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ABSTRACT

In recent years, the development of Unmanned
Aerial Vehicles (UAVs) has seen significant ad-
vancements, driven by their successful appli-
cations in various fields. Autonomous Micro
Aerial Vehicles (MAVs) are particularly gaining
attention due to their agility and potential for
complex tasks. However, testing autonomous al-
gorithms on real MAVs is both costly and risky,
making simulation platforms essential for safe
and efficient development. This paper intro-
duces CU-Fundamental, a comprehensive simu-
lation framework for autonomous MAVs, which
supports multiple levels of simulation, includ-
ing numerical simulation, Software-in-the-Loop
(SITL), and Hardware-in-the-Loop (HITL). The
framework integrates essential algorithms facili-
tating autonomous flight, including pose estima-
tion, map building, path planning, motion plan-
ning, and low-level control. CU-Fundamental
is designed to be modular and flexible, allowing
for easy integration of new algorithms and com-
ponents. It employs Robot Operating System
(ROS) for internal communication, a web-based
Ground Control Station (GCS) for advanced user
interaction, PX4 firmware for flight control, and
Gazebo for realistic physical simulation. By pro-
viding a flexible and modular architecture, CU-
Fundamental aims to accelerate the development
of robust autonomous MAV systems while mini-
mizing risks and costs associated with real-world
testing.

1 INTRODUCTION

In recent years, the development of UAVs has witnessed
remarkable progress, with their applications expanding across
a wide range of fields, including search and rescue, envi-
ronmental monitoring, last-mile delivery, building inspection
and autonomous racing [1]. Particularly, Autonomous MAVs

*Email address: jialiang.wang@link.cuhk.edu.hk

have garnered significant attention due to their agility and po-
tential to perform complex tasks in confined spaces such as
tunnels and mines [2]. These advancements have not only en-
hanced the efficiency of various operations but also opened up
new possibilities for innovation in the field of aerial robotics.

However, the increasing complexity of tasks that UAVs
are expected to perform necessitates the development and in-
tegration of sophisticated algorithms. These algorithms en-
compass a wide range of functionalities, including low-level
control laws for precise maneuvering, robust pose estimation
for autonomous flight, accurate perception for environmen-
tal awareness, and high-level planning algorithms for optimal
path generation. Validating the effectiveness of these algo-
rithms could be costly and sometimes rather dangerous on
real UAVs [3]. Therefore, simulation platforms have emerged
as a crucial solution, providing a safe and efficient means to
test and refine autonomous algorithms before deployment on
actual platforms.

Several simulation programs have been developed to ad-
dress the needs of UAV research and development, among
which AirSim and PX4 Simulink are two popular platforms
that have proved to be effective in various scenarios. Devel-
oped by Microsoft, AirSim is a high-fidelity simulation plat-
form that provides realistic rendering of environments and
sensor data [4]. On the other hand, PX4 Simulink focuses on
the development and testing of low-level control algorithms
for UAVs [5]. It provides a comprehensive environment for
designing, simulating, and tuning control systems, leveraging
the powerful capabilities of Simulink for model-based design
and verification.

While these platforms have been instrumental in advanc-
ing UAV research, they also have limitations that need to be
addressed. AirSim, for instance, excels in providing realistic
sensor data, making it suitable for testing high-level percep-
tion algorithms. However, the platform is not easily exten-
sible for secondary development, partially due to the heavy
Unreal Engine it is built upon. It also has limited support for
Linux, which restricts its usability makes integration with ex-
isting algorithms very challenging. Similarly, PX4 Simulink
enables researchers to develop robust and reliable control al-
gorithms through its high-performance numerical simulation.
Yet, when it comes to solving practical problems that involve
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Figure 1: The architecture of CU-Fundamental. The system has built-in modules for planning, control and perception, with
standard interfaces facilitating smooth communication between modules.

higher-level functionalities such as Simultaneous Localiza-
tion and Mapping (SLAM) and planning, Simulink is not suit-
able, if not impossible, to use due to its limited capability to
simulate sensor data and the complexity of integrating other
algorithms into Matlab.

To test both low-level and high-level algorithms for au-
tonomous MAVs, we introduce CU-Fundamental, a compre-
hensive simulation framework for autonomous MAVs. CU-
Fundamental is designed to support multiple levels of simu-
lation, including numerical simulation, SITL, and HITL, fol-
lowing the implementation of XTDrone [6]. It employs ROS
for internal communication, a GCS for advanced user interac-
tion, PX4 firmware for flight control, and Gazebo for realistic
physical simulation. The framework has built-in support for
essential algorithms like SLAM, path planning, motion plan-
ning, and control. Moreover, CU-Fundamental is designed to
be modular and flexible, providing standard interfaces for in-
tegration of new algorithms and fine-tuning of algorithm pa-
rameters. This framework facilitates the fundamental work-
flow of developing and testing autonomous MAVs: the upper-
level algorithms are first tested (in SITL mode) while taking
aerodynamics (in numeric simulation) into account, then the
same algorithms are deployed to the embedded flight control
board and onboard computer for HITL testing. If all tests are
successful, the algorithms can be deployed to real MAVs for
field-testing.

2 SYSTEM ARCHITECTURE

An overview of the architecture of CU-Fundamental is
shown in Figure 1.

2.1 Dynamic Modelling

Upon finishing the design of new MAVs, the first step
is to model the dynamics of the MAV. Taking advantage of
Gazebo’s physics engine [7], CU-Fundamental provides a dy-
namic model of quadrotor MAVs as shown in Figure 2.

The forces and moments on an MAV comprise the thrust
force fi ∈ R and corresponding moment Mi ∈ R3 generated
by i-th rotor, the aerodynamic drag force D ∈ R3 and the
gravitational force G ∈ R3. Let the distance from the center
of mass to the center of each rotor be d ∈ R, the total thrust
f and moment M = [Mx,My,Mz]

T generated in the body
frame can be expressed as:




f
Mx

My

Mz


 =




1 1 1 1
0 −d 0 d
d 0 −d 0
−cM cM −cM cM







f1
f2
f3
f4


 (1)

where cM is the moment coefficient, which is a constant de-
termined by the geometry of the MAV. More detailed mod-
elling of this coefficient can be found in pp. 631-639 of [8].

Applying Newton’s second law, the equations of motion
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Figure 2: The dynamic model of quadrotor MAVs in CU-
Fundamental.

of the quadrotor MAV can be expressed as:

ẋ = v, (2)
mv̇ = G+D + f, (3)

Ṙ = RΩ̂, (4)

JΩ̇ + Ω× JΩ =M, (5)

where R ∈ SO(3) is the rotation matrix from body frame to
world frame, Ω ∈ R3 is the angular velocity in body frame,
J ∈ R3×3 is the inertia matrix of the MAV, and Ω̂ is the
skew-symmetric matrix of Ω.

2.2 Sensor Simulation
Sensor models are essential for the perceptual capability

of autonomous MAVs. To cater for the versatile needs of var-
ious missions, CU-Fundamental provides a set of different
sensors including IMU, GPS, LiDAR, and cameras.

IMU, magnetometer, barometer and GPS: Following
the design of [6], the observation values of all these sensors
are disturbed by an error model which consists of a random
walk, a bias and a white noise. These parameters are all con-
figurable.

Camera: CU-Fundamental supports general RGB and
depth cameras provided by Gazebo plugins. The tunable
parameters include camera resolution, field of view (FOV),
intrinsic parameters, distortion coefficients, among others.
Alternatively, users may opt to use other open-source cam-
era simulation plugins such as the Intel Realsense simulation
by [9], which essentially combines multiple RGB and depth
cameras into a single plugin.

LiDAR: CU-Fundamental supports various types of Li-
DAR sensors, including 2D and 3D ones. 2D LiDAR is im-
plemented as an instance of Gazebo ray sensor, which emits
laser beams controlled by a certain range, FOV, resolution,
number of samples and Gaussian noise. Two types of 3D Li-
DAR are supported: the first is mechanical LiDAR, which is
implemented as a vertical array of 2D laser beams; the second

is solid-state LiDAR, which is based on the working principle
of Livox LiDARs [10].

2.3 Supporting Algorithms

Control: CU-Fundamental allows users to implement
both outer-loop and inner-loop control algorithms using the
functionalities of Mavros. By default, CU-Fundamental uses
PX4 for attitude, position and velocity control. Attitude con-
trol is achieved using traditional PID control law, while po-
sition and velocity control are implemented as cascaded PID
controllers on top of the attitude controller.

Moreover, CU-Fundamental offers a more sophisticated
non-linear geometric controller [11, 12] as an in-place alter-
native to the default PID controller. Similarly, three flight
modes, namely attitude controlled mode, position controlled
mode and velocity controlled mode, are supported and can
be switched between each other. Different from the default
PID controllers, the non-linear geometric controller guaran-
tees almost global tracking features on SO(3) and enables
more aggressive maneuvers with faster response time.

Perception: Perception is a board term that refers to the
process of acquiring and interpreting sensory data to gain ac-
tionable insights about the environment. Among various per-
ceptual algorithms, SLAM is one of the most crucial com-
ponents because of its capability to provide accurate pose
estimation and environmental mapping for both upper-level
planning algorithms and low-level control. Depending on the
sensor types, CU-Fundamental has built-in support for vari-
ous visual and LiDAR SLAM algorithms, providing conve-
nient choices for users. For visual SLAM, CU-Fundamental
supports the ORB-SLAM series [13, 14, 15] and the VINS se-
ries [16, 17], which are both well-known open-source visual
SLAM algorithms. For LiDAR SLAM, CU-Fundamental im-
plements the LOAM family [18] and Fast-LIO [19].

Additionally, some specific mapping algorithms are in-
cluded as a middle layer between SLAM and planning al-
gorithms. For example, our previous work [20] provides a
GPU-accelerated Euclidean distance transform algorithm to
enhance environmental awareness of the obstacles, ensuring
better motion planning performance. Finally, AI-powered
object detection and segmentation algorithms are also sup-
ported to provide semantic understanding of the world. CU-
Fundamental includes the YOLO series [21, 22] and provides
corresponding interfaces.

Planning: A hierarchical planning framework based on
our previous work [23] is implemented in the system, which
consists of a task planner, a path planner and a motion plan-
ner. A task planner based on linear temporal logic [24] is
first called to generate a sequence of waypoints based on
mission specifications. The path planner then searches for
a feasible path, which is subsequently smoothed by a motion
planner to generate a trajectory consisting of a sequence of
desired poses, velocities and accelerations. Moreover, CU-
Fundamental includes popular motion planning algorithms
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such as Ego-planner [25].

Figure 3: A Snapshot of AstroGCS visualizing the nuScenes
dataset [26]. The waypoints are generated and published to
onboard computer using large language models with the fol-
lowing prompt: “Generate a zigzag path with three rows, each
row containing five waypoints”.

2.4 Interface and Communication

The communication between different algorithms is fa-
cilitated by ROS, whose message-passing mechanism allows
for efficient data exchange. In addition to the standard mes-
sages, CU-Fundamental provides a set of custom messages1

to handle the data flow between SLAM, planning and control
algorithms.

In terms of lower-level communication with the simulated
flight control board, Mavlink and Mavros are used to ensure
compatibility with the PX4 firmware. For example, the sensor
data and MAV dynamic status simulated by Gazebo plugins
are published to the flight controller through Mavlink, while
other necessary information (localization results, user control
commands, etc.) that are calculated in ROS are sent through
Mavros. For detailed information, readers are referred to [6].

On the user side, CU-Fundamental provides a more user-
friendly and modernized GCS named AstroGCS using the
web-based (HTML5 and React) architecture. The GCS pro-
vides a 3D graphical interface for users to monitor the sta-
tus of the MAV, visualize the environment, and interact with
the system. As is illustrated in Figure 3, it also supports ad-
vanced features such as publishing planning commands and
invoking AI agents to assist in decision-making. AstroGCS
has access to all the data communicated in ROS through ROS
Bridge (See Figure 4). Compared to Qt-based counterparts,
the web-based design is easier to program and extend thanks
to the rich ecosystem of web technologies. Moreover, since
it is web-based, the GCS can be deployed on any device with
a modern web browser and could be even accessed remotely,
suggesting better cross-platform compatibility and more con-
venient user experience.

1https://github.com/CUHK-UAS-FUNDAMENTAL/usrl_
msgs/

One shortcoming of AstroGCS is that it does not support
showing the Gazebo simulation since Gazebo adopts a dif-
ferent communication and rendering strategy. Gazebo uses
a server-client architecture, where the server (GzServer) is
responsible for simulating the physics while the client (Gz-
Client) is for rendering the simulation results. Since GzClient
is not web-based, it cannot be directly integrated into As-
troGCS. Thankfully, Gazebo provides GzBridge and GzWeb
that allow users to visualize the simulation results in a web
browser. CU-Fundamental modifies the GzWeb to provide
advanced functionalities such as manipulating MAV models.
In this way, GzWeb and AstroGCS work in accordance to
provide a unified system UI in web architecture, where users
could monitor the simulation results in GzWeb and manipu-
late drone algorithms in AstroGCS. Altogether, the architec-
ture of the interface and communication is shown in Figure 4.

GzServer
(numerical simulation, result publishing)

Supporting Algorithms 
(processing Gazebo messages)

GzClient
(scene rendering)

ROS Gazebo Communication (Protobuf+ASIO)

ROS Bridge 

AstroGCS 
(web application)

GzWeb
(http client on browser)

GzBridge

Unified CU-Fundamental UI Web Clients
Modern HTML UI

Cross-platform

System Apps
Qt UI

Figure 4: Communication and interface between AstroGCS,
algorithms and Gazebo simulation. Components in the blue
box are readily implemented in ROS and adopted by most
simulation frameworks. CU-Fundamental provides addi-
tional unified web interface as marked in the green box.

3 CASE STUDY

This study reproduces the tunnel navigation challenge in
the IMAV 2025 competition, where the MAV is required to
navigate through five 0.5 m × 1 m tunnels spanning a total
length of 2 m. A new MAV named CU-Astro is designed
for this task, which is a quadrotor MAV with a size of 216
mm × 216 mm × 95 mm. The MAV is equipped with a 3D
LiDAR (Livox Mid-360) for LiDAR SLAM and detection of
the tunnel walls. The overall design of CU-Astro is illustrated
in the background of Figure 2.

Two necessary testing stages are required to complete the
task. Firstly, the MAV should be stable enough to track a
given trajectory, which is primarily achieved by tuning the
control parameters. Subsequently, the high-level detection
and planning algorithms are tested to automatically generate
a feasible trajectory for navigation.

3.1 Minimum-snap Trajectory Generation and Tracking
To ensure basic stability and controllability of the MAV,

a minimum-snap trajectory is generated for the drone to
follow [27]. Minimum-snap trajectory is a widely used
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method for generating smooth flight paths for MAVs and inte-
grated in various motion planning algorithms included in CU-
Fundamental. Therefore, successful tracking of minimum-
snap trajectory suggests easier integration of other algorithms
in the future. Specifically, the problem could be formulated
as the following optimization objective:

min
p(t)

∫ tf

t0

α
∥∥∥p(n)(t)

∥∥∥
2

+ β
∥∥∥Ψ (m)(t)

∥∥∥ dt, (6)

s.t. p(t0) = p0,p(tf ) = pf , Ψ(t0) = Ψ0, Ψ(tf ) = Ψf

where p(t) ∈ R3 is the position of the MAV at time t, Ψ(t)
is the yaw angle, p0 and pf are the initial and final posi-
tions, Ψ0 and Ψf are the initial and final yaw angles. n and m
control the order of derivatives. α and β are scaling factors.
For minimum-snap trajectory generation, n = 4 and m = 2
are used, which results in minimized differential thrust in the
physical system, thereby reducing the energy consumption
and improving the smoothness of the flight. To track the gen-
erated trajectory, a typical cascaded PID controller is used.

In the simulation stage, a minimum-snap trajectory is gen-
erated to pass through four waypoints located at the corners
of a square with a size of 1 m × 1 m. The square is placed on
a horizontal plane at a height of 1.5 m.

(a) Simulation (b) Real flight

Figure 5: Minimum-snap trajectory generated and tracked in
simulation and real flight.

After the workflow of the algorithms is successfully ver-
ified, the same algorithms are deployed to the onboard com-
puter. The control parameters used in the simulation serve as
the initial values for the real flight and are further fine-tuned
using the PX4 Autotune. Figure 5 shows the minimum-snap
trajectory generated and tracked in both simulation and real
flight. It is noted that these two trajectories are highly simi-
lar, indicating that the algorithms are successfully transferred
from simulation to real flight. The real flight data is recorded
by PX4 and shown in Figure 6. While there’s some delay in
the response of the MAV, the final trajectory aligns well with
the planned.

Figure 6: Real flight data record of tracking results.

Figure 7: Gazebo simulation of the tunnel navigation chal-
lenge. The scene rendering is captured from GzWeb. The left
side menu also shows a part of the GzWeb interface, which
allows users to manipulate the MAV directly and visualize the
simulation results.

3.2 Tunnel Detection and Navigation

After the MAV’s mobility is verified, the next is to inte-
grate high-level algorithms including object detection, SLAM
and motion planning algorithms are tested to find feasible so-
lutions. In the simulation stage, a Gazebo environment as
shown in Figure 7 is first created to simulate the tunnel envi-
ronment. Then the MAV is manually guided using proper ex-
ternal localization and motion planner. As CU-Fundamental
has built-in algorithms and interfaces for these functionalities,
the development process is significantly accelerated. Prelim-
inary experiments suggest that a combination of Fast-LIO2,
Ego-planner and PID controller can achieve successful navi-
gation provided that correct waypoints are given.

To automatically generate waypoints, a simple object de-
tection method based on 3D point cloud is implemented. The
algorithm first filters the point cloud to remove noisy points,

NOVEMBER 3-7, 2025, SAN ANDRÉS CHOLULA, PUEBLA, MEXICO 94
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(a) Simulation
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(b) Real flight

Figure 8: Visualization of the trajectory in simulation and real flight. The drone pose (red), odometry (blue) and trajectory
setpoints (green) are shown in the figure. The Z-axis is omitted in the plot since the tunnel is high enough to tolerate relatively
large altitude errors.

then applies a DBSCAN clustering algorithm to detect and
segment the tunnel walls. The center of the tunnel is then es-
timated as the average of the points in each cluster. After the
MAV is guided to the center of the first tunnel wall, the loca-
tion of the furthermost center is used as the planning goal.

Figure 9: DBSCAN clustering of tunnel walls. The center is
marked as red points.

The aforementioned algorithms are first tested in simu-
lation and then deployed for real flight. Since the detection
algorithm is based on the relatively easy-to-simulate LiDAR
sensor (only geometry of the pointcloud is required), there
is little simulation-to-real gap. The final flight trajectory is
illustrated in Figure 10.

To qualitatively evaluates the function of CU-
Fundamental, Figure 8 compares the odometry, actual
drone pose and trajectory setpoints in both simulation
and real flight. The statistics of the corresponding errors
are reported in Table 1. Odometry error is defined as the
Euclidean distance between the drone pose and the odometry
while tracking error is that between the drone pose and the
trajectory setpoints.

As is indicated in the figure and table, the error pattern in
real flight is similar to that in simulation, suggesting the prac-
tical usability of CU-Fundamental as a simulation framework
for real-world applications. Both odometry and tracking er-
rors are statistically below 10 cm, which is acceptable for the

Figure 10: Composite image of the drone trajectory.

Table 1: Odometry error and tracking error (Unit: m)

Error type Odometry error Tracking error

simulation real simulation real

Min 0.0217 0.0447 0.0037 0.0022
RMSE 0.0962 0.0855 0.0316 0.0655
Max 0.2577 0.1449 0.0575 0.1647

task since the drone size is 21.6 cm compared to the tunnel
size of 50 cm. The maximum tracking error is recorded at
the end of the flight in both cases, which is likely due to the
accumulated error in the odometry. To overcome this issue,
it is advised that the MAV should adopt some advanced algo-
rithms to readjust its location with respect to the final tunnel.

4 CONCLUSION

This paper presents CU-Fundamental, a comprehensive
simulation framework for autonomous MAVs. The frame-
work supports multiple levels of simulation, including nu-
merical simulation, SITL, HITL, and integrates essential al-
gorithms for autonomous flight. CU-Fundamental is based
on modular design, implementing standard interfaces for var-
ious SLAM, planning and control algorithms. It also inno-
vates the user interface by providing web-based AstroGCS
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and GzWeb, which allows for advanced user interaction and
easier secondary development. The framework is tested in a
case study of tunnel navigation, demonstrating its effective-
ness in simulating and testing autonomous MAV algorithms.
The future work will focus on further enhancing the modular-
ity and extensibility of CU-Fundamental, as well as improv-
ing simulation realism to better reflect real-world scenarios.
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