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ABSTRACT

Precise drone flight requires stable low-level
control. Direct control over the drone’s collec-
tive thrust is unfeasible in most cases. A Thrust
Map (TM) can be calibrated as a means of accu-
rately actuating the motors. In this work, differ-
ent approximations to a TM are evaluated to de-
velop a general methodology for offline calibra-
tion in two steps. First, an offline estimation is
obtained from experimental preflight data. Sec-
ond, the offline TM is refined using a Correc-
tion Factor computed from real flight data. Dif-
ferent TM strategies are then discussed in terms
of their performance and the resources required
to compute them. Extensive experimental val-
idation of the proposed methods has been con-
ducted, demonstrating the effectiveness of a TM
calibrated from thrust stand experiments and ad-
justed using the proposed correction factor. A
repository with code and a video explanation are
attached to help replicate this work.1 2

1 INTRODUCTION

Quadrotors excel for their great agility and speed. These
characteristics make them ideal for demanding applications,
such as drone racing or ship landing in maritime harsh envi-
ronments, which require precise maneuvers [1, 2]. Such agile
flight requires fast and robust low-level control, particularly
attitude or rate control [3], which involves angular position
(attitude), angular velocity (rates) and collective thrust com-
mands. However, closing the control loop on thrust directly
requires force sensors, increasing equipment costs and reduc-
ing flight time [4].

To avoid the drawbacks of onboard thrust sens-
ing, quadrotors typically rely on electric propulsion
systems—specifically, Brushless Direct Current (BLDC)
motors—controlled through Electronic Speed Controllers

*1 Computer Vision and Aerial Robotics Group (CVAR), Centre for Au-
tomation and Robotics (C.A.R.), Universidad Politécnica de Madrid (UPM-
CSIC), 28006 Madrid, Spain. Correspondence e-mail: fj.anguita@upm.es
2 Automation and Robotics Research Group (ARG), Interdisciplinary Cen-
tre for Security, Reliability and Trust (SnT), University of Luxembourg, 1855
Luxembourg.

1Code repository: https://github.com/aerostack2/
thrust_map_estimation

2Video: https://vimeo.com/1104217611/ce4e5d3f6c

(ESCs) [5]. Fuel-based propulsion systems are largely unsuit-
able for small quadrotors due to their weight and decreasing
environmental acceptance. Flight controllers convert attitude
and rate commands into throttle signals, which are normal-
ized control inputs sent to the ESCs to actuate the rotors. Ta-
ble 1 lists commonly used Flight Controller Units (FCUs) and
the structure of their throttle commands.

FCU Signal Technique Throttle Range

Betaflight
PWM 1000-2000µs
Oneshot 125-250µs

Ardupilot
PWM 1000-2000µs
Oneshot 125-250µs

Pixhawk/PX4
PWM 1000-2000µs
Oneshot 125-250µs

Crazyflie Custom scale 10001-60000
Parrot App slider UI-based normalized %
Skydio App slider UI-based normalized %

Table 1: Throttle command encoding methods and ranges for
popular flight controllers units. The Signal Technique indi-
cates how throttle commands are transmitted to the ESCs,
while the Throttle Range specifies the corresponding signal
values or scales used to represent throttle percentages.

A critical component of this control chain is the relation-
ship between the throttle input and the actual thrust produced
by the rotors. The force F produced by the rotor depends
on its characteristics and the angular velocity of the motor ω.
This relationship can be modeled as shown in Equation 1 [6],
using a thrust coefficient kf .

F = kf · ω2 (1)

Directly measuring this force, or estimating it from the
rotor’s angular speed using Equation 1, would require addi-
tional sensors mounted on the drone, which could compro-
mise its agility.

Due to this, on most multirotors, the motors are controlled
by a “throttle” command, which adjusts the duty cycle of a
pulse-width modulation (PWM) signal applied to them. The
actual rotational speed achieved by the motor depends not
only on the throttle command but also on the battery voltage.
[7].

Therefore, the formulation of the problem consists of
finding a mapping function, called Thrust Map (TM), that re-
lates the desired thrust command T (N) to the throttle signal
Th(%) required to achieve it, as shown in Equation 2.
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Th = f(T, . . .) (2)

Figure 1: Block diagram of a typical thrust mapping system
for quadrotor control. The low-level controller computes de-
sired thrust values T (N). These are converted into throttle
commands Th(%) via a thrust map, which may depend on
additional factors such as battery voltage B(V ). The throt-
tle commands are then sent to the Flight Control Unit (FCU),
which generates motor-specific PWM signals for actuation.
These signals are transmitted to the Electronic Speed Con-
trollers (ESCs), which regulate the power supplied to each
motor, effectively controlling their speed.

Despite the importance of TM calibration, the field lacks
a standardized approach to obtain and processing the data
needed to build accurate maps. In this work, we focus on of-
fline TM estimation to elaborate a detailed description of the
TM calibration methods studied and report on their strengths
and weaknesses based on experimental validation results. In
summary, the main contributions of this work are:

1. A comparative study of multiple TM estimation
strategies, including experimental measurements and
in-flight refinements, highlighting trade-offs in accu-
racy and complexity.

2. A concise methodology for offline TM estimation,
encompassing data collection, calibration, and evalu-
ation steps.

3. A correction procedure that improves the accuracy of
offline calibrated TMs by compensating for discrepan-
cies observed during real flight operation.

2 RELATED WORK

TM characterization problem can be solved following two
different approaches: offline calibration and online estima-
tion. On the one hand, offline calibration refers to the pro-
cess of characterizing the TM before the flight, using con-
trolled and typically repeatable laboratory conditions. This
is done by collecting thrust data through static tests (e.g., us-
ing a load cell or thrust stand) and then fitting a mathematical
model—often a polynomial or surface function. On the other
hand, online estimation involves determining or refining the
TM during flight by using sensor data (e.g., IMU, state es-
timators) and real-time models. These methods dynamically
adjust thrust estimates to better reflect current flight condi-
tions, possibly adapting to changes in vehicle mass, battery
level, or rotor wear.

The most extended method is the offline estimation be-
cause of its simplicity. In [8], a second-order polynomial
curve is fitted to the data recorded from a motor mounted on
a load cell. The work in [9] extends the 2D modeling of the
TM by adding a linear dependency with the battery, thus cre-
ating a surface for the map. There are several techniques for
obtaining the thrust data needed for this approach. These can
be classified into direct experimental techniques, theoretical
techniques, and simulation techniques.

The works in [6, 10] use commercial devices to take ex-
perimental measures of the thrust produced by the propeller.
Other authors prefer to design custom thrust stands for this
data recording [11]. There is, however, a general lack of de-
scription on how to process the obtained data. The work in
[12] goes one step further by installing two motors onto their
device in order to measure the effect of their simultaneous
functioning on each other.

Regarding theoretical techniques, Classical Blade Ele-
ment Theory (BET) and Blade Element Momentum Theory
(BEMT) are used in [13] to obtain the force data for the map
estimation. This theoretical approach is more difficult to ap-
ply to small UAVs due to aeroelastic effects and transverse
flow, as described in [14].

Propeller simulation using Computational Fluid Dynam-
ics (CFD) is an alternative to this kind of machinery. In
[15, 16], CFD software is used to simulate the produced thrust
data needed for the TM curves. The experimental data taken
using a thrust stand is also compared to simulated CFD thrust
data in [10]. However, this approach requires an accurate 3D
model of the propeller, which is often not available.

No matter what method is used to gather the force or
thrust measurements, it is important to note that most of the
thrusts obtained using these methods are estimations, and
even the experimental results may vary when all the rotors
are mounted on the multirotor UAV. Regarding this matter,
[8] proposes the use of a correction factor to address the dif-
ference between the estimated total thrust the multirotor will
produce and the real thrust it is producing.

The problem of TM modeling can be tackled with online
estimation and correction of the thrust commanded to the ro-
tors. In [17], a BEMT-based estimator provides thrust obser-
vations for a feedforward thrust control scheme. Other tech-
niques for online estimation of the quadrotor mass, like Least-
Squares Estimation (LSE) or Extended Kalman Filter (EKF),
are discussed in [18]. The thrust estimation among other pa-
rameters using a Bayesian filter is discussed in [19]. These
approaches require a module to be running during flight time.

Despite the widespread use of offline TM calibration,
we observe that existing work often lacks a comprehensive
and reproducible methodology. In particular, there is limited
guidance on how to design and conduct the necessary experi-
ments or how to process the resulting data to obtain accurate
and reliable TMs. This work addresses this gap by present-
ing a detailed calibration procedure that systematically covers
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data acquisition, modeling, and evaluation, using various ex-
perimental sources.

In addition, most experimental setups used in the litera-
ture do not reproduce real flight conditions accurately. This
mismatch can lead to TMs that do not generalize well to ac-
tual UAV operation. To address this, we introduce a custom
extension to a commercial thrust stand to carry out experi-
ments that better reproduce real flight conditions.

Lastly, even with careful offline calibration, discrepancies
often remain between the predicted and actual thrust during
flight. To mitigate this issue, we propose the addition of a cor-
rection factor in our procedure, similar to existing solutions
in the literature, that refines the thrust estimation.

3 THRUST MAP CALIBRATION

3.1 Problem formulation
As mentioned in Section 1, the problem of TM calibra-

tion is the problem of approximating a function of the form
described in Equation 2. This approximation can be carried
out using different methods, including:

• Linear approximation.
• Polynomial approximation.
• Polynomial approximation with a correction factor.

The error committed by each method can be evaluated as
the difference between the real throttle command sent during
real operation, Th, and the throttle value predicted by the TM
function, T̂ h, as shown in Equation 3:

eTh =
∣∣∣Th− T̂ h

∣∣∣ (3)

3.2 Lineal approximation
Assuming a simplified model, the throttle signal Th can

be considered a function of the desired thrust T as:

Th = f(T ) (4)

Under the assumption of a linear relationship between
throttle and thrust, the TM function f̂ can be approximated
by a first-order expression:

f(T ) = a · T + b (5)

where a and b are constants that define the slope and offset
of the mapping. This model implies that when T = 0, the
throttle is at its minimum value, and when T = Tmax, the
throttle reaches 100%.

In the particular case where the thrust-to-throttle ratio is
constant and no offset is needed, the model can be further
simplified as:

f(T ) =
1

Tmax
· T (6)

This simplification assumes that Tmax is the maximum
thrust generated when the throttle is fully applied (100%).

3.3 Polynomial approximation
To improve accuracy, the linear model can be extended by

considering the influence of battery voltage on the available
motor power. As the battery voltage drops, the motors’ ability
to generate thrust for a given throttle input decreases [20].
Therefore, a more realistic model considers both the desired
thrust T and the current battery level B (in volts) as inputs.

Th = f(T,B) (7)

In this work, the function f is approximated using data
collected from experimental measurements, consisting of
triplets of the formDsi(Ti, Bi, Thi) for i = 1, . . . , N . These
measurements represent the throttle value required to achieve
a specific thrust at a given battery level. The procedure for
collecting this dataset is described in Section 4.

To approximate f , a polynomial surface fitting approach
is adopted. This model allows the throttle to vary smoothly
with both thrust and battery level. The fitted function f̂ is
chosen from the space of bivariate polynomials of degree d,
and is constructed by minimizing the total approximation er-
ror over all N data points in P .

f̂ = argmin
f∈Pd

N∑

i=1

|Thi − f(Ti, Bi)| (8)

Mathematically, the problem consists of finding the TM
polynomial function f̂ that minimizes the total fitting error.

3.4 Correction factor
The throttle value computed by the fitted TM func-

tion f̂(T,B) is responsible for generating the desired force
through the drone’s propulsion system. Ideally, if f̂ were
perfectly calibrated, the force produced by the drone would
exactly match the thrust commanded by the controller.

However, as discussed in [8], discrepancies may arise be-
tween the expected thrust, predicted by the fitted model, and
the actual thrust generated by the motors during flight. These
discrepancies can arise due to in-flight effects.

To compensate for this issue, we introduce a correction
factor γ. This dimensionless factor adjusts the thrust com-
mand before it is passed to the TM f̂ . The goal is to ensure
that the final throttle output yields a force that matches more
closely the intended thrust of the controller. This modified
structure is depicted in Figure 2.

Figure 2: Diagram of the approach including the TM and the
correction factor γ and the IMU that takes the acceleration
measures to compute Fm, derived from Figure 1.
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The corrected model is formulated as:

Th = f̂(Tγ , B) = f̂(γ(B) · Tc, B) (9)

For its computation, a dataset is collected us-
ing experimental measurements, consisting of triplets
Dfj(Bj , Tcj , Fmj ), for j = 1, . . . , N , where Tcj is the
thrust command passed to the TM, and Fmj is the measured
z-force obtained, using the vertical acceleration of the drone
az and mass m.

For each data point, the correction factor is estimated as:

γj =
Tcj
Fmj

(10)

Then, a univariate polynomial of degree d is fitted to the
data for solving the following minimization problem:

γ̂(B) = argmin
γ∈Pd

N∑

j=1

∣∣∣∣
Tcj
Fmj

− γ(Bj)
∣∣∣∣ (11)

This correction function γ̂(B) enables the system to dy-
namically adjust the input to the TM according to the battery
level, ensuring that the resulting throttle command continues
to produce a thrust consistent with the original intent of the
controller.

4 EXPERIMENTAL VALIDATION

To obtain the triplets of dataDs andDf described in Sec-
tion 3, experiments of two different natures are designed.

Firstly, thrust stand experiments are conducted to obtain
the values for throttle commanded, thrust measured and bat-
tery level of tripletDs, to estimate a TM using the Linear Ap-
proximation (LA) and the Polynomial Approximation. Us-
ing the Polynomial Approximation, two TM strategies will
be followed: experiments with one rotor only will result in a
Single Rotor (SR) TM, and experiments using all of the four
rotors will be used to calibrate a Multirotor (MR) TM.

Then, using the SR and MR TMs, real flight experiments
are carried out to obtain the Df triplets, with thrust com-
manded, battery level and z force measured, which allow us
to compute a correction factor for these two TMs, obtaining
the Single Rotor with correction factor (SR+γ) and Multiro-
tor with correction factor (MR+γ).

Table 2 summarizes the types of experiments and the dif-
ferent TM approximations and strategies.

4.1 Experimental Setup
The TMs in this work are all calibrated for an xNova

BlackThunder 2207-2100Kv racing motor connected to a
Foxeer Reaper F4 65A ESC and powered by a TATTU R-
LINE 6S LiPo battery. To obtain the data, these components
are mounted on a commercial TYTO Robotics Series 1585
thrust stand. This device has three force gauges and an elec-
tronic board that measures the force and torque produced by
the motor installed on it and stores the data, thus obtaining

Experiment Type TM Approximation TM Strategy

Thrust Stand
Linear LA

Polynomial SR
MR

Flight Experiments Polynomial + γ SR+γ
MR+γ

Table 2: Summary of data source experiments and their re-
lated TM strategies. The thrust stand experiments allow to
compute a Linear, SR and MR approximated TMs. Flight
Experiments allow to apply a correction factor γ to SR and
MR TMs.

the Ds triplet to calibrate the SR TM. To perform four rotor
experiments that better replicate real drone flight conditions,
an extension is mounted and connected to the thrust stand sig-
nal output. This configuration allows to compute the MR TM
with the new Ds triplet obtained. Figure 3 shows the full
setup for the thrust stand experiments.

Figure 3: Commercial TYTO Robotics Series 1585 thrust
stand and custom extension for multirotor experiments.

For real flight experiments, the same motors, ESC, and
batteries were mounted on a 250 mm carbon fiber quadro-
tor frame. The ESC is controlled by a Foxeer H7 MPU6000
Flight Controller Unit (FCU). An Nvidia NX Orin is the on-
board computer responsible for autonomous flying, and an
Intel RealSense T265 camera is used for localization. The
drone is shown in Figure 4.

Figure 4: Autonomous drone used for real flight experiments.

In terms of autonomy, the computer onboard runs
Aerostack2 [21]. This open-source framework performs the
state estimation, computes the control, and sends the com-
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mands to the FCU to carry out specified tasks using its own
mission planner. The controller used is a Model-Based Pre-
dictive Controller (MPC).

4.2 Thrust stand experiments for TM calibration

Series of three different types of experiments were carried
out on the thrust stand in the form of steps and ramps (see
Figure 5) that test both the transient and steady-state behavior
of a single rotor.

Figure 5: Sets of experiments conducted on the thrust stand
to cover different operational points.

These same experiments were repeated with the four ro-
tors connected to the ESC and commanded to rotate at the
same speed and at the same time, recording a new set of data
to which the new MR TM can be approximated.

With a simple experiment sending a maximum throttle
command to the rotor, the maximum thrust that the rotor can
produce is obtained, and thus the LA TM can be approxi-
mated using Equation 5.

Different polynomial surface alternatives are fitted to the
data and tested using the error described in Equation 3 to find
the surface that fits the best. Table 3 shows the error computed
for each polynomial surface fit.

Polynomial Error for SR Error for MR
2nd degree 1.541 ± 1.936 1.009 ± 1.691

2nd deg. truncated 1.543 ± 1.956 1.041 ± 1.651
3rd degree 1.411 ± 1.813 0.933 ± 1.390

3rd deg. truncated 1.494 ± 1.886 1.009 ± 1.691

Table 3: Mean fitting error (%) computed for different degree
polynomial surfaces fitted to the experimental data for SR and
MR

Despite having a slightly lower error, the third degree
polynomials overfit to the data for the throttle range that is be-
ing considered in this fitting process. A second degree poly-
nomial is chosen as the best fit for the data in both cases,
resulting in a TM function of the form:

Th = f(T,B) = a+b·T+c·B+d·T 2+e·T ·B+f ·B2 (12)

The fitted surfaces that characterize the SR TM and the
MR TM are shown in Figure 6.

4.3 Flight experiments for correction factor computing

This factor was estimated off-board using data collected
in Df from two different flight experiments for each TM to
be corrected (SR and MR). For each TM, two flights are per-
formed: one long hover flight for the entire duration of the
battery, and a flight with several short hover maneuvers at
different heights. This way, distinct forces are required from
the rotors, increasing the variety of the data. The same flight
experiments are then performed to test the SR+γ and MR+γ
TMs, as well as the performance of the SR and MR TM.

The measured force, Fm = f(az,m), was computed
using the z-axis acceleration measured by the IMU and the
drone’s mass. As expected, the experiments showed that even
though the measured thrust must be constant while the drone
hovers, the requested thrust increases as the battery level de-
creases.

Different datasheet of correction factors were computed
for the various TMs. These factors were then fitted to the
most suitable curve. The goal was to minimize the error
(Equation 3) to find the best degree and form of the poly-
nomial curve.

(a)

(b)

Figure 7: correction factor γ curves fitted to the data obtained
from flight experiments. 7a shows the curve fitted to apply γ
to the SR TM. 7b shows the curve fitted to apply γ to the MR
TM.

Initially, a linear approximation dependency was used.
However, this was not the best fit, so second- and third-degree
approximations were tried. The results were very similar for
both cases, so the second-degree polynomial approximation
13 was used to simplify the algorithm.

γ(B) = γ0 + γ1 ·B + γ2 ·B2 (13)
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(a) (b) (c)

Figure 6: TM functions fitted from experimental data. 6a shows the polynomial fitted for SR data. 6b shows the polynomial
fitted for MR data. 6c shows a comparative between SR (blue) and MR (orange) TMs.

Figure 7 shows the performance of the polynomial fit cho-
sen with the experimental data for the two TMs.

To validate these curves and ensure that the controller did
not assume errors derived from the TM, the difference be-
tween the measured thrust and the commanded is calculated
14. The results gathered in Table 4 expose that γ(B) absorbs
the error eTh from the TM and minimizes the error eT .

êT = |Tc − Tm| = |Tc − f(az,m)| (14)

Finally, the same flights were carried out with fitted cor-
rection factor curves added. The results are gathered in Table
4 and show in Figure 8, proving that the previous assump-
tion that the error eTh would be minimized with both TMs is
correct.

TM Strategy eTh (%) eT (%)
LA 12.174 ± 1.417 0.538 ± 0.051
SR 4.370 ± 0.744 0.258 ± 0.031
MR 4.934 ± 0.675 0.235 ± 0.030

SR + γ(B) 0.557 ± 0.313 0.037 ± 0.015
MR + γ(B) 0.197 ± 0.357 0.007 ± 0.006

Table 4: eTh and eT computed for the different strategies.
LA: linear approximation. SR: thrust stand with single rotor.
MR: thrust stand with multi rotor. SR + γ(B): thrust stand
with single rotor and correction factor. MR + γ(B): thrust
stand with multi rotor and correction factor.

5 DISCUSSION

5.1 Results from thrust stand experiments
The thrust stand experiments results prove that there is

a substantial difference between running the experiments ex-
clusively on one rotor or connecting the other three to the
ESC simultaneously. The ESC distributes the power from the
battery to the rotors based on the throttle input it receives for

each of the rotors. When only one rotor is connected, all the
ESC power is dedicated to it. From experimental data, we
know that the ESC inputs more than 20A of current to the ro-
tor when it sends a full throttle command. The ESC used in
these experiments works up to 65A, which is insufficient to
send the needed power of a full throttle command to the four
rotors at the same time. Besides, when the four rotors are
connected, the same throttle command provokes a larger de-
cay in the battery level, thus obtaining a lower thrust. These
differences are shown in Figure 6. The surface corresponding
to the MR TM in Figure 6c is at all times above the surface
for the SR one. This means that for a given battery level, the
MR TM estimates that a higher throttle command is needed to
achieve a desired force. Whether this higher computed throt-
tle is more accurate or not is proved in flight experiments.

5.2 Results from Flight Experiments
Flight experiments allow to analyze flight performance

from the SR and MR TM computed using thrust stand ex-
periments. Throttle and thrust errors from Figures 8 and 9
show that the MR TM has a poorer performance for higher
battery levels, above 22.5V, than the SR TM, with a 5% throt-
tle error against the 4% throttle error achieved by SR. Despite
this, it has a lower error from 21.5V to the end of the battery
duration, as MR throttle error goes down to 4% and SR error
goes up to 6%. Looking at the evolution of the battery level
in Figure 11, the battery level stays below 23.0V after time
reaches 50 seconds, so for the biggest part of flight, the MR
TM has a better performance than the SR TM. Even though
the mean throttle error of 4.934% for MR TM shown in Ta-
ble 4 is higher than the one for SR, which is 4.370%, flight
experiments show that the MR TM performs a better hover.
In Figure 10 it is shown that once the battery level reaches
the range of better MR performance, the drone begins to ap-
proach the 3 meter reference to hover and improves its flight.
However, the SR TM starts to diverge more and more from
this reference as the battery runs lower.
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Figure 8: eTh computed for the different TM strategies along
the battery range.

Figure 9: eT computed for the different TM strategies along
the battery range.

The results for the linear approximation highlight the im-
portance of calibrating a proper TM. This simple solution has
an error 10-20 times higher than the other approaches (see
Figure 8), and even though it is still possible to fly with such
a TM, the trajectory tracking error in the z-axis and the ability
to keep hover height are quite poor (see Figure 10).

The addition of a correction factor to previously cali-
brated TMs is a round success. The throttle error is reduced
from 12% to almost 0.5%, as can be seen in Table 4, and the
hover error stays within 5 centimeters for a hover reference
of 3 m (2%), as shown in Figure 10, throughout the battery
range. This error reduction is even higher for the MR+γ TM,
achieving a throttle error below 0.2% (see Table 4). This is
also due to the MR+γ TM spending more time operating in
its most favorable battery range, as previously commented.
Despite having lower throttle and thrust errors than SR+γ,
the hover performance is very similar, with a hover error also
below 2%.

5.3 Comparative of TMs

SR and MR error and flight performance can be improved
considerably by conducting a couple of flight experiments
with which to compute a correction factor that reduces that
error to less than 1%. The MR TM has not proven to be as
useful as the corrected counterparts. Its mean throttle error
increases with respect to the SR one when no correction fac-
tor is applied. Figure 6b shows that fewer data were taken
from the four rotor experiments, due to the faster discharge
of the batteries. This could have affected the accuracy of the
MR TM computing. More experiments and more data might

Figure 10: Drone stability performance when commanded to
hover at 3 meters height reference for each TM.

Figure 11: Battery level over time for different strategies

result in a better calibration of this MR TM. Even though MR
TM shows a slightly better overall hover performance than
SR in Figure 10, we consider this improvement not worth the
effort to calculate an MR TM alone. When the correction
factor was added to the MR TM, the error obtained for the
MR + γ proves to be lower than the SR + γ, going down to
0.197%. Although this reduction in the error is significant,
the SR+γ shows a good flight performance, with a hover er-
ror also within 5cm for a 3 meter hover flight and a throttle
error below 1%. We consider the SR+γ TM to be the better
strategy in a performance/computation cost relation. TM per-
formance can be slightly improved if MR+γ is a possibility,
i.e. if mounting resources and a safe space for experiments
are available.

6 CONCLUSION

In this work, we proposed a methodology for Thrust Map
estimation that proves to be effective, allowing the estimation
of different TMs that predict the forces the drone will produce
in real flight experiments.

We also presented an extension to the general approach
using a correction factor that is computed from flight data. By
applying this correction factor, great improvement is achieved
for the in real flight experiments.

Based on these same flight experiments, a comparison of
TM calibration strategies was performed, and a TM alterna-
tive is proposed as the best overall approach: a Single Rotor
with Correction Factor (SR+γ) Thrust Map.

As a proposal for future work, additional TMs can be cal-
ibrated using different ESCs and batteries to compare how
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these components affect the TM for the same set of motors.
A change in the motors would undeniably call for a new TM,
but the dependency on the selected ESCs and batteries is not
so evident.

Additionally, considering how similar the process of fit-
ting a TM or a correction factor to data and computing the er-
ror is to the training of an AI agent, these polynomial curves
and surfaces fitting can be substituted by machine learning
techniques.
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Mirosław Wendeker. Wind tunnel performance tests of the pro-
pellers with different pitch for the electric propulsion system.
Sensors, 22(1):2, 2021.

[15] Alexander H Bryant and Dibbon K Walters. Developing a
small-scale propeller thrust model using experimentation and
cfd. In AIAA Scitech 2021 Forum, page 1307, 2021.
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NOVEMBER 3-7, 2025, SAN ANDRÉS CHOLULA, PUEBLA, MEXICO 105


	Papers
	A Comparative Study on Thrust Map Estimation for Multirotor Aerial Vehicles


