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ABSTRACT

We present the first demonstration of a
fully spiking actor-critic neural network policy,
trained via Proximal Policy Optimization (PPO),
for continuous control of an agile high-speed
quadcopter in a gate-based navigation task. The
spiking neural network (SNN) controller em-
ploys Leaky Integrate-and-Fire neurons with sur-
rogate gradient training and spike-rate decod-
ing over multiple integration cycles, and it is
benchmarked against a comparable artificial neu-
ral network (ANN) controller in both simulation
and real-world flight tests. Results show that de-
spite being trained to the same reward level, the
SNN achieves superior performance in simula-
tion, achieving higher episode rewards, greater
robustness and reduced crash rate. Additionally,
in 12-second real-world trials, the SNN outper-
forms the ANN, attaining a higher average re-
ward (70.63 vs 59.77), greater mean velocity
(7.94 vs 6.99 m/s), and more gates cleared (46.33
vs 40.67). An analysis of the spike integration
cycle count reveals a clear trade-off: lower cycle
counts (fewer integration steps per control up-
date) reduce control output resolution and hinder
learning, whereas higher cycle counts improve
smoothness but increase inference latency. Mod-
erate cycle counts (5 or 8) provide the best bal-
ance, yielding high rewards, smoother outputs,
and low execution time overhead. These find-
ings represent a key step forward for neuromor-
phic control in embedded autonomous systems,
demonstrating that SNN-based policies can out-
perform conventional ANN controllers in high-
speed, agile robotic tasks.

1 INTRODUCTION

Over the past two decades, machine learning has greatly
advanced autonomous systems, from smartphones and self-
driving vehicles to large language models. This progress
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comes at a cost: deep networks are energy-intensive, de-
manding substantial resources for training and inference. As
their use grows, there is a pressing need for energy-efficient
models that can deliver real-time performance on embed-
ded systems. This challenge is acute in micro aerial vehi-
cles (MAVs), which require fast, low-latency control under
strict power and hardware limits. Tasks such as drone racing
or agile navigation push the limits of onboard computation,
as controllers must run at high frequencies on lightweight,
battery-powered platforms. Although artificial neural net-
works (ANNSs) have shown strong control capabilities [1, 2],
their poor energy efficiency remains a critical limitation.

Spiking Neural Networks (SNNs) have emerged as
a promising alternative. Inspired by the sparse, event-
driven signalling of biological neurons, SNNs operate asyn-
chronously through binary spikes generated only when a neu-
ron’s membrane potential crosses a threshold. As a result,
large parts of the network remain inactive, and computation
scales with the number of spikes rather than the number of
neurons. This enables low-power computation with mini-
mal latency and can yield orders-of-magnitude energy sav-
ings compared to ANNSs that update all neurons continuously
[3]. These properties make SNNs attractive for real-time con-
trol on embedded platforms when deployed on neuromorphic
hardware such as Intel’s Loihi.

Despite this promise, SNNs remain underexplored in
closed-loop robotic control. Prior work has examined their
use in vision [4], neuromorphic sensing [5], and motor tasks
[6], but not in high-speed quadcopter control. Reinforce-
ment learning (RL) provides a natural framework, as agents
learn control policies through trial-and-error interaction with
an environment to maximise long-term reward [7]. Recent
methods have enabled SNNs to be trained with surrogate gra-
dients [8, 9], yet applications have mostly been confined to
low-dimensional benchmarks, and robust real-time deploy-
ment is still lacking. Initial demonstrations show progress:
Paredes-Vallés et al. implemented a spiking vision-to-control
pipeline on Loihi, enabling autonomous drone flight at 200
Hz with microjoule-level inference cost [10], and Stroobants
et al. achieved spiking attitude control on a Crazyflie at 500
Hz [11]. These works highlight the potential of neuromorphic
approaches, but none address high-speed, continuous quad-
copter control directly with fully spiking networks.

In this work we present the first implementation of a
fully spiking actor-critic architecture for continuous quad-
copter control in an agile gate navigation task. Learning is
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carried out with Proximal Policy Optimization (PPO), a rein-
forcement learning algorithm that updates the policy by sam-
pling trajectories, evaluating performance, and making incre-
mental changes while constraining updates to remain stable
[12]. The network is built from Leaky Integrate-and-Fire
(LIF) neurons, a standard spiking model in which inputs ac-
cumulate in a membrane potential that decays over time and
trigger a spike when the threshold is crossed. To obtain con-
tinuous commands from discrete spikes, we apply spike-rate
decoding, where spike rates are calculated over a short win-
dow and mapped to motor actions. The SNN architecture is
matched in structure and parameter count to an ANN baseline
[13], ensuring fair comparison.

Our results show that the SNN not only achieves strong
performance in simulation but also outperforms the ANN
in real-world flight tests, demonstrating higher robust-
ness, greater average velocity, and more gates traversed
within a 12-second interval. We also analyse how the
number of spike-integration cycles affects control perfor-
mance and latency. This work bridges the gap between
neuromorphic computing and reinforcement learning, pro-
viding a foundation for SNN-based control policies on
energy-constrained aerial robots. The code for the training,
simulation, and flight data analysis for the project is avail-
able at: https://github.com/michael2992/
msc_spiking_quadcopter_control, and
the videos of the real flight tests are available at:
https://drive.google.com/drive/folders/
1uGINGe71wuOHrhO_ZBDAHMIO-s6B5qgd3?usp=
drive_link.

2 METHODOLOGY

This section outlines the quadcopter model, simulation
environment, reinforcement learning framework and spiking
network adaptations used for developing and evaluating the
SNN controller. Our approach builds directly on the environ-
ment and task setup from [14] and [13], but is distinct in that
it focuses exclusively on the 5-inch quadcopter platform with
a focus on training the spiking actor-critic policy.

2.1 Quadcopter Model

We adopt the parametric quadcopter dynamics model
from [13] defined in continuous time. The state vector x and
input vector u are defined as:

X = [pav7>\a Q’w]T’ u= [u17u2,U3,u4]T€ [07 1]4 (L

Here, p € R? is position, v € R? is velocity, A € R3
represents Euler angles, 0 € R3 the body rates, and w; the
propeller speeds in rad/s. The control input u € [0, 1]* rep-
resents the normalized motor commands. The equations of
motion are given by:
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P=V, v =gez + R(A\)F (2)

A=QNQ, Q=M (3)

oy = A 4)
T

Where R(\) is the rotation matrix and Q()\) the transfor-
mation matrices from body rates to Euler angle derivatives.
The motor steady-state response is modelled as:

Wei = (wmax - Wmin)\/klU% + (]- - kl)uz + Wmin (5)

The specific thrust force F' and moment M acting on the
body are given by:

T

4 4 4
F = —kavfwi, —Zkyvfwi, —kaw? (6)
i=1 i=1 i=1

—kp1w? — kpow3 + kpsw3 + kpaw?
_kqlw% + kq2w§ - kq3w?2) + kq4wi
—kriw1 + krowa + krgwz — kpgws+
o= kpswr + krewo + kprws — krgwy

M= 7

All parameters k., wmin, and wp,ax are identified for the
5-inch drone following [13].

2.2 Reinforcement Learning Task

The control objective is to autonomously navigate a 5-
inch racing quadcopter through a sequence of 7 square gates
arranged in a figure-eight pattern. The environment state is
defined as in [14]:

i i i i i 1T
Xobs = [pg avg 7)\9 ,Q,w,ngl, gi+1] (8)

where the superscript g’ denotes the reference frame of
the ¢-th gate. The position and orientation of the next gate are
given by py, ., and 9y, , respectively.

The reward function is adapted from [14][13] and encour-
ages forward progress while penalizing high angular velocity
and collisions:

if collision

~10,
ry = .
{|pk—1 — Pgi| — [Pk — g, | — ||, otherwise

Here, the subscript k represents the current timestep. The
scalar ¢ = 0.001 controls the penalty on angular velocity
magnitude. A collision is triggered either by ground contact
or when the quadcopter exits the predefined bounding box
(10 m x 10 m x 7 m). Additionally, if the drone crosses a
gate plane without passing through the designated 1.5 m x
1.5 m gate (i.e. missed the gate), the episode is also termi-
nated. This reward encourages stable, accurate, and efficient
gate traversal.
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2.3 Leaky Integrate-and-Fire Neuron

The key element of the spiking network is the Leaky
Integrate-and-Fire (LIF) neuron, a simplified yet biologi-
cally inspired model compatible with gradient-based learning
frameworks, implemented using the snnTorch Python library
[9]. LIF neurons accumulate input over each time step and
emit discrete spikes when their membrane potential exceeds
a threshold. After spiking, the LIF neuron is soft-reset, sub-
tracting the threshold potential from the current membrane
potential. The evolution of the membrane potential U[t] is
governed by the first-order differential equation:

Ult + 1] = BU[t] + I[t] — UaS[t] ©9)
S[t] = HU[t] — Uw) (10)

Here, Ut] is the membrane potential, 5 € [0, 1) is the de-
cay constant, [[t] is the input current, Uyy, is the firing thresh-
old, and H (-) denotes the Heaviside step function. The output
spike S[t] € {0,1}, soft-resets the membrane potential by
subtracting the threshold potential, denoted by the last term
in Equation 9. Our implementation uses LIF neurons with a
default threshold of U, = 1 and 8 = 0.999. The high g
minimizes the leak of membrane potential, and encourages
the LIF neurons to fire earlier and more frequently. This re-
sults in a stronger gradient flow during training which pro-
motes learning via error backpropagation [9]. This is also
exploited by rate decoding the output, as explained further in
subsection 2.4 along side Figure 1 and how our implementa-
tion differs from a traditional ANN.

2.4 Implementation of Spiking Neural Networks

SNNs introduce the following two key challenges when
applied to gradient-based learning.

1. Spiking neurons, such as the LIF model in Equation 10,
show inherent time-dependency, maintaining an inter-
nal membrane potential that spans multiple time steps.
This stateful property enables temporal integration but
complicates the design of standard feed-forward archi-
tectures and training methods.

2. The binary, non-differentiable nature of spike outputs,
prevents the use of conventional gradient-based opti-
mization without modification.

To address the first challenge of handling the temporal
dynamics, we process only the current environment state at
each forward pass, without explicitly modelling dependen-
cies across timesteps. This design choice follows the insight
of the approach by Ferede [14], where a purely feed-forward
ANN was shown to achieve effective control despite the ab-
sence of a recurrent structure. This approach allows us to
leverage the temporal characteristic of LIF neurons for the
decoding of the output. We address the problem by using a
rate encoding approach common in ANN-to-SNN conversion
methods [15, 16], which we shall refer to as cycling. With
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this strategy each observation state x = Xobs[t] € R?® at
timestep ¢ is held constant and repeatedly propagated for a
fixed number of steps C (i.e. cycles) through the network.
The network is composed of three fully connected layers of
LIF neurons, parametrized by weight matrices W. During
this process, each LIF neuron can accumulate membrane po-
tential and spike across several cycles. Each observation state
X is input using standard current injection, where the float
values are directly passed to the LIF neurons with the out-
put being binary spikes s € {0,1}"V, with NV denoting the
number of neurons in the hidden layer. A direct drawback
of this cycling strategy is that we do not explicitly use the
temporal modelling capabilities of SNNs, therefore operating
without recurrence. Superscripts (1) € {1, 2,3} indicate the
corresponding network layer and at each cycle c, the spiking
activations are computed as:

sWe] = LIFYwWWx, UM e - 1]) (11)
s = LIFPWPsW[, UP[c—-1]) (12
s = LIFY(W®s@[,uBc—1])  (13)

The output spikes from the final layer are averaged using
rate decoding, as motivated in subsection 2.5, whereby the
average firing rate of each neuron over the amount of cycles
C'is computed as shown below [17]:

1 &
S=5 ;s@ (] (14)

The decoded spike-rate vector S € [0,1]V, for the N
neurons in the layer, is then passed to a fully connected lin-
ear output layer to produce the continuous motor commands
i € [—1,1]* which are then mapped to actual normalized
motor commands u € [0,1]% :

a= I/VoulS + boul (15)

An important consequence of rate decoding is that, since
output spikes are binary in each cycle, decoding over C cycles
produces a quantized latent output.

s e {0,1}V seclo L 2 1 : (16)
) ) 70707 )

The resolution is % with exactly C'+ 1 possible values for the
average firing rate of each LIF neuron (e.g., C=1 : {0,1};
C=2:{0,05,1}; C=3: {0, 3, %, 1}). This discretization
precedes the continuous action mapping and limits the latent
output’s representational resolution to %

The second challenge, the non-differentiability of spikes,
is caused by the discontinuous nature of the Heaviside step
function H(-). As its derivative 6(-) € {0,000} evaluates to
zero almost everywhere and diverges to infinity at the thresh-
old, it prevents the use of exact gradient-based optimization.
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To solve this issue, we adopt a surrogate gradient method,
wherein the true derivative of H(-) is replaced by a smooth,
differentiable approximation during the backward pass as in
[9]. Specifically, we use the derivative of a shifted arctangent
function as the surrogate, adapted from [8]:

0 s o) "

This approach preserves the ability to train the network
through standard back propagation techniques while leaving
the discrete spiking behaviour untouched in the forward pass.

2.5 Spiking Neural Network Architecture

The choice to specifically use spike-rate decoding is
grounded in well-established findings from ANN-to-SNN
conversion literature. Numerous studies have shown that un-
der rate encoding, the firing rate of LIF neurons closely ap-
proximates the behaviour of the ReLLU activation function
[15]. This functional similarity has made spike-rate decoding
a natural and effective choice in many prior works as it facili-
tates the direct transfer of architectures and training methods
from ANNs to SNNs with minimal modification [18]. This
similarity allows us to retain the structure of the baseline
ANN used in [13], and replace the ReLLU activation func-
tion in the original network with LIF neurons, as described
in Figure 1. Whereas the SNN cycles each input state and
uses rate decoding, while the ANN does not, the architec-
ture of the SNN, including the number of layers and hidden
units, is otherwise unchanged from the ANN which also en-
sures that subsequent benchmarking between the ANN and
SNN is both fair and meaningful. The resulting architecture
comprises three fully connected layers of LIF neurons, each
containing 64 units as shown in Figure 2.

2.6 Training procedure and randomization

We train the SNN policy using the PPO algorithm [12],
implemented via the Stable-Baselines3 reinforcement learn-
ing library [19]. The training setup integrates the quadcopter
dynamics model described in subsection 2.1, the reward func-
tion and environment defined in subsection 2.2, and the SNN-
specific adaptations introduced in subsection 2.4.

In PPO, the policy is represented by two separate neural
networks: the actor and the value network. In our imple-
mentation, both networks share the same architecture, differ-
ing only in the dimensionality of their outputs (actor: € R*,
value: € RY). The actor network maps a given state x to the
parameters of a diagonal Gaussian distribution, producing a
mean vector y(x) € R? and a log standard deviation vector
logog € R4, where d denotes the dimensionality of the action
space (i.e. 4). Actions can then be obtained either determin-
istically, by taking the mean, or stochastically, by sampling
from the distribution. It is important to note that for training,
samples are taken stochastically:

16" INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

a~ N (ug(x), diag(o)), (18)

where a € R* is the action vector and diag(c2) denotes
a diagonal covariance matrix with entries o3. The value net-
work, in contrast, outputs a single scalar V(s) € R, which
estimates the expected return from state x. Here, 6 and ¢
represent the trainable parameters of the actor and value net-
works, respectively.

The training procedure with PPO is accelerated by run-
ning 100 parallel environments, each simulating a single
drone. This enables the agent to collect experience from
multiple simulations simultaneously, significantly reducing
the time required for each policy update for PPO. Episodes
have a maximum duration of 12 seconds to allow the drone
to fly multiple laps of the track. Simulating at a control fre-
quency of 100 H z, the 12 seconds correspond to 1200 sim-
ulation steps. We use a discount factor of v = 0.999 to pri-
oritize long-term rewards over immediate rewards at a given
step. Lastly, a default learning rate of n = 3 x 10~ is used.
The training parameters are identical to those used to train the
baseline ANN in [13], ensuring a fair and consistent compari-
son. To investigate the effect of the number of cycles on SNN
performance, we train a separate SNN model for each cycle
count in the set {2, 3, 4, 5, 8, 10}.

A common struggle for quadcopters is the transfer of
behaviour and performance to real-life flight tests, which
makes it crucial to design robust policies in simulation. To
overcome this sim-to-real gap and improve robustness both
in simulation and real-life, we apply domain randomization
with a 30% uniform scaling on all physical parameters dur-
ing training. Specifically, each parameter 6 is drawn from
0 ~ U(0.76p,1.36)), where g is the nominal value for the
5-inch drone identified in [13].

In addition to this, randomized initial conditions are ap-
plied at the start of each episode, enhancing the drone’s ability
to navigate toward the next target gate from a broader range of
states. The drone’s position is uniformly sampled as g, yg ~
U(—5, 5)m and zg ~ U(—3, 0) m. Linear velocities are ini-
tialized from v, vy, v, ~ U(—0.5, 0.5) m/s. Orientation is
randomized over roll and pitch angles ¢, 6 ~ U(—7, §) and
yaw ¢ ~ U(—m, m) radians. Body angular rates are sam-
pled as p, ¢, r ~ U(—0.1, 0.1) rad/s, and each motor is ini-
tialized with an angular velocity w; ~ U(—1, 1)rad/s for
i€ {l, 2, 3,4}.

3 EXPERIMENTAL SETUP

We adopt the same experimental platform as in [13], us-
ing a 5-inch quadcopter configured for indoor autonomous
flight. The control firmware is based on INDIflight', a
fork of Betaflight, which runs on a STM32H743 microcon-
troller. State estimation is handled onboard using an Ex-
tended Kalman Filter (EKF) that fuses inertial data from a

"https://github.com/tudelft/indiflight
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Figure 1: Comparative schematic showing how a LIF neuron with rate decoding over several cycles is similar to the ReLU
activation function for an example input X of 81 evenly spaced points between [-1, 1].

U 4
Output € R
Input € R?° P

Hidden € R®*  Hidden € R%*  Hidden € R%*

Figure 2: Schematic of the spiking neural actor network ar-
chitecture. Each hidden layer contains 64 neurons. The value
network is identical with the exception of the size of the out-
put dimension which in contrast is 1

TDK InvenSense ICM-42688-P IMU with external position
and attitude measurements from an OptiTrack motion capture
system. The state is then used as input to the SNN which out-
puts the corresponding motor commands. All experiments are
conducted in the CyberZoo flight arena at TU Delft, a 10 m
x 10m x 7 m indoor space equipped for autonomous drone
testing.

4 RESULTS
4.1 Baseline ANN vs. SNN Performance

Using the procedure and parameters described in subsec-
tion 2.6, we train the ANN and SNN policies for a maximum
of 20 million timesteps. Both models share an identical archi-
tecture, and are trained under the same conditions. Figure 3
shows the mean episode reward over the 20 million timesteps
and the final converged value, taken as the average reward of
the last 10% of the timesteps. The SNN model in this com-
parison uses a cycle count of 10, chosen on the basis of a
preliminary analysis in which models were trained with cycle
counts of up to 50. This analysis showed that while higher
cycle counts could achieve similar or slightly improved re-

Episode Mean Reward

—— ANN
—— SNN (cycles =10)

0 5 10 15 20

Environment Timesteps (X 106)

Figure 3: Training of an ANN compared to a SNN policy
with 10 cycles over 20 million timesteps

wards, they required substantially longer training times. A
cycle count of 10 therefore provided the most favourable
trade-off, achieving quite comparable reward while keeping
training time manageable compared to the ANN baseline.

Each curve represents a single training run. While aver-
aging across multiple seeds is common in RL to reduce vari-
ance [20], this was not feasible due to limited compute and
long training times. All subsequent comparisons are there-
fore based on representative single runs.

Although the SNN demonstrates slower learning and con-
verges to a slightly lower average reward (31.5) compared to
the ANN baseline (36.4), the overall training reward conver-
gence remains comparable. This indicates that the spiking
policy is capable of effectively learning the task in simulation,
with minimal degradation. However, a significant drawback
of the cycled SNN becomes immediately apparent: while
the ANN completed training in 16.17 minutes, the SNN re-
quired 5.98 hours to train on a standard consumer-grade lap-
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Metric Unsuccessful (Crash) Successful
ANN

Mean Reward 2.00 £ 14.52 58.23 + 8.36
Max Reward 66.87 77.13
Crash Rate (%) 67.30 0.0
Mean Episode Length (steps) 206.0 1200.0

o (m/s) 6.39 £+ 3.17 7.43 £+ 2.00
VUmaz (M/S) 28.67 15.16
SNN (cycles=10)

Mean Reward —2.75+£10.32 64.93 + 8.59
Max Reward 58.87 87.68
Crash Rate (%) 44.80 0.0
Mean Episode Length (steps) 99.2 1200.0

o (m/s) 5.56 £ 3.45 7.95+1.95
VUmaz (M/S) 20.49 15.43

Table 1: Simulation performance comparison of ANN and
SNN policies over 1000 simulated episodes. Metrics are
shown for unsuccessful (crash) and successful (non-crash)
episodes separately.

ANN SNN (cycles=10)

Metric T1 T2 T3 T T1 T2 T3 T

Reward 59.38 59.93 60.00 59.77 7095 70.99 69.95 70.63
v (m/s) 691 703 7.03 699 787 799 795 794
Gates 40 41 41  40.67 46 47 46 46.33

Table 2: Real flight performance of ANN and SNN policies
over three trials.

top, with training time being proportional to the cycle count
of the model.

To further compare flight performance, both models were
trained with PPO until achieving a reward of » ~ 50 (ANN:
50.7, SNN: 50.82). Although they converged in a similar
number of timesteps (ANN: 40.3 X 10%, SNN: 41.1 x 109),
training time differed greatly (ANN: 33 min, SNN: 10.4 h).
Results over 1,000 simulated episodes are shown in Table 1.

Despite similar training rewards, the SNN achieved
higher mean reward (64.93 vs. 58.23) and velocity on suc-
cessful runs, with a lower crash rate (44.8% vs. 67.3%). Fail-
ures mainly resulted from extreme randomized initial condi-
tions. The ANN tended to survive longer in failed runs but
ultimately crashed more often, while the SNN either recov-
ered or failed quickly.

The higher SNN performance is confirmed with real flight
tests. Both policies were flown for three identical runs of 12
seconds each, equivalent to one fully charged battery starting
from a defined hover position.

The trajectory comparison of the best performing trial of
the ANN and SNN policies in Figure 4 highlights distinct be-
havioural differences. While the ANN follows a relatively
smooth flight path with a roughly constant velocity of 7.03
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m/s, The SNN policy demonstrates a more dynamic control
strategy, reaching a higher average velocity of 7.99 m/s. No-
tably, the SNN shows a greater variation in speed, accelerat-
ing sharply through the central gate and hence decelerating
more aggressively to navigate the outermost turns. This re-
sults in sharper cornering and frequent changes in accelera-
tion. The SNN policy appears to prioritize aggressively ac-
celerating during the straighter sections of the track, trading
off smoothness for speed, resulting in the SNN outperform-
ing the ANN in both episode reward (70.99 vs. 60.00) and
gates passed (47 vs. 41).

ANN
R=60.00, v=7.03 m/s, Gates=41
. 10
1 8
— E
E 0- 6z
> g
AN B
-1 4 >
2
_2 -
T T T
-2 0 2
SNN (cycles = 10)
R=70.99, v=7.99 m/s, Gates=47
10
° —_—
—_,\ o N
11 2 g 8 _
_ g
E 01 6z
o 4 2
o
-1 4 >
= 7|k
72 -
T T T
-2 0 2

X [m]

Figure 4: Real flight trajectory comparison between the best
trials of the ANN and SNN with 10 cycles.

4.2 Effect of Cycles on SNN Flight Performance

To assess the effect of the cycle count on SNN training
and flight performance, six models were trained using cycle
counts: {2, 3, 4, 5, 8, 10}. Each model was trained for a
total of 150 million timesteps, a value selected with the goal
of reaching convergence in mean episode reward for all mod-
els, while maintaining feasible training time. To highlight the
reward convergence, an exponential moving average (EMA)
with a smoothing factor of (o« = 0.1) was applied to the mean
episode reward. The converged reward is calculated as the
average reward of the last 10% of the training timesteps. Fig-
ure 5 shows the evolution of the mean episode reward for the
six SNN models and the converged reward

As the number of cycles increases, the converged episode
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2 cycles (R=44.87)
3 cycles (R=51.05)
4 cycles (R=50.56)
5 cycles (R=55.35)
8 cycles (R=58.64)
10 cycles (R=62.57)

Episode Mean Reward (EMA)

T T
0 25 50 75 100 125 150
Environment Timesteps (X 10)

Figure 5: EMA of mean episode reward for six SNNs over
150 million timesteps.

reward improves consistently, indicating a clear performance
gain from averaging the spiking output over a higher cy-
cle count. The lowest-performing model, using only 2 cy-
cles, converged to a mean reward of 44.87, while the best-
performing model, with 10 cycles, reached a reward of 62.57.
Interestingly, 3 and 4 cycles yield comparable rewards (51.05
and 50.56), while 5, 8, and 10 cycles result in increasingly
higher performance (55.35, 58.64, and 62.57, respectively).
This demonstrates that a higher cycle count provides finer
resolution in spike-rate decoding, resulting in smoother mo-
tor commands, which in turn improves learning and perfor-
mance. However, in addition to the significantly longer train-
ing time compared to the baseline ANN, a second drawback
of cycled SNNs becomes evident during deployment: lower
observed update frequencies. This latency is especially a
challenge in real-time deployment for models with higher cy-
cle counts.

To investigate the real-time deployment, each model was
flown in three real-world trials using specific combinations of
cycle count and desired control update frequency féz)s. The
goal was to compare the models under two conditions: con-
stant computational load and constant observed control fre-
quency. For the constant computational load condition, mod-
els and parameters were matched based on a similar infer-
ence rate 7, defined as the product of the observed control
frequency and the cycle count. The average performance met-
rics across trials are summarized in Table 3.

Despite the hardware limitations on the observed fre-
quency, the achieved inference rate for the combinations re-
mains relatively stable ranging from 806 to 852 inferences per
second. Table 3 shows that flight performance generally im-
proves with increasing cycle count, peaking at cycles = 8 with
the highest average reward of 70.76. The best gate comple-
tion performance, however, is achieved by the 5-cycle model,
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Cycles (e) £ T Rew. T Gates
(Hz) (Hz) (iter/s) (m/s)
2 500 403.08 806.17 65.04 7.14 42.67
3 333 268.11 804.32 65.45 7.80 4433
4 250 204.31 817.25 68.43 8.01 44.67
5 200 167.80 838.98 70.27 8.25 50.00
8 125 105.95 847.63 70.76 8.09 45.67
10 100 85.16 851.60 69.81 8.03 47.00
Table 3: Real flight average performance metrics for

inference-constrained SNN flight tests across different cy-
cle counts for three trials. 7 denotes the amount of forward
passes per second (inference rate)

()

Cycles des T Rew.  Progress Rate Gates
(Hz) (iter/s) Rew.  Penalty
2 500 806.17 65.04 7330 -8.26 42.67
3 333 804.32 6545 7441 -896 4433
4 250 817.25 6843 7745 -9.02  44.67
5 200 838.98 70.27  80.66 - 50.0
10.39
8 125 847.63 70.76  79.74  -8.98  45.67
10 100 851.60 69.81 79.46  -9.65 47.0

Table 4: Real flight average reward decomposition for
inference-constrained tests from Table 3. Reward =
Progress + Rate Penalty.

which passes 50.00 gates with a higher average velocity of
8.25 m/s and a reward of 70.27. Despite better objective per-
formance in terms of gates passed, the lower reward of the
5 cycle model is largely attributed to the reward function’s
rate penalty term, as shown in Table 4, indicating the reward
function can still be optimized for time-optimal trajectories.
Under similar observed frequency, results in Table 5 are
consistent. The 8-cycle model gives the highest reward
(70.01) with strong velocity and gates, while the 5-cycle
model again leads in velocity (8.36 m/s) and gates (50.00)
with competitive reward (69.81). Its observed frequency was
higher than expected at 337.20 Hz, likely due to flight con-
troller scheduling, which may have improved responsiveness.
Lower-cycle models at 333 Hz show reduced rewards and
fewer gates, and the 10-cycle model benefits less from added
cycles because responsiveness declines with higher computa-
tional load. Representative trajectories are shown in Figure 6.
The trajectories (a) and (d) in Figure 6 show the two
highest-performing models, both achieving a reward of 71.52.
Like the 10-cycle SNN in subsection 4.1, they show aggres-
sive acceleration, sharp turns, and peak speeds on straight
segments, reinforcing our earlier observation. In contrast,
the 4-cycle (b) and 2-cycle (e) models achieved the lowest
rewards. Interestingly, the 2-cycle model improved signif-
icantly its reward from 44.87 in simulation to 63.13 in real-
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Figure 6: Real flight trajectories for selected trials. (a) and (d) highest reward, (b) and (e) second lowest and lowest re-
ward, (c) highest gates passed, (f) highest cycle model. Videos: https://drive.google.com/drive/folders/
1uGINGe71wuOHrhO_ZBDAHMIO-s6B5qgd3?usp=drive_link

()

Cycles e fézfl T Rew. v Gates
(Hz) (Hz) (iter/s) (m/s)
3 333 268.11 80432 6545 7.80 4433
4 333 257.08 102832 64.37  7.65  41.67
5 500  337.20 1686.00 69.81 836  50.00
8 500  289.33 2314.67 70.01 830  47.67
10 500  261.07 2610.67 69.07  7.83  45.33
Table 5: Real flight averaged performance metrics for

frequency-constrained SNN tests across different cycle
counts for three trials.

world tests, displaying slower, smoother flight resembling the
ANN baseline. Despite higher reward and velocity, the 4-
cycle model passed fewer gates than the 2-cycle model. A
similar mismatch appears for the 5-cycle model in trajectory
(c), which passed the most gates (51) but had a lower reward
than the 8-cycle model, highlighting the need to refine the
reward function to better reflect objective time-optimal per-
formance.

5 CONCLUSION

This work presented the first successful application of a
fully spiking actor-critic network trained with PPO for con-
tinuous quadcopter control. The SNN, implemented with LIF
neurons and trained using surrogate gradients and spike-rate
decoding, achieved performance superior to state-of-the-art
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ANNSs in both simulated and real-world high-speed naviga-
tion tasks. Evaluation on the 5-inch racing quadcopter re-
vealed that the SNN not only matched the ANN in control
fidelity but also outperformed it in reward, robustness, and
average velocity, despite its slower training and higher infer-
ence latency due to cycle-based spike integration.

An extensive analysis of different cycle counts demon-
strated a clear trade-off between temporal resolution and ob-
served update frequency. While higher cycle counts yielded
smoother motor outputs and improved control performance,
they also imposed greater computational costs and reduced
update frequencies on embedded hardware. The 8-cycle
model attained the highest average reward, whereas the 5-
cycle model had the best balance between reward, velocity,
and gates passed, confirming that moderate cycle counts pro-
vide the most favourable trade-off for real-time applications.

Future work will focus on extending this approach to neu-
romorphic hardware platforms such as Intel Loihi or other
event-driven processors to fully leverage the energy efficiency
of spiking neurons. To enable efficient deployment, further
investigation is needed into quantizing the network weights
and activations and improving runtime efficiency. Addition-
ally, we aim to explore how varying the network parameters
and architecture impacts both control performance and com-
putational cost. These directions are critical for designing
scalable, lightweight SNN controllers for embedded applica-
tions in autonomous aerial vehicles.
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