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ABSTRACT

This paper proposes a method for estimating the
state of a payload in a cooperative aerial manip-
ulation system using multiple UAVs connected
via tethers. The key feature of the proposed ap-
proach is that it estimates the tether angles solely
from inertial and position data obtained on the
UAV side, eliminating the need for any sensors
on the payload. These estimated angles are then
utilized, in conjunction with a physical model,
to infer the payload’s position and orientation.
The estimation framework is implemented using
an Unscented Kalman Filter (UKF) and applied
to a system comprising two UAVs and four teth-
ers. The performance of the method is evaluated
through both simulations and real-world experi-
ments. The results demonstrate that the proposed
approach achieves accurate tracking of both the
tether angles and the payload state, even in the
presence of sensor noise and modeling inaccura-
cies, thus validating its effectiveness.

1 INTRODUCTION

In recent years, there has been a growing global interest
in small unmanned aerial vehicles (UAVs). Their applications
extend beyond conventional fields such as aerial photography,
disaster surveys, and infrastructure inspection, and are now
being explored for more advanced and complex tasks [1].
Specifically, these include aerial manipulation using UAVs
equipped with manipulators [2], and payload transportation
in the field of logistics [3]. UAVs are expected to bring nu-
merous benefits to society, including reduced costs and labor
requirements, as well as safe access to environments that are
difficult or dangerous for humans to enter.

However, most current UAVs are designed for single-unit
operation and are therefore limited in the size and weight of
payloads they can carry. To address these limitations, coop-
erative manipulation systems, in which multiple UAVs work
together to transport a single payload, have garnered signifi-
cant attention [4]. Such systems enable the handling of large
and heavy payloads that are unmanageable by a single UAV,
thereby greatly expanding the potential applications of UAVs.

In cooperative manipulation systems, a widely adopted
configuration is to connect each UAV to the payload using
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cables [5]. While this approach allows for operational flexi-
bility, it also introduces challenges due to the underactuated
and deformable nature of the system. These include the risk
of inter-UAV collisions, payload oscillations, and instability
during flight. Therefore, ensuring the safe and stable op-
eration of such systems requires accurate estimation of the
full system state, including the positions and orientations of
the UAVs and the payload, as well as cable tensions and an-
gles [6, 7, 8].

Traditionally, estimating the system or payload state has
relied on attaching various sensors to the payload. However,
these methods face several practical challenges, including the
need for dedicated power sources, communication infrastruc-
ture, increased cost and weight, and physical constraints on
sensor installation. For instance, GPS and IMUs have been
used to track the payload’s motion [8], while force/torque
sensors [9] and vision-based systems [10, 11] have enabled
more precise measurements. Even when lightweight sensors
are used, the added mass can be non-negligible in small-scale
aerial systems with limited payload capacity. In addition, se-
curing power and ensuring reliable data transmission for such
sensors impose further constraints that reduce the practical-
ity of these approaches. Consequently, developing estimation
techniques that obviate the need for payload-side sensors is
crucial for enhancing the practicality and versatility of coop-
erative aerial systems. In response to these issues, recent re-
search has proposed sensor-minimizing or vision-free meth-
ods that estimate the payload state using only onboard UAV
measurements [12].

To address this issue, this study proposes a novel frame-
work that estimates the payload state using only onboard
UAV sensor data. This sensorless approach on the payload
side reduces hardware complexity and eliminates operational
constraints. A key feature of the method is that it simultane-
ously estimates the relative positions between UAVs and the
tether attachment points on the payload, which enables the
reconstruction of tether angles without requiring direct mea-
surements. This formulation is not restricted to two UAVs
and can be extended to systems involving more UAVs due to
its generalized modeling of tether geometry.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the cooperative system and its modeling. The
proposed estimation method is explained in Section 3. Then,
the effectiveness of the method is validated through simula-
tions in Section 4 and experiments in Section 5. Finally, Sec-
tion 6 concludes the paper and discusses future work.
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Figure 1: Cooperative manipulation system

2 COOPERATIVE MANIPULATION SYSTEM

2.1 System Configuration
This study applies the cooperative manipulation system

proposed by Takemura et al. [13]. The system, shown in Fig-
ure 1, consists of two UAVs and a payload connected by a
total of four tethers at its four vertices. The UAVs are quadro-
tors, an underactuated system in which rotation and transla-
tion are coupled. Tilting the payload in the pitch direction
requires the UAV itself to tilt, causing unintended transla-
tional motion. To address this , this system is equipped with
a winch mechanism on the UAV, allowing for variable tether
lengths. The winch mechanism is driven by a single servo
motor, where one tether extends as the other retracts. By in-
dependently adjusting tether lengths, control of the payload’s
pitch is achieved.

The orientation of each tether in three-dimensional space,
which defines the system state, can be uniquely represented
by two angles, similar to spherical coordinates: the Inclina-
tion Angle (θs), tilt from the vertical, and the Body-Relative
Azimuth (ϕb), horizontal direction relative to the UAV body
frame. The objective of this study is to estimate these two
angles using only onboard sensors mounted on each UAV.

2.2 Modeling
The system configuration and coordinate frames are il-

lustrated in Figure 2. The world frame (FW ) follows the
NED convention, with zW pointing downward. The standard
basis vectors of this frame are denoted as ex, ey, ez , where
ez = [0, 0, 1]T corresponds to the direction of gravity, and
the gravitational vector is given by g = gez . The system also
uses two additional reference frames:

• Payload frame (F0): located at the midpoint between
the two anchor points connecting a single UAV to the
payload, serving as the reference for tether orientation.

• Body-fixed frame (FB): attached to each UAV’s center
of gravity.

The azimuth is represented by the body-relative angle ϕb,
measured from yb toward xb in the xb–yb plane. This angle

Figure 2: Definition of variables and coordinate system

is used for relative tether dynamics. For use in the world-
frame dynamics, this is converted to an absolute azimuth an-
gle ϕabs. The UAV’s yaw angle ψuav and the payload’s yaw
angle ψpay are approximated as equal (ψpay ≈ ψuav) due to
the close coupling of the system. The relationship between
these angles, illustrated in the top-down view in Figure 3, is
computed as shown in Equation (1):

ϕabs = (ψuav + ϕb) +
π

2
(1)

where the π/2 term adjusts the North-referenced yaw angle
ψuav to align with the East-based azimuth convention. The
dynamics follow a spherical pendulum with an accelerating
pivot. Depending on whether relative or global angular rates
are required, either ϕb or ϕabs is used in the system dynamics.

The tether motion is described using a spherical coordi-
nate system. The elevation angle θs, is measured from the
local vertical. The azimuth angle ϕabs, is measured from the
North-East direction. The system is characterized by the or-
thogonal unit vectors ur,uθ,uϕ}, defined in Equations (2) -
(4):

ur =



sin θs cosϕabs
sin θs sinϕabs

− cos θs


 (2)

uθ =



cos θs cosϕabs
cos θs sinϕabs

− sin θs


 (3)

uϕ =



− sinϕabs
cosϕabs

0


 (4)

The UAV’s translational dynamics are described in the
world frame FW by Equation (5) :

p̈ =
1

m
Rf Ff − 1

m
Fs + g (5)

Here, p̈ is the acceleration of the UAV in the world frame FW .
The right-hand side accounts for the total force acting on the
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Figure 3: Top-down view of the azimuth angle definitions

UAV, expressed in the world frame. This includes the body-
frame thrust Ff (which is transformed into the world frame
by the rotation matrix Rf ), the world-frame tether force Fs,
and the gravity vector g.

The equations of motion for the tether angles are derived
from Newton’s second law applied to the payload. The model
accounts for gravity, tether tension, and the inertial effects of
the UAV’s acceleration, which is approximated by its thrust.
The resulting vector equation is projected onto the spherical
coordinate basis vectors (uθ, uϕ) to yield the component-
wise dynamics shown in Equations (6) and (7):

θ̈s = −g
l
sin θs +

RfFf · uθ

ml
+ ϕ̇2abs sin θs cos θs (6)

ϕ̈abs =
RfFf · uϕ

ml sin θs
− 2θ̇sϕ̇abs cot θs (7)

To estimate the tether angles for the UKF’s observation
step, we use the UAV’s IMU measurements. An on-board
accelerometer measures the specific force, which is the total
non-gravitational acceleration. From Equation (5), the spe-
cific force expressed in the world frame is (p̈ − g). Since
the IMU provides this measurement in the UAV’s body frame
(FB), we must transform this vector from the world frame
to the body frame by multiplying it by the rotation matrix
RT

f . Thus, the accelerometer output ab is modeled as Equa-
tion (8):

ab =
1

m

(
Ff −RT

f Fs

)
(8)

To find the tether orientation, we first estimate the tension
force vector Fs. Rearranging Equation (8) isolates the tether
force Fs, which in the world frame can be expressed using the
known thrust command Ff and measured acceleration ab, as
shown in Equation (9):

Fs = Rf (Ff −mab) (9)

The inclination angle θ′s is then calculated as the angle
between the estimated tension vector Fs and the vertical axis
ez . According to the geometric definition of the dot product,
the cosine of this angle is the dot product of the two vectors
divided by the product of their magnitudes. Since ez is a unit

vector (∥ez∥ = 1), we can solve for the angle θ′s by taking
the arccosine:

θ′s = arccos

(
Fs · ez
∥Fs∥

)
(10)

Then, the body-relative azimuth angle ϕ′b is computed as
detailed in Equation (11). This is achieved by first calculating
the world-frame azimuth from the components of the tension
vector Fs, and then converting it to the body-relative frame
by subtracting the UAV’s yaw angle ψuav and compensating
for the coordinate system offset of π

2 , consistent with the con-
vention established in Equation (1):

ϕ′b = atan2 ((Fs)y, (Fs)x)− ψuav −
π

2
(11)

These estimated angles θ′s and ϕ′b are used as observation val-
ues in the UKF.

3 STATE ESTIMATION METHOD

3.1 Tether Angle Estimation
The following subsections describe in detail the system

models used for the UKF, which, unlike the Extended Kalman
Filter (EKF), does not require linearization and is therefore
well suited for highly nonlinear systems such as the tethered
UAV dynamics.

The estimated state of the system, x̂, at a discrete time k
is defined as follows in Equation (12):

x̂k =
[
θ̂ks

ˆ̇
θks ϕ̂kb

ˆ̇
ϕkb

]T
(12)

The state transition is modeled by the discrete Wiener pro-
cess acceleration model shown in Equation (13). This model
integrates the state derivatives using the fourth-order Runge-
Kutta method (RK4) [14, 15].

xk+1 = xk + RK4(f(x
k)) + Γvk (13)

where f(xk) is the state derivative vector, and Γvk is the
process noise term.

The vector f(xk) is derived by adapting the full physical
dynamics from Equations (6) and (7) for implementation in
the UKF. To improve computational efficiency and because
the effects of these rotational forces are considered negligible
for this application, the model is first simplified by neglecting
the centrifugal and Coriolis force terms.

The model then incorporates the inertial force (−mak
0)

resulting from the payload’s acceleration, a0. This accel-
eration is not measured directly and is instead estimated by
taking the UAV’s absolute acceleration, ad, and subtract-
ing the tether’s relative acceleration from the previous step,
arel(k − 1), as shown in Equation (14):

a0(k) ≈ ad(k)− arel(k − 1) (14)
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Here, the UAV’s absolute acceleration is ad = Rfab + g.
The relative acceleration, arel, is reconstructed from the es-
timated state using its spherical coordinate components, as
defined in Equations (15) and (16):

arel = arur + aθuθ + aϕuϕ (15)

ar = −lθ̇2s , aθ = lθ̈s, aϕ = lϕ̈abs sin θs (16)

Finally, the azimuth dynamics are converted to the body-
relative frame used in the state vector. The state vector uses
the body-relative azimuth ϕb instead of the absolute azimuth
ϕabs because the UKF is formulated in the UAV body frame,
and the relative angle directly relates to the tether’s motion
with respect to the UAV. Therefore, the body-relative angu-
lar acceleration is computed by subtracting the UAV’s yaw
acceleration from the absolute angular acceleration (ϕ̈b =
ϕ̈abs − ψ̈uav).

By incorporating these three modifications, the final state
derivative vector f(xk) is constructed as shown in Equa-
tion (17):

f(xk) =




ˆ̇
θks

− g
l sin θ̂

k
s +

(RfFf−mak
0 )·uk

θ

ml
ˆ̇
ϕkb

(RfFf−mak
0 )·uk

ϕ

ml sin θ̂k
s

− ψ̈k
uav




(17)

Finally, the process noise model is defined. We assume
two independent noise sources affecting the inclination and
azimuth accelerations, respectively. These are represented
by a zero-mean Gaussian noise vector vk, defined in Equa-
tion (18):

vk =

[
vkθ
vkϕ

]
(18)

The covariance of this input noise is given by the diagonal
matrix Σ in Equation (19). Its diagonal elements, σ2

θ and σ2
ϕ,

are the variances of the respective noise components vkθ and
vkϕ.

Σ =

[
σ2
θ 0
0 σ2

ϕ

]
(19)

The noise distribution matrix Γ, which maps the input noise
vector vk to the state space. Its terms, Ts and T 2

s /2, result
from integrating acceleration noise into velocity and angle. It
is defined in Equation (20):

Γ =




T 2
s /2 0
Ts 0
0 T 2

s /2
0 Ts


 (20)

The final process noise covariance matrix Q is then con-
structed by combining the distribution matrix Γ from Equa-
tion (20) and the input noise covariance Σ from Equation (19)
using the sandwich product, as shown in Equation (21):

Q = ΓΣΓT (21)

In the UKF, the process noise covariance Q is added
during prediction. The Kalman gain is then computed as
K = PxyP yy−1, where Pxy denotes the cross-covariance
between state and measurement, and P yy is the predicted
measurement covariance. This gain blends the predicted state
with measurements, and the updated covariance P reflects
the reduced estimation uncertainty.

3.2 Geometric Payload Pose Estimation
This section describes the method for estimating the 6-

DOF (degrees of freedom) state of the payload using geomet-
ric relationships. The estimation relies primarily on the tether
angle states for each UAV, as obtained from the UKF.

Payload Position (pp) First, the 3D position of each pay-
load anchor point, ppa,i, is calculated. The tether’s unit di-
rection vector, r̂i, is reconstructed from the estimated angles
(θ̂s,i, ϕ̂b,i) and the UAV’s yaw (ψuav,i), consistent with the
definitions in Equations (1) and (2). The anchor point posi-
tion is then found via forward kinematics as shown in Equa-
tion (22):

ppa,i = pua,i + liur,i (22)

where pua,i is the UAV’s anchor position. The payload’s cen-
ter, pp, is then calculated as the midpoint of these two points
in Equation (23):

pp =
ppa,1 + ppa,2

2
(23)

Roll Angle (φp) The payload’s roll angle, φp, is deter-
mined by the angle of the vector connecting the two anchor
points (ppa,2 − ppa,1) when projected onto the world frame’s
yW –zW plane, as calculated in Equation (24):

φp = atan2 ((ppa,2 − ppa,1)z, (ppa,2 − ppa,1)y) (24)

Pitch Angle (θp) The pitch angle, θp, is controlled by the
winch mechanism (Section 2). It is therefore estimated di-
rectly from a pre-calibrated function of the winch encoder
measurements, as shown conceptually in Equation (25):

θp = fwinch(lwinch,1, lwinch,2) (25)

Yaw Angle (ψp) The payload’s yaw, ψp, is assumed to align
with the average horizontal direction of the tethers. First, the
absolute compass heading of each tether, ϕr,i, is calculated in
Equation (26):

ϕr,i = ψuav,i + ϕb,i (26)

The payload’s yaw is then estimated as the circular average
of these two headings to correctly handle angle wrapping, as
shown in Equation (27):

ψp = atan2 (sinϕr,1 + sinϕr,2, cosϕr,1 + cosϕr,2) (27)

This completes the geometric estimation of the payload’s
6-DOF pose.
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4 VERIFICATION WITH SIMULATION

To validate the proposed state estimator, a simulation
environment was constructed using MATLAB/Simulink and
Simscape Multibody. The physical and filter design parame-
ters used in the simulation are summarized in Table 1.

Reference trajectories for the payload were predefined,
and UAV trajectories were computed by inverse kinematics
and tracked using local PID control, making the payload mo-
tion purely feedforward-driven. The UKF was run offline us-
ing logged simulation data. Sensor noise was excluded; ro-
bustness will be evaluated in real experiments.

Attitude and position maneuvers were performed, and the
logged data provided inputs for the UKF and ground-truth
tether angles for evaluation.

4.1 Estimation During Attitude Maneuvers
To evaluate the estimation performance, the payload was

commanded to perform a series of attitude maneuvers. Based
on this simulation data, the proposed tether angle estimation
was conducted offline. The results are presented in Figure 4,
which shows the estimated inclination θs and azimuth ϕb an-
gles for the tethers of each UAV.

The inclination angle θs was estimated with high accu-
racy throughout the maneuver. For the azimuth angle ϕb, al-
though the overall estimation is acceptable, transient errors
are observed at the beginning of attitude changes. These dis-
crepancies are attributed to the inertial effects neglected in
the simplified dynamics model. However, since the estima-
tion converges shortly afterward, the estimator is considered
effective during attitude maneuvers. The payload’s attitude,
calculated from these tether angle estimates, was compared to
the ground truth (Figure 5). The high-precision tracking con-
firms the effectiveness of the proposed method and validates
the underlying tether angle estimator.

4.2 Estimation During Position Maneuvers
The performance during payload position maneuvers is

shown in Figure 6. The estimated azimuth angle ϕb captured
the payload’s pendulum-like swing, seen as x-axis oscilla-
tions in Figure 7. The inclination angle θs is mostly accurate,
but errors appear during vertical (z-axis) motion. This dis-
crepancy is likely due to unmodeled dynamics at the payload-

Physical Parameters
Payload size 0.2m× 0.2m× 0.4m
Payload mass 0.5kg
UAV mass 1.64kg
Tether length 1.2m

UKF Design Parameters
Proc. noise std. (σθ) 1.0× 10−3

Proc. noise std. (σϕ) 5.0× 10−4

Obs. noise cov. (R) diag
(
1.0× 10−3, 1.0× 10−3

)

Table 1: Parameters used in the simulation
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Figure 4: Tether angle estimation during attitude maneuvers
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Figure 5: Estimation result of payload attitude

side tether attachment points. Furthermore, the payload’s po-
sition was calculated from these tether estimates, and the re-
sult is compared to the ground truth in Figure 7. Since the
estimation errors in the tether angles were minor, the result-
ing payload position also tracks the true trajectory with high
accuracy. This confirms that the proposed estimation method
is sufficiently precise for payload state tracking during posi-
tion maneuvers.

Notably, the estimation of ϕb is more accurate here than
during attitude maneuvers. This is because the primarily
translational motion during position maneuvers aligns bet-
ter with the model’s assumptions than the complex rotational
motion seen during attitude maneuvers.

5 VERIFICATION WITH EXPERIMENT

5.1 Experimental Setup

Flight experiments were conducted to verify the proposed
estimation method in a real-world environment. The experi-
ments aimed to evaluate its accuracy under sensor noise and
environmental disturbances.

The experiments were conducted in a Motion Capture
(MoCap) environment with two quadrotors carrying a pay-
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Figure 6: Tether angle estimation during position maneuvers
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Figure 7: Estimation result of payload position

load. The MoCap system provided ground-truth data for eval-
uation and position feedback for the UAVs, which followed
predefined trajectories. UAV synchronization was achieved
through a centralized control system using ROS(Robot Op-
erating System) over Wi-Fi. While the physical parameters
were identical to the simulation (Table 1), the UKF design
parameters were empirically tuned to account for the differ-
ing sensor noise and unmodeled disturbances present in the
real experiment. The final values are summarized in Table 2.

5.2 Thrust Estimation Model and Voltage Compensation

The accuracy of the proposed estimation method depends
on an accurate thrust value Ff as an input to the prediction
model (Equations (6) and (7)) and the observation model
(Equation (9)). However, direct in-flight measurement of

UKF Design Parameters
Proc. noise std. (σθ) 2.5× 10−2

Proc. noise std. (σϕ) 1.0× 10−2

Obs. noise cov. (R) diag (0.25, 0.20)

Table 2: UKF parameters tuned for the experiment
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Figure 8: Experimental analysis of thrust estimation

thrust is infeasible. While prior work has treated thrust as
a constant value [14], this assumption is not valid for our
dynamic maneuvers and would degrade estimation accuracy.
Therefore, we adopted a model that compensates for the bat-
tery voltage drop in-flight. This involved a two-step process.

First, a static thrust test was conducted to establish a base-
line thrust-throttle relationship, shown in Figure 8a. The re-
sult was approximated by Equation (28):

∥Ff∥ = 0.0011x2 + 0.76x (28)

where ∥Ff∥ is the generated thrust [N], and x is the throttle
percentage [%].

Second, to compensate for battery voltage drop, this base-
line model was adjusted in real-time using the measured volt-
age V , as shown in Equation (29):

∥Ff∥ = 0.8

(
V

16.0

)2

(0.0011x2 + 0.76x) (29)

where V is the measured battery voltage, V0 = 16.0 V is
the nominal voltage used in the calibration, and the factor 0.8
reflects the saturation at 80% throttle, introduced as a safety
margin to prevent the propulsion system from exceeding its
current rating.

The validation was performed in hover, where the thrust
can be directly inferred from the equilibrium of forces, pro-
viding a reliable baseline for evaluating the model. The es-
timated thrust from both the original and compensated equa-
tions was compared with the gravitational force. The com-
parison in Figure 8b shows the compensated model more ac-
curately captures the true thrust required for hovering, vali-
dating the voltage compensation approach.

5.3 Experimental Results and Discussion
An attitude maneuver experiment was conducted, as

shown in Figure 9a. The resulting payload attitude is pre-
sented in Figure 9b. Figures 9c and 9d show the accelera-
tions of the UAVs, while Figure 10 shows the thrust from the
voltage-compensated model (Equation (29)).

The tether angles and 6-DOF payload state were esti-
mated from the flight data, as shown in Figure 11 and Fig-
ure 12. A quantitative evaluation is summarized in Table 3.
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(a) Overview of the experiment
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(c) UAV1 acceleration
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(d) UAV2 acceleration

Figure 9: Flight test for payload attitude maneuver

The results confirm the proposed framework is effective,
achieving attitude RMSE within a few degrees and position
RMSE within several centimeters.

The primary performance limitation observed was high-
frequency oscillations in the estimates, a phenomenon not
present in the simulation. These oscillations can be traced
directly to high-frequency noise in the input signals, such as
the measured UAV accelerations (Figures 9c and 9d) and the
thrust estimate (Figure 10). This noise propagates through the
model, causing oscillations in the final estimates. This effect
was most pronounced in the lateral and rotational axes, where
the Y-axis exhibited the largest position RMSE (4.30 cm),
alongside significant errors in Roll and Yaw. In contrast, the
Pitch estimate remained highly accurate with an RMSE of

State RMSE Max Error

Attitude Errors [deg]
Roll 2.392 8.363
Pitch 0.760 2.108
Yaw 2.034 6.811

Position Errors [m]
X 0.0271 0.1230
Y 0.0430 0.1328
Z 0.0258 0.0717

Table 3: RMSE and maximum error of payload estimation
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Figure 10: Thrust calculations during experiment
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(a) Tether angles: UAV1
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(b) Tether angles: UAV2

Figure 11: Tether angle estimation in experiment

only 0.76 deg. This accuracy stems from its winch-based
model, independent of the noisy IMU and thrust inputs, re-
inforcing the conclusion that input signal quality is the domi-
nant error source for the other states. However, this simplified
model has its own limitations, as it did not fully capture the
minor pitching oscillations caused by the payload’s natural
swing from aerodynamic effects. Additionally, the omission
of centrifugal and Coriolis terms, though less significant than
sensor noise, remains a modeling limitation for more dynamic
maneuvers.

In summary, this experiment validates the proposed strat-
egy under real-world conditions and identifies input signal
quality as the main performance limitation. Future work
should therefore focus on improved input filtering and more
robust dynamic modeling for practical deployment.

6 CONCLUSION

This study developed and validated a UKF-based estima-
tion framework for a cooperative manipulation system. We
successfully demonstrated that the payload’s 6-DOF state can
be determined with practical accuracy using only each UAV’s
onboard IMU and position data. The method’s effectiveness
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(a) Estimated payload attitude
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(b) Estimated payload position

Figure 12: Payload state estimation in experiment

was confirmed through both dynamic simulations and real-
world flight experiments, establishing a baseline for sensor-
based payload state awareness in such systems.

The experimental validation highlighted the primary chal-
lenges for real-world deployment: performance degradation
due to unmodeled dynamics, such as aerodynamic effects,
and the propagation of sensor noise. A key challenge for
real-time implementation is filter divergence, which requires
robust modeling and recovery strategies. Future work will re-
fine the dynamic model and implement the estimator in a real-
time control loop. Successfully tackling these challenges is a
critical step toward the practical deployment of autonomous
and dynamic cooperative manipulation systems.
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