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ABSTRACT

Monocular depth estimation is essential for
autonomous UAV navigation, especially under
low-visibility conditions. While thermal cam-
eras enable perception regardless of lighting,
their use for geometric reasoning is challenging
due to intensity variations driven by object tem-
perature and emissivity.

We propose a novel framework that transforms
thermal images into a temperature-invariant
structural representation using line segments.
This preserves scene geometry while discarding
volatile thermal data. The structural image is
then processed by the AnyDepth neural network
to predict dense depth maps.

Experiments on the OdomBeyondVision dataset,
featuring indoor UAV flights with thermal sen-
sors, show that our method enables accurate
depth estimation. This demonstrates the viabil-
ity of decoupling geometry from thermal inten-
sity, paving the way for robust UAV navigation in
challenging scenarios such as search and rescue.

1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are increasingly em-
ployed in critical missions such as search and rescue, environ-
mental monitoring, and infrastructure inspection. A funda-
mental requirement for enabling autonomy in these contexts
is the ability to perceive depth from visual inputs. Monocular
depth estimation, which infers 3D structure from a single im-
age, provides a lightweight solution that is particularly suit-
able for small UAVs where payload capacity is limited [1, 2].

While RGB-based depth estimation has seen significant
progress with deep learning approaches [3, 4], thermal cam-
eras remain underexplored for this task, despite their inherent
advantages. Unlike RGB sensors, thermal imaging enables
perception in total darkness, fog, smoke, or other visually de-
graded environments [5]. These capabilities make thermal
cameras ideal for operations in hazardous or low-visibility
scenarios. However, their use for geometric reasoning is chal-
lenging, as thermal intensity is governed by object tempera-
ture and emissivity rather than stable photometric features.

*Email address(es): carlos.perezro@udlap.mx

This introduces issues such as thermal crossover and spatial
inconsistency, which undermine the performance of conven-
tional depth estimation models [6].

To address these limitations, prior research has attempted
to fuse thermal and RGB data [7], or apply domain adapta-
tion techniques to transfer knowledge from visible to thermal
domains [5]. Nonetheless, these approaches often require ad-
ditional sensors or paired data, increasing system complex-
ity and cost. An alternative strategy is to extract meaningful
geometric information directly from thermal images, thereby
decoupling geometry from thermal intensity altogether.

In this work, we propose a novel indoor-monocular depth
estimation framework tailored for thermal images. Our ap-
proach converts the input thermal image into a temperature-
invariant structural representation by extracting line seg-
ments. This representation captures the essential scene ge-
ometry while discarding unstable thermal cues. The resulting
structural image is then processed by the AnyDepth-v2 deep
neural network [8, 9] to predict a dense depth map.

We evaluate our framework using the OdomBeyondVi-
sion dataset [10], which contains indoor UAV sequences
recorded with thermal cameras. Experimental results show
that our method enables accurate depth estimation from ther-
mal input alone, without requiring additional sensors or
modalities. This opens the door to robust indoor UAV nav-
igation, particularly in scenarios where thermal sensors are
already deployed (such as search and rescue, firefighting, and
industrial inspection).

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work on monocular depth estimation
and thermal image processing. Section 3 details our pro-
posed framework, including preprocessing, structural extrac-
tion, and the depth prediction pipeline. Section 4 presents our
experimental setup, dataset, and evaluation results. Section 5
discusses the implications and limitations of our approach,
and Section 6 concludes the paper with directions for future
research.

2 RELATED WORK
2.1 Depth Estimation

The field of monocular depth estimation was revolution-
ized by deep learning, which has largely superseded classical
geometric methods. The pioneering work of Eigen et al. [11]
was the first to successfully demonstrate that a multi-scale
Convolutional Neural Network (CNN) could regress a dense
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depth map directly from a single RGB image in a supervised
fashion. This established the foundational paradigm for end-
to-end depth learning.

Shortly after, a second major paradigm emerged with the
work of Garg et al. [12], which introduced self-supervised
learning for this task. By using photometric consistency be-
tween stereo image pairs as a supervisory signal, they elim-
inated the need for expensive ground-truth data from active
sensors like LiDAR. This breakthrough paved the way for
modern, robust self-supervised methods. Among them, Mon-
odepth2 [13] became a fundamental and widely-used base-
line, thanks to its carefully designed loss function that han-
dles occlusions and moving objects. Further refinements like
ManyDepth [14] improved consistency by leveraging infor-
mation from multiple frames during inference.

In the supervised domain, architectures like AdaBins [15]
have achieved exceptional performance. Its main innovation
is a novel method to discretize the depth range into adaptive
bins, allowing the network to capture both the global scene
layout and fine-grained local details with high fidelity.

A key challenge in the field is generalization to unseen
environments and recovering true metric scale. Architectures
like MiDaS [16] decisively addressed this by training on a
mixture of diverse public datasets, achieving unprecedented
zero-shot generalization capabilities. More recently, models
such as AnyDepth [8] have pushed the state-of-the-art in gen-
eralization even further.

However, the success of all these state-of-the-art methods
fundamentally relies on the photometric consistency inherent
in RGB images, a property that is absent in data from thermal
cameras, thus motivating our work.

3 PROPOSED FRAMEWORK

Our proposed framework is designed to compute a dense
depth map from a single thermal image by transforming it
into a robust, temperature-invariant structural representation.
The methodology consists of a multi-stage process, including
image pre-processing, line segment extraction, and entropy-
based filtering, before feeding the result into a deep neural
network. The overall pipeline is depicted in Figure 1.

3.1 Thermal Image Preprocessing and Normalization

The process begins with the raw thermal image in 16-bit
format, 7T". To reduce sensor noise while preserving signifi-
cant edges, a bilateral filter is applied. The value of a pixel
x is updated according to:

Tf(X):Wi Y. TG (Ix=yI)Go, (IT(x)=T(y)])

P yea(x)
(D

where T is the filtered thermal image, 2(x) is a neighbor-
hood around x, G, and G, are Gaussian kernels for the
spatial and range (intensity) domains, respectively, and W), is
a normalization factor. Subsequently, to handle outliers, pixel
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values are clipped and then rescaled using min-max normal-
ization into a 8-bit single-channel intensity map, T,,.

3.2 Line Segment Extraction

The core of our framework is the conversion of the ther-
mal image into a structural representation that is robust to
thermal variations. For this, we extract line segments using
the Fast Line Detector (FLD) algorithm [17]. However, the
quality of the detected lines is highly dependent on the al-
gorithm’s internal parameters 6. For this work, we select a
configuration of these parameters 6 based on previous exper-
iments, to obtain the line-segment representation of thermal
image L)

This simplified approach was deliberately chosen to
clearly demonstrate the viability of our core hypothesis with-
out introducing the complexity of an advanced optimization
routine. We note, however, that this selection process could
be further enhanced by employing more sophisticated tech-
niques, such as swarm intelligence algorithms [18, 19], which
remains a promising direction for future work.

3.3 Entropy-Based Filtering for Noise Suppression

To suppress noisy line segments in flat regions, we use a
filtering step based on local entropy. First, a local entropy
map, Eo, is computed from T';. For each pixel x, its local
entropy is calculated over a neighborhood window 2 (x) of
size k X k:

255

Eq(x) == p;(x)logy(p;(x)) 2)
7=0

where p;(x) is the probability of intensity level j within the
window € (x). This map highlights true edges with high en-
tropy values. This map is then thresholded to create a binary
mask, M:

(€)

M) = {1 ifEQ(g) > 7.
0 otherwise
where 7. is a predefined entropy threshold. The final, clean
line segment image, L ¢, is obtained by an element-wise prod-
uct:
Ly= Ly © Mg )

where ® denotes the Hadamard product [20, 21].

3.4 Depth Estimation Network

The final, filtered line segment image, L, serves as the
input to the depth estimation network. For this work, we only
use the inference power of AnyDepth-V2 to obtain the rela-
tive dense maps D. The entire process can be seen as a func-
tion composition where the final depth map Dis produced by
the network A from the output of our pre-processing frame-
work F:

D =N(F(T)) where F(T)=Ly Q)
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Figure 1: Pipeline of depth estimation from line-segment thermal representation.

4 EXPERIMENTAL AND RESULTS

This section presents the empirical validation of our
framework. The main goal is to evaluate whether our pro-
posed structural representation, derived from a thermal im-
age, can serve as an effective input for a depth estimation net-
work in the thermal domain, and to compare its performance
against a standard RGB image input.

4.1 Experimental Setup
4.1.1 Dataset

For our experiments, we utilize the OdomBeyond Vision
dataset [22]. This indoor dataset provides sequences of RGB,
depth and thermal images, captured from three platforms:
Unmanned Ground Vehicle (UGV), Unmanned Aerial Vehi-
cle (UAV) and Han-held. In this work, we use one UAV se-
quence, see details in Table 1. For the different frequency
rates of devices, the number of images are different for the
same sequence, so we made a synchronization of images us-
ing their time-stamps.

Thermal
18515

Sequence
2022-01-20-00-14-36

RGB Depth
3176 6353

Table 1: UAV sequence details from OdomBeyond Vision.

4.1.2 Implementation details

The pipeline was implemented in Python. The thermal
images were first processed using a bilateral filter to re-
duce noise while preserving edges. We used the OpenCV
library’s implementation with a neighborhood diameter of
d=5, and standard deviations of sigmaSpace (o) = 100
and sigmaColor (o,) = 100.

Following this, the local entropy map was computed us-
ing the ent ropy function from Scikit-image, with a circu-
lar structuring element of radius 5 (disk (5)). An entropy

mask was then generated by thresholding this map to filter
out noisy line segments in low-texture regions. The thresh-
old 7. was selected automatically for every image using Otsu
method [23].

The line segments were extracted using OpenCV’s Fast
Line Detector (FLD) implementation. The key parameters
for the FLD were set as follows: length_threshold=1,
distance_threshold=0.1, canny-thl=70, and
canny_th2=100. Merging of lines was disabled to
preserve raw structural details.

For the final depth estimation stage, we use the pub-
lic implementation of the pre-trained AnyDepth-V2 (Large)
model [8] in a zero-shot inference mode. Specifically,
the model is configured with an output feature embedding
size of 256 and utilizes multi-scale feature channels of
[256,512,1024,1024] in its decoder, as defined by the
public repository. For inference, the structural input image
Ly was resized to the model’s default input resolution of
640 x 480 pixels. No fine-tuning or re-training was per-
formed, as the purpose of the framework is to validate the
effectiveness of the structural input alone.

4.1.3 Comparison Conditions:

To evaluate our method, we established two experimental
conditions:

1. Baseline (RGB): The AnyDepth-V2 network receives
the original RGB image from the dataset as input. This
represents the expected performance of a standard vi-
sion system.

2. Our Framework (Thermal-Structural): The
AnyDepth-V2 network receives the line segment
representation generated from the corresponding
thermal image, following the methodology described
in Section 3.
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This direct comparison allows us to evaluate the viability
of a structural representation derived from a thermal sensor
for the task of depth estimation when only thermal data is
available.

To quantitatively evaluate the performance of both con-
ditions, we employ the six standard metrics for monocular
depth estimation proposed in [11].

4.2 Results

The results of our evaluation on the test set are summa-
rized in Table 2. The table compares the performance of our
thermal-structural framework against the RGB baseline. As
expected, the baseline using direct RGB input outperforms
our framework across all evaluated metrics [11]. This is
attributable to the fact that the AnyDepth-V2 network was
trained extensively on images from the visible spectrum.

However, the most significant finding is not the perfor-
mance gap, but that our thermal-structural framework pro-
duces a coherent and quantitatively reasonable depth map
without any re-training or fine-tuning. The ability of a net-
work trained exclusively on RGB data to interpret such a rad-
ically different input modality—a binary line segment image
derived from a thermal sensor—and still infer the 3D struc-
ture of the scene, validates our core hypothesis: the proposed
structural representation is a viable and meaningful input for
depth estimation. This demonstrates the framework’s poten-
tial to decouple geometric perception from thermal informa-
tion.

A visual comparison of the results is presented in Fig-
ure 2. We show: (a) the original RGB image, (b) the thermal
image, (c) our line segment representation, (d) the depth map
predicted from the RGB input, (e) the depth map predicted by
our framework, and (f) the ground truth.

S DISCUSSION

The quantitative results presented in Table 2 show that
the baseline, using direct RGB input, outperforms our frame-
work. This outcome is expected, given that the AnyDepth-
V2 network was pre-trained extensively on images from the
visible spectrum. However, the most significant finding of
this work is not the performance gap, but the demonstrated
viability of our approach. The ability of a network trained
exclusively on RGB data to interpret a radically different in-
put modality—a binary line segment image derived from a
thermal sensor—and still infer a coherent 3D structure vali-
dates our core hypothesis. This confirms that the proposed
structural representation is a meaningful input for depth esti-
mation, showcasing the potential to decouple geometric per-
ception from volatile thermal information.

The structural representation is intentionally dense and
subject to extreme parameter settings in the FLD algorithm to
maximize the capture of geometric details. This configuration
is a deliberate design choice: the exceptionally low distance
threshold parameter (0.1) forces the detected elements to ad-
here to a strict model of rectilinearity. This crucial geometric
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constraint filters out the curvature and irregularity inherent in
simple gradient-based thermal edges, ensuring that the input
L is composed of stable structural information.

This framework opens possibilities for robust UAV nav-
igation using a single, lightweight sensor in environments
where RGB cameras would fail, such as darkness or smoke-
filled rooms. For platforms where size, weight, and power
(SWaP) are critical constraints, leveraging an existing ther-
mal camera for both high-level tasks like human detection
and low-level navigation is a significant advantage.

It is important to acknowledge the limitations of this
study. A portion of the performance gap can be attributed
to the fact that the RGB and thermal images in the OdomBe-
yondVision dataset are not perfectly spatially aligned, which
introduces a systematic error in the evaluation. Furthermore,
this validation was conducted in a dataset with adequate light-
ing conditions; the performance in the target scenario of com-
plete darkness has not yet been empirically tested, nor has the
generalization to unstructured outdoor aerial environments,
which present challenges of greater range and variable scale.

6 CONCLUSION AND FUTURE WORK

In this paper, we presented a novel framework for monoc-
ular depth estimation on UAVs using a single thermal cam-
era. Our core contribution is the transformation of thermal
images into a temperature-invariant structural representation
(line segments), addressing the lack of photometric consis-
tency in thermal data. We successfully demonstrated that this
structural representation serves as a viable direct input for the
pre-trained AnyDepth-V2 network, validating the hypothesis
that underlying geometric structure is a meaningful signal for
depth perception. This opens a path for robust, lightweight,
single-sensor navigation in challenging scenarios.

For future work, we identify three primary directions.
First, the line segment extraction process can be enhanced;
while the classic LSD algorithm is effective, we plan to ex-
plore modern deep learning-based methods for line detection,
which could provide a more robust structural representation.
Second, the most critical next step is to fine-tune or fully re-
train a depth estimation network, such as AnyDepth, on our
line segment representation. We hypothesize that this will
significantly close the performance gap with the RGB base-
line by allowing the network to specialize in this new modal-
ity. Finally, we will extend our validation to include datasets
with challenging low-light and zero-light conditions to em-
pirically demonstrate the framework’s effectiveness in its pri-
mary target scenarios, such as search and rescue missions.
This will include testing the framework’s generalization ca-
pability to outdoor aerial environments.
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Method Input Modality REL| RMSE| logio! &1 &1 031

Baseline RGB 0.3140  1.2442  0.3800 0.4955 0.7759 0.9015
Our Framework Lines (Thermal) 0.4136 15156  0.4398 0.3981 0.6906 0.8635

Table 2: Quantitative comparison on the OdomBeyondVision dataset. Our framework uses a line segment representation from
a thermal image as input to the AnyDepth-V?2 network, while the baseline uses the corresponding RGB image.

(a) RGB Input (b) Thermal Input (c) Our Line Segments

(d) Predicted Depth (RGB) (e) Predicted Depth (Ours) (f) Ground Truth

Figure 2: Qualitative results. For a representative scene, we compare the depth map produced by the baseline using an RGB
image against the depth map from our framework, which uses a structural representation derived from a thermal image. Our
method successfully captures the main geometric structure of the scene.
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