explore the integration of
single-image depth estimation models, including
Depth Anything and ZoeDepth. We evaluate a
hybrid SLAM pipeline based on ORB-SLAM?2
enhanced with synthetic depth maps and dy-
namic keypoint adaptation, tested on the Rosario
Dataset. The findings demonstrate improve-
ments in localisation accuracy, robustness, and
global trajectory consistency under real-world
agricultural conditions, establishing a foundation
for future research in SLAM enhancement via
monocular depth priors.

1 INTRODUCTION

Visual SLAM (Simultaneous Localisation and Mapping)
plays an important role in enabling autonomous navigation
in environments where GPS is unreliable or unavailable.
Among the many SLAM modalities, monocular SLAM sys-
tems have gained attention due to their minimal hardware
requirements and potential for deployment on lightweight
platforms such as drones. However, traditional monocular
SLAM faces persistent challenges in environments with low
texture, repetitive structures, or dynamic lighting conditions-
scenarios common in real-world agricultural and extraterres-
trial settings.

To address these challenges, recent research has explored
augmenting monocular systems with single-image depth es-
timation models. These approaches aim to bridge the gap
between RGB-only and RGB-D SLAM by generating syn-
thetic depth information that can improve tracking robust-
ness and reduce scale drift. This paper presents a compre-
hensive review of monocular SLAM systems under difficult
environmental conditions and explores how the integration
of learning-based depth estimation methods, such as Depth
Anything, ZoeDepth, and MiDaS, can enhance system per-
formance.

*Corresponding author: carranza@inaoep.mx

By using ORB-SLAM?2 with real-time synthetic depth
maps and adaptive feature modulation, we evaluate the pro-
posed hybrid strategy on the Rosario Dataset [1], a bench-
mark for structured and unstructured fields, and across the
six sequences, we report qualitative trajectory alignments
and quantitative metrics, highlighting the feasibility and lim-
its of image-based depth priors for strengthening monocular
SLAM where conventional methods often fail.

2 RELATED WORK

The development of visual SLAM has been funda-
mental for autonomous navigation in GPS-denied environ-
ments. Early monocular approaches, such as PTAM [2] and
MonoSLAM [3], enabled real-time performance with a sin-
gle camera but were limited by scale ambiguity and poor
performance in low-texture scenes. ORB-SLAM and ORB-
SLAM?2 [4] addressed these issues by incorporating loop clo-
sure, map reuse, and relocalisation. These systems later
evolved into visual-inertial frameworks like OpenVINS [5],
which improved robustness in dynamic and GPS-denied sce-
narios [6]. More recent efforts have integrated monocular
and multi-view depth estimation to improve scale recovery,
as demonstrated by Zhang et al. [7] with a tightly coupled
SLAM system for indoor environments.

In parallel, semantic information has been explored to
enhance localisation in visually ambiguous scenes. For in-
stance, Martinez-Carranza et al.[8] combined natural lan-
guage with YOLOV8 to support metric SLAM. Similarly,
UAV-based studies have applied CNN-based RGB-D percep-
tion for GPS-denied localisation[9], and monocular cues for
landing detection [10] and obstacle avoidance [11]. These
contributions illustrate how combining geometric and seman-
tic data can increase robustness in complex environments.

To further address challenges like visual degradation and
dynamic motion, hybrid SLAM frameworks have emerged.
Gallagher et al.[12] proposed a sparse-dense system that
merges traditional feature tracking with dense depth predic-
tion for increased resilience outdoors. Scherer[13] developed
a GPS-free solution for MAVs using RGB-D constraints in
low-altitude flight. However, RGB-D sensors remain lim-
ited by short range, lighting sensitivity, and vulnerability to
fast motion. To overcome these constraints, Ghosh and Gal-
lego [14] introduced a stereo depth method for event cam-
eras, suitable for high-speed or low-light conditions. Gao et
al. [15] provide a comprehensive review of hybrid stereo sys-
tems, highlighting the benefits of combining geometry with
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learned depth.

As an alternative to more complex sensor setups, monoc-
ular depth estimation has proven effective for lightweight
robotic platforms. Pellegrin et al.[16] proposed a single-
image model tailored to aerial views, while Alquisiris et
al.[17] employed optical flow for real-time depth on mobile
robots. Rojas-Perez et al. [18] introduced a decentralised
monocular SLAM strategy for coordinating UAVs in GPS-
denied environments using learned priors. These works high-
light the adaptability of monocular estimation in constrained
systems.

Recent advances have focused on transformer-based and
zero-shot models to improve generalisation in depth predic-
tion. AdaBins [19] introduced adaptive binning for depth re-
gression, ZoeDepth [20] combined metric and relative depth
for zero-shot transfer, and Depth Anything [21] leveraged
large-scale pretraining to estimate depth in novel environ-
ments. Integrated into SLAM pipelines, these models help
reduce scale drift and mapping errors. Additionally, synthetic
depth priors have proven useful in low-texture or poorly lit
conditions [22]. Bladh [23] evaluated AdaBins, MiDaS, and
Monodepth2 within ORB-SLAM3, reporting improved ro-
tational consistency and suggesting that synthetic depth can
substitute conventional sensors in some cases.

Despite these advances, monocular SLAM still faces
challenges in repetitive or texture-sparse environments. In
this paper, we propose a hybrid approach that combines
monocular depth priors with adaptive feature modulation to
simulate RGB-D input from a single RGB stream. This
system is evaluated in real-world agricultural environments,
where traditional SLAM pipelines often fail due to texture
scarcity and scene variability.

3 METHODOLOGY

We propose a theoretical strategy to improve the locali-
sation performance of ORB-SLAM?2 in unstructured environ-
ments by generating synthetic depth images from monocular
images and using them to simulate RGB-D operation. The
aim is to overcome the scale ambiguity and reduce tracking
robustness typically associated with monocular SLAM, par-
ticularly in environments characterised by low texture, incon-
sistent illumination, or repetitive structures.

The proposed approach comprises two main conceptual
contributions; first, we introduce a method to infer and
adapt scene depth using spatial statistics, enabling monocular
SLAM to approximate the metric scale, and we propose a dy-
namic visual feature modulation mechanism that adjusts the
number of extracted keypoints based on interframe motion,
improving tracking robustness under varying conditions.

3.1 Scale recovery through depth compensation

Monocular SLAM lacks inherent metric information; to
overcome this, we propose a depth compensation method that
generates synthetic metric depth maps by fusing predictions
from Depth Anything and ZoeDepth estimators.
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Our method employs a hybrid strategy, where Depth Any-
thing generates dense, relative depth maps from each RGB
frame, and while these maps preserve structural consistency,
they lack a fixed metric scale. To address this, we periodically
apply ZoeDepth to a cropped, structurally grounded region of
the image to obtain a metric reference, which then allows us
to compute a scaling factor by comparing the local depth vari-
ation from Depth Anything with the global depth range from
ZoeDepth.

To ensure temporal coherence between consecutive
frames, we apply a smoothing function to the maximum depth
estimation using an exponentially weighted moving average:

depth_max, = o - depth-max, ; + (1 —a) -ray (1)

where « is a smoothing coefficient and r,,, is the average
of recent scaling factors. This formula maintains a stable and
consistent depth representation over time, supporting pose es-
timation and trajectory reconstruction in the simulated RGB-
D configuration of ORB-SLAM?2.

And, to enable the integration of synthetic depth images
into the RGB-D pipeline of ORB-SLAM?2 using monocular
input, it was defined a scaling strategy that transforms rela-
tive depth predictions into scale-consistent metric maps. We
first periodically apply ZoeDepth to a cropped image region
to compute the global depth range:

dr = max(depth) — min(depth) )

This value serves as a reference for calibrating the relative
predictions. Next, for every frame, we use Depth Anything to
generate a dense, relative depth map; this map is then normal-
ized, inverted, and scaled using the global range dr, for each
pixel p in the region of interest, we calculate a local scaling
factor:

r= 7@ — min) -dr 3)
ds
where ds = max — min is the local depth variation.

Finally, it is rescaled the entire depth map using the

smoothed maximum depth value:

depth, .,
955 0 depth_max (@)

depth,oiic = (1.0 —

This produces a synthetic depth image that is both dense

and scale-consistent, enabling monocular input to be treated
as if it were obtained from a depth sensor.

3.2 Adaptive feature modulation based on motion analysis

In addition to spatial enhancement, a dynamic visual
tracking mechanism is proposed that adjusts the number of
keypoints extracted per frame. Traditional SLAM systems
typically employ a fixed feature count, which may lead to
inefficiencies or instability when operating in dynamic or vi-
sually complex environments.
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To address this, a motion-aware adjustment strategy is de-
fined that monitors translation and rotation between consecu-
tive camera poses:

At = ||ty — toll, AR=|R1 — Ryl 5)
where t(,?; represent positions and Ry, R, are the corre-
sponding orientations. In cases of significant motion or sud-
den changes in direction, the number of features is increased
to preserve tracking accuracy; in contrast, during slow or sta-
ble movements, the feature count is reduced to improve com-
putational efficiency.

This modulation is conducted incrementally and con-
strained by predefined thresholds to ensure smooth transitions
and avoid performance oscillations.

Input ZoeDepth
RGB images (periodic, cropped)

Depth Anything
(per-frame)

Depth metric
+ inversion

ORB-SLAM2
(RGB-D mode)
Dynamic feature

modulation

Figure 1: Proposed system pipeline, ZoeDepth periodically
estimates dr on cropped frames; Depth Anything provides
dense depth. Scaled, inverted maps (black=near, white=far)
feed ORB-SLAM?2 (RGB-D) with dynamic feature modula-
tion.

4 EXPERIMENTS

By using sequences from the Rosario Dataset, we evalu-
ate the system’s performance under realistic agricultural con-
ditions, focusing on how depth augmentation affects trajec-
tory accuracy and robustness; each experiment is analyzed
both visually and through quantitative error metrics to assess
tracking consistency and global alignment.

4.1 Rosario Dataset

The Rosario Dataset [1] is specifically designed to assess
visual localisation and mapping algorithms in realistic agri-
cultural settings; it was captured under natural outdoor con-
ditions, offering challenging scenarios typical of agricultural
fields, including repetitive visual patterns, low-textured sur-
faces, dynamic illumination, and environmental variability.

Comprised of six distinct sequences, this dataset pro-
vides synchronized multi-sensor data for evaluating visual
and visual-inertial SLAM systems. Key characteristics in-
clude high-resolution stereo imagery at 672 x 376 pixels and
15 Hz, 6-axis IMU data at 140 Hz, and a ground truth refer-
ence from wheel odometry and precise GPS-RTK positional
information at 5 Hz.

These characteristics make the Rosario Dataset especially
suitable for testing SLAM performance in challenging, real-
world scenarios, allowing for a comprehensive benchmark-
ing of the robustness, accuracy, and adaptability of monocular
SLAM and depth estimation techniques.

16" INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

e — —

e p—
e . |
—

Figure 2: The Rosario dataset samples.

4.2 Monocular depth estimation

Depth estimation from single images has evolved rapidly,
transitioning from classical convolutional neural networks to
transformer-based and zero-shot learning. Early efforts, such
as Eigen et al.’s multi-scale CNN [24], struggled to generalise
and lacked metric accuracy, while later approaches like Ad-
aBins [19] introduced improvements in both generalisation
and precision by using an adaptive binning strategy.

ZoeDepth [20] represents a recent advance in zero-shot
depth estimation; by combining relative and metric training
signals, it can predict metric depths without requiring fine-
tuning on each new domain. The model performs particularly
well in out-of-distribution settings, but due to its high com-
putational cost, it was used to generate global metric depth
references at a lower frequency rather than for real-time pro-
cessing, so depth map inversion was not implemented.

In contrast, Depth Anything [21] adopts a vision-
language pretraining strategy and is trained on over 62 mil-
lion images; its lightweight nature allowed for real-time syn-
chronisation. The model produces inherently relative, highly
generalisable, and visually consistent dense depth maps, so
the inversion of depth values was applied, significantly facil-
itating clearer visual interpretation and integration with the
RGB-D pipeline of ORB-SLAM?2.

MiDaS [25], another monocular depth estimation model,
leverages vision transformer architectures to enhance gen-
eralisation. The Swin2-Tiny variant provided a good bal-
ance of computational efficiency and depth estimation qual-
ity, achieving stable real-time synchronisation; thus, depth in-
version was also applied; however, MiDaS produced slightly
blurrier textures compared to Depth Anything, impacting fea-
ture matching quality and localisation accuracy.

(b) Depth
Anything

(a) ZoeDepth (c) MiDaS

Figure 3: Comparison of depth maps generated from the
three models (Sequence 01). (a) ZoeDepth (original conven-
tion), (b) Depth Anything (inverted convention), (c) MiDaS
(Swin2-Tiny, inverted convention).

Depth map inversion was strategically implemented for
Depth Anything and MiDaS to facilitate visual interpreta-
tion and streamline integration with ORB-SLAM?2’s RGB-D
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pipeline; conversely, ZoeDepth was used without inversion
due to computational limitations, serving as a periodic global
depth reference.

4.3 Rosario Dataset Experiments

The effectiveness of the proposed methodology was eval-
uated using sequences from the Rosario Dataset [1]; the
ORB-SLAM?2 system was operated in RGB-D mode, with
monocular RGB images augmented in real-time by synthetic
depth maps from the Depth Anything model. These maps
were produced at 15Hz, matching the frame rate of the
rosbag stream to ensure temporal alignment.

The first sequence involved a semi-structured agricultural
path with long linear stretches and sparse visual variation.
The estimated trajectory (Fig. 4) successfully maintained
global consistency along the main linear portions, but no-
ticeable deviations appeared at the initial segment and sharp
turns; vertical consistency was well preserved.

Trajectory Comparison Sequence 01

Top view Side view

Figure 4: Comparison of ground truth and ORB-SLAM? tra-
jectory for Sequence O1.

Complementary error analysis (Fig. 5) indicates that the
Absolute Position Error (APE) increases at the tight turns and
endpoints, but drift is kept low on long linear extensions.

PN

oS ==
Figure 5: Sequence 01 absolute position error (APE) time
(left) and distance (right).

Sequence 02 introduced increased variability in vegeta-
tion and texture, which initially enhanced SLAM tracking,
but repetitive patterns later reappeared, challenging continu-
ous feature association. The estimated trajectory (Fig. 6) suc-
cessfully reproduced the global structure, including extended
straight sections, but discrepancies became more pronounced
at turning points and curved portions; the side view, however,
showed strong consistency.

Complementary error analysis (Fig. 7) shows that the
APE increases almost monotonically, with larger increments
around turns, indicating cumulative drift along the long
straight sections.

Sequence 03 exhibited linear motion with denser and
more structured weed patterns, providing robust and stable
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Trajectory Comparison Sequence 02

Top view Side view
H ‘ =
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Figure 6: Comparison of ground truth and ORB-SLAM?2 tra-
jectory for Sequence 02.

Figure 7: Sequence 02 absolute position error (APE) time
(left) and distance (right).

visual features that significantly enhanced tracking. The
SLAM-estimated path (Fig. 8) aligns closely with the ground
truth along most linear sections, particularly in the early part
of the sequence; however, noticeable deviations arise in the
latter half, especially around the long curved descent and at
the endpoints. The side view reveals a strong vertical align-
ment between both trajectories.

Trajectory Comparison Sequence 03

Side view

Top view

IEEEE -
R e

Figure 8: Comparison of ground truth and ORB-SLAM?2 tra-
jectory for Sequence 03.

As Figure 9 shows, the APE remains low and stable
initially but increases in stages with local peaks appearing
around the curved segment.

A A

Figure 9: Sequence 03 absolute position error (APE) time
(left) and distance (right).

Sequence 04 presented an environment similar to Se-
quence 03, characterized by repetitive and uniform tex-
tures; despite these challenges, monocular depth augmenta-
tion allowed ORB-SLAM?2 to maintain trajectory estimation
throughout the sequence. The estimated trajectory (Fig. 10)
shows an almost perfect alignment with the ground truth, with
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a near overlap of both paths along the long straight segment
and no noticeable vertical drift.

Trajectory Comparison Sequence 04

Top view

Side view

Figure 10: Comparison of ground truth and ORB-SLAM2
trajectory for Sequence 04.

Error analysis (Fig. 11) shows that the APE remains at
the centimeter level throughout the entire run, indicating in-
significant drift.

i

i
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Figure 11: Sequence 04 absolute position error (APE) time
(left) and distance (right).

Sequence 05 presented substantial difficulties due to an
increased presence of repetitive crop patterns interspersed
with abrupt changes in weed texture, which significantly chal-
lenged depth estimation and keypoint matching reliability.
The estimated trajectory (Fig. 12) initially aligns with the
ground truth but rapidly diverges, with significant drift evi-
dent in both top and side views, particularly during transitions
between repetitive rows and abrupt texture changes.

Trajectory Comparison Sequence 05

Top view Side view

Figure 12: Comparison of ground truth and ORB-SLAM?2
trajectories for Sequence 05.

Figure 13 shows that the APE grows steadily, peaking
around the middle of the run and remaining large at all times,
coinciding with strong flat drift and noticeable vertical bias.

Figure 13: Sequence 05 absolute position error (APE) time
(left) and distance (right).

16" INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

Sequence 06 represents one of the most challenging tri-
als, featuring long, repetitive crop rows with minimal textural
distinction, which significantly hinders both keypoint extrac-
tion and depth inference. The ORB-SLAM?2 system was un-
able to maintain trajectory accuracy; the estimated trajectory
(Fig. 14) fails to capture the loop structure and deviates pro-
gressively from the ground truth, while the side view reveals
a consistent vertical alignment.

Trajectory Comparison Sequence 06

Top view Side view

Figure 14: Comparison of ground truth and ORB-SLAM?2
trajectory for Sequence 06.

Complementary error analysis (Fig. 15) shows that the
APE increases sharply in the final stretch, with the distance
view following an almost linear trend on long straights and
steepening towards the end.

Figure 15: Sequence 06 absolute position error (APE) time
(left) and distance (right).

4.4 Discussion

The experiments performed on the Rosario Dataset reveal
valuable insights into integrating monocular depth estima-
tion into a visual SLAM pipeline under challenging agricul-
tural conditions. Qualitatively, the proposed hybrid approach,
which uses Depth Anything for real-time relative estimation
and ZoeDepth for periodic metric correction, enables the sys-
tem to better preserve spatial coherence and trajectory fidelity
than traditional monocular SLAM. The quantitative results
in Table 1 confirm that while residual drift is still present,
the system maintains consistent alignment in structured seg-
ments; this improvement stems from the adaptive modulation
of feature extraction and dynamic scaling of depth maps.

Sequences 04 (RMSE of 0.05 m) and 03 (RMSE of
3.20 m) achieved the lowest errors, reflecting the system’s
ability to track accurately in stable, well-structured environ-
ments, while Sequence 01 (RMSE of 7.33 m) showed mod-
erate accuracy. In contrast, sequences 02, 05, and 06 exhib-
ited substantially higher errors due to texture-scarce or highly
repetitive segments and re-localization challenges. Despite
these errors, the overall shape and orientation of the trajec-
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tories were generally maintained, demonstrating the system’s
ability to preserve route consistency even when local accu-
racy was degraded.

Table 1: Trajectory error metrics on the Rosario Dataset using
the proposed monocular depth-augmentation approach.

Seq. RMSE (m) MAE (m) Median AE (m) Max (m) Min (m)
01 7.33 6.55 7.48 12.14 1.08
02 32.87 25.36 14.35 72.89 0.00
03 3.20 2.31 1.42 9.27 0.05
04 0.05 0.04 0.03 0.22 0.00
05 45.52 41.32 44.90 68.11 0.00
06 19.82 15.53 12.05 54.81 0.09
Avg. 18.13 15.19 13.37 36.24 0.21

Purely monocular ORB-SLAM?2 did not initialize in any
of the sequences, highlighting the difficulty of repetitive row
crop patterns. In contrast, the proposed hybrid approach ini-
tialized in all sequences, demonstrating substantially greater
operational robustness; this indicates that periodic metric
cues and dense per-frame relative depth are crucial for con-
sistent tracking in challenging scenarios.

While the proposed system improves localisation, prac-
tical trade-offs remain. ZoeDepth is applied selectively on
cropped regions due to its high computational cost, limit-
ing the frequency of global depth corrections. In contrast,
Depth Anything enables real-time synchronisation and pro-
duces dense relative depth maps; however, its non-metric na-
ture can cause local inconsistencies in visually repetitive or
texture-sparse regions.

In summary, the combination of Depth Anything for
dense real-time inference and ZoeDepth for metric scaling
allows the pipeline to achieve a consistent, globally coher-
ent trajectory; while residual drift remains a limitation, the
approach significantly improves localization robustness over
traditional monocular SLAM, which often fails in these envi-
ronments.

5 CONCLUSIONS

A hybrid monocular SLAM framework is presented,
which integrates synthetic depth estimation from Depth Any-
thing and ZoeDepth with adaptive keypoint modulation, en-
hancing localization robustness in visually complex and
repetitive environments. Using real-time relative depth in-
ference and periodic metric corrections, the system enables
ORB-SLAM?2 to approximate RGB-D performance with
monocular input.

Evaluations on the Rosario Dataset demonstrated consis-
tent improvements in global trajectory alignment and tracking
stability, particularly in sequences with structured textures
and repeatable features; although residual drift remained a
challenge, the system preserved the overall trajectory config-
uration. Quantitative metrics, including RMSE and absolute
trajectory errors, corroborated these findings, highlighting the
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practical value of synthetic depth priors in extending monoc-
ular SLAM to environments where traditional pipelines often
fail.

Future research will focus on incorporating loop clo-
sure based on learned descriptors, using lightweight and
uncertainty-sensitive depth models, and optimizing the sys-
tem for embedded applications. Other interesting directions
include long-term pipeline operation and scalable mapping
in dynamic, unstructured environments; the contribution lays
a more solid foundation for applying monocular SLAM in
practical scenarios such as field robots, planetary exploration,
and agriculture.
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