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ABSTRACT

Calculating the relative position between im-
ages in Unmanned Aerial Vehicles (UAVs) is a
core component in tasks such as visual odome-
try, SLAM, and state estimation. It enables the
UAV to estimate its movement between frames
using onboard sensors. In this paper, we present
a spatio-temporal regression architecture com-
bining 3D CNNs and masked attention mecha-
nisms. The model takes a sequence of image
frames and corresponding Inertial Measurement
Unit (IMU) data for each frame as input and out-
puts the estimated relative position in meters be-
tween the images. The inclusion of IMU mea-
surements is critical for improving robustness to
motion blur, low-texture environments, and rapid
maneuvers, as it provides complementary infor-
mation about the UAV’s linear acceleration and
angular velocity. The CNN layers extract com-
pact spatio-temporal features from the video in-
put, while the multi-head attention layer captures
temporal dependencies and contextual relations
across time. The final Multi-Layer Perceptron
(MLP) regresses these fused representations into
a relative position estimate. We demonstrate the
effectiveness of our method on the TII Drone
Racing and UZH-FPV datasets.

1 INTRODUCTION

Accurate estimation of the relative camera pose between
consecutive frames is a fundamental problem in computer
vision and robotics, with applications in autonomous UAV
navigation, visual odometry, augmented reality, and simul-
taneous localization and mapping (SLAM). Estimating how
a camera moves through an environment using only visual
data enables devices to operate in GPS-denied or dynamic
environments, a crucial capability for lightweight, agile aerial
robots. However, relying solely on visual input can be chal-
lenging in scenes with motion blur, low texture, or sudden ac-
celerations [1]. To address this, inertial measurements from
an Inertial Measurement Unit (IMU) provide complementary
motion cues, capturing high-frequency information about the
UAV’s linear acceleration and angular velocity. When fused

*Email address: carranza@inaoep.mx

with visual data, IMU information improves pose estimation
accuracy and temporal consistency, particularly in fast or am-
biguous motion scenarios [2].

Traditionally, relative pose estimation has been based on
geometry-based methods such as feature matching, essen-
tial matrix decomposition, and epipolar geometry [3, 4, 5].
Although effective under ideal conditions, these approaches
are sensitive to image noise, motion blur, dynamic objects,
and low-texture scenes (all common in UAV flight scenar-
ios). More recently, learning-based approaches have shown
promise in extracting robust representations from raw images,
enabling the end-to-end estimation of camera motion without
the need for explicit feature extraction or geometric modeling
[6], as well as the use of only IMU information to calculate
the relative pose and orientation [7, 8]. However, most ex-
isting learning methods rely on 2D convolutional networks,
which fail to fully capture the temporal dynamics and motion
continuity inherent in sequential image data.

To address these limitations, we propose a novel deep
learning architecture that combines 3D Convolutional Neu-
ral Networks (3D CNNs) with a masked multi-head atten-
tion mechanism for robust and efficient estimation of relative
camera motion with the help of inertial measurements from
an IMU. The 3D CNN serves as a spatio-temporal feature ex-
tractor, capturing both appearance and motion patterns across
frames, while the attention module models long-range depen-
dencies and spatial-temporal interactions, improving the con-
sistency and robustness of the motion estimation.

2 RELATED WORK

Traditional approaches for estimating the relative pose
between two images rely heavily on geometric principles,
such as epipolar geometry and Structure-from-Motion (SfM)
pipelines. These methods typically involve detecting and
matching feature points (like SIFT or ORB methods), esti-
mating the fundamental or essential matrix, and decomposing
it to recover relative rotation and translation (up to scale) [9].
While effective under controlled conditions, these techniques
degrade significantly in low-texture regions, under motion
blur, or when the scene contains dynamic elements, scenar-
ios common in UAV operations.

With the rise of deep learning, several methods have been
proposed to estimate camera motion directly from raw im-
age data. PoseNet [10] introduced a convolutional architec-
ture for regressing the absolute camera pose from a single im-
age, later extended to use temporal information. DeepVO [6],
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SfM-Net [11], and SelfVIO[12] focused on estimating rela-
tive motion using Recurrent Neural Networks (RNN) or con-
volutional architectures on image pairs or sequences. These
methods bypass traditional feature extraction but often rely
on 2D CNNs, which may not fully capture temporal dynam-
ics across frames.

3D convolutional neural networks have been widely
adopted in video classification [13] and action recognition
[14] due to their ability to model spatio-temporal dependen-
cies. Models like C3D [15] and I3D [16] extract features from
both spatial and temporal dimensions, making them suitable
for motion understanding. In the context of pose estimation,
3D CNN s offer the advantage of learning motion cues directly
from short video clips. However, their use in relative pose es-
timation, particularly for UAVs, remains underexplored.

The introduction of Transformers [17] and their adapta-
tion to vision tasks (ViT [18], TimeSformer [19]) have shown
that self-attention can be highly effective in modeling long-
range dependencies and contextual relationships in image and
video data. In pose estimation, attention-based models such
as ConvLSTM [20] and DROID-SLAM [21] incorporate at-
tention layers to integrate spatial and temporal information
between image sequences. These methods demonstrate the
potential of attention mechanisms to enhance robustness, es-
pecially under challenging conditions.

For aerial robotics, estimating relative pose is especially
critical due to limited access to GPS, high-speed maneu-
vers, and environmental variability. Methods like VINS-
Mono [22] and ORB-SLAM3 [23] provide tightly coupled
visual-inertial and SLAM-based solutions. Learning-based
approaches, such of Xu et al. [24], demonstrate that compact
convolutional architectures can effectively handle large dis-
parities and motion blur in a downward-facing camera, par-
ticularly when aided by IMU signals. However, these models
typically operate in a frame-to-frame setting and remain lim-
ited in capturing longer-term temporal dependencies.

Our work addresses these challenges by combining 3D
CNN s for spatio-temporal motion encoding with multi-head
attention mechanisms that incorporate both visual and iner-
tial data. Specifically, we integrate IMU measurements (lin-
ear accelerations and angular velocities) as additional input
streams into the attention layers, enabling the model to learn
cross-modal dependencies and temporal patterns that extend
beyond what vision alone can capture. This fusion improves
the model’s ability to disambiguate motion in scenes with tex-
tureless surfaces, motion blur, or fast UAV maneuvers. By
attending jointly to visual features and inertial cues, our ar-
chitecture produces more accurate and robust relative pose
estimates tailored to the dynamics of agile aerial platforms.

3 METHODOLOGY

This section presents the proposed architecture for esti-
mating the relative camera translation between consecutive
frames. The network combines 3D Convolutional Neural
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Networks (3D CNNs) and a masked multi-head attention
mechanism to model both local spatio-temporal patterns and
long-range dependencies across image sequences. The out-
put is a 3-dimensional vector corresponding to the relative
displacement (X,y, and z) of the camera. Given a sequence
of consecutive RGB images I}, I;41, ..., i1+, and IMU data
IMU, IMUyy, ..., MUy, representing the angular ve-
locity (w,;, wy, w) and linear acceleration (a,, a,, a.) of each
image, the objective is to estimate the relative translation
tit41 € R3 between frames I; and I;4 1, assuming a known
or negligible rotation. This formulation is useful in UAV ap-
plications such as visual odometry, drone racing, and inspec-
tion, where accurate estimation of egomotion is crucial. The
proposed architecture consists of four main stages (Figure 1):

¢ Spatio-temporal feature extraction via 3D CNN:
A stack of 3D convolutional layers processes the in-
put sequence X € RBXCXTXHXW “ywhere B is the
batch size, C the number of channels, 7' the num-
ber of frames, and H x W the image resolution (set
at 122 x 122 in our experiments). The 3D convolu-
tions jointly encode appearance and temporal motion
patterns. After three convolutional blocks (with batch
normalization and ReLU activations), the output is re-
shaped into a sequence of feature vectors of size 128,
yielding X,;; € REXLX128 where L = C' x H' x W'
is the flattened spatio-temporal dimension of the last
3D convolution, in this case different from the original
dimension.

« IMU feature encoding: Raw IMU signals
(W, Wy, Wy, Az, Qy,a,) over a clip of T frames
are stacked into a vector of dimension 67 (i.e., 36
when 7" = 6). A two-layer Multi-Layer Perceptron
(MLP) projects this input to a 128-dimensional em-
bedding, X, € RP*128 This representation is then
repeated along the sequence length L, resulting in
Ximu € REXEX128 '+ match the visual features.

* Temporal attention via masked multi-head atten-
tion: The visual features X ;s and IMU features X;,,,.,
are concatenated along the feature dimension, produc-
ing X pysea € RB*EX256 This sequence is passed to a
masked multi-head self-attention module that:

— Applies multiple attention heads to compute rela-
tionships between all pairs of feature tokens,

— Uses an optional mask to restrict attention to valid
temporal regions,

— Enables the model to reason over global temporal
dependencies and non-local motion patterns.

* Regression head via MLP: The attention-enhanced
sequence is pooled via global average pooling over L,
resulting in a fixed-size representation € RB*256 A
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three-layer MLP regresses the final translation vector
(x,y,2).

The network is trained using supervised learning with
ground truth relative translations, which are calculated with
the ground truth position and orientation of the dataset.

Given two poses at timestamps ¢; and ¢, 1, each pose con-
sists of a position vector t € R? and a unit quaternion q € R*
representing orientation.

1. Homogeneous transformation matrix:

-

2. Relative transformation: Let T; and T5 be the trans-
formation matrices at times ¢; and ¢;,1, respectively. The
relative transformation is:

T =TTy

3. Output format:

R re tre
Trel: |: (((]) 1) 11:|

From this matrix, we extract the position and orientation to
use separately.

Reconstructing global trajectory from relative poses
Given a sequence of relative poses t,, predicted by our net-
work and relative orientations by the ground truth g’ for
1=0,1,..., N—1, wereconstruct the global trajectory using

the following procedure.

1. Relative transformation matrix:  Each relative pose is
converted to a homogeneous transformation:

leiel — |:R<grel) tiel:| c SE(S)

2. Initialization:
mation:

Start at the origin with identity transfor-

TO = I4><4

3. Recursively compute global poses

Tip1 =T Ty

For the training, we calculate the loss with Mean Squared
Error (MSE) in meters between prediction and ground truth
translation ¢;:

Lpose - ||tpred - tgt”Z (l)
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4 EXPERIMENTS AND RESULTS

We evaluate our model on the TII Drone Racing [25] and
UZH-FPV [26] datasets. The TII Drone Racing contains
RGB images with illumination changes from fast (>21m/s)
and aggressive quadrotor flight and the UZH-FPV dataset in-
cludes RGB images from indoor and outdoor scenes of agile
flight.

The experiments were carried out on a computer equipped
with an Intel Core 15-9400F, 16GB of RAM, and an NVIDIA
GeForce RTX 4070 Super GPU. Due to the nature of our net-
work, it is necessary to determine the optimal value for T’
(the number of frames required to subtract enough informa-
tion to estimate the relative position). Therefore, we evaluate
the network with 7" values of 2, 4, 6,8, and 10 on the UZH-
FPV dataset using sequences Indoor forward facing 03, 05,
and 06 for training, 07 and 09 for validation, and 10 for test-
ing. These sequences were selected because they represent
different flight trajectories and visual conditions within the
same forward-facing setup. For example, training sequences
(03, 05, 06) contain a mix of straight and turning maneuvers,
providing sufficient variability for the model to learn motion
patterns. Validation sequences (07, 09) include faster transla-
tional movements and different illumination, which are useful
to monitor overfitting. Finally, sequence 10 was reserved for
testing as it features a distinct trajectory not seen during train-
ing, ensuring an unbiased evaluation of generalization.

We analyze the training loss over 100 epochs. The T=10
setting is the most unstable; however, in general, the loss de-
creases consistently throughout training. To determine the
best 1" value, we compare the MSE of each model for the test
sequence in Table 1, with the best result obtained for 7'=6.

With the optimal value of T fixed at 6, we train the final
model on the following UZH-FPV sequences to evaluate its
effectiveness:

* Training set: Indoor forward-facing: 06, 07, 09, Out-
door forward-facing: 03, Indoor 45° downward-facing:
02, 04, 09, and Outdoor 45° downward-facing: 01

* Validation set: Outdoor forward-facing: 01 and Indoor
45° downward-facing 12.

e Testing set: Indoor forward-facing: 10, Outdoor
forward-facing: 05 and Indoor 45° downward-facing:
14

With a total of 15,010 images for training, 3,253 for valida-
tion, and 3,065 for testing. In the case of the TII Drone racing
dataset we use the following sequences:

¢ Training set: 01, 05, 08, 09, 11, and 12.
¢ Validation set: 02, 03, 06, and 07.

* Testing set: 04 and 10.
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Figure 1: Overview of the proposed architecture. The model consists of four stages: (1) spatio-temporal feature extraction via
a 3D CNN that encodes motion cues across frames, (2) IMU feature encoding with a lightweight MLP, (3) temporal attention
using a masked multi-head attention mechanism to capture long-range dependencies, and (4) a regression head via MLP to
estimate the translation vector (z, y, z), where 7' is the number of frames and L the new dimension of the last 3D convolution.

With a total of 34,882 images for training, 23,087 for val-
idation, and 12,008 for testing. We prepare two networks for
comparison, the first and main one, 3D CNN-IMU Attention
described in the methodology, and 3D CNN-Attention, where
the IMU information is excluded. In the latter, the input for
the multi-head attention consists only of the features provided
by the 3D convolutional layers, allowing us to evaluate the
importance of the IMU data.

T value | MSE
2 1.123
4 1.216
6 0.919
8 1.642
10 1.403

Table 1: MSE for each value of T' (2,4,6,8, and 10) in testing
trajectories.

We reconstruct the global position predicted by each net-
work and present it in Figures 2 and 3, corresponding to the
training and testing trajectories, respectively. Once the pre-
dictions are obtained, we compute the MSE for each trajec-
tory and compare them with the ground truth (Table 2), where
the best values are highlighted in black.

As can be observed, the network without IMU informa-
tion performs better on the training trajectories—i.e., those
it has already seen—compared to unseen trajectories used in
validation and testing, where IMU information appears to im-
prove performance in unfamiliar environments.

4.1 Ablation Study

To assess the importance of each component of the net-
work, we conduct experiments with different variations of our
approach:

¢ 3D CNN-Attention with IMU information (3D CNN-
Att IMU).

* 3D CNN-Attention without IMU information (3D
CNN-Att).

¢ 3D CNN without Attention (3D CNN without Att).

¢ 3D CNN with IMU information and without Attention
(3D CNN IMU without Att).

¢ CNN with Attention without IMU (CNN- Att).

In the case of the 2D CNN baseline, to emulate the tem-
poral encoding of the 3D CNN, we concatenate the 6 consec-
utive input frames into a 3x2 grid, forming a single 224x 224
image. This strategy allows the 2D CNN to process multiple
frames at once, although the temporal relationships must be
inferred indirectly from the spatial arrangement.

These experiments were carried out only on the UZH-
FPV dataset. Training and inference times for each variation
are reported in Table 3 and the MSE for each trajectory are
presented in Table 4.

As observed, CNN-Attention achieves the best perfor-
mance in most training cases, but not in unseen environments,
where other variations of the network perform better. The
main disadvantage of the CNN-based architecture compared
to 3D-CNN is the significantly longer training and inference
time; the 3D CNN is 96% faster in training and 54% faster in
inference, which is an important factor in real-time scenarios.
Training a 3D CNN can be faster because temporal informa-
tion is encoded natively through 3D convolutions, whereas a
2D CNN with a frame grid wastes capacity and training time
trying to infer temporal relations from a spatial layout that
doesn’t naturally represent time, and in the case for inference.
Furthermore, the attention module plays a critical role in the
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network, as removing it in ”3D CNN without Att” variation
leads to a noticeable drop in accuracy for most sequences,
having the worst MSE scores.

Sequence | 3D CNN-Att | 3D CNN- IMU Att
Train
Indoor 06 0.0609 0.0836
Indoor 07 0.0715 0.1537
Indoor 09 0.0162 0.0374
Outdoor 03 0.0883 0.1444
Indoor 45° 2 0.0297 0.0420
Indoor 45° 4 0.0227 0.0333
Indoor 45° 9 0.0209 0.0388
Outdoor 45° 1 0.0450 0.0538
DR 01 0.0083 0.0114
DR 05 0.0061 0.0105
DR 08 0.0057 0.0075
DR 09 0.0088 0.0126
DR 11 0.0093 0.0128
DR 12 0.0082 0.0106
Validation
Outdoor 1 1.3317 1.7819
Indoor 45° 12 2.5218 0.8214
DR 02 0.0922 0.0378
DR 03 0.1029 0.0241
DR 06 0.2087 0.0465
DR 07 0.0983 0.0218
Test
Indoor 10 0.1775 0.1711
Outdoor 5 1.3651 1.3574
Indoor 45° 14 5.3050 1.4855
DR 04 0.2087 0.0654
DR 10 0.0983 0.0347

Table 2: MSE in meters of each sequence for our network
with (3D CNN- IMU Att) and without (3D CNN-Attention)
IMU information, the best values are highlighted in black.

Traming | Inference
Network Time (s) | Time (s)
3D CNN-Att IMU 61.60 1.481e-03
3D CNN-Att 61.06 1.332e-03
3D CNN without Att 61.24 0.932¢-03
3D CNN IMU without Att 59.72 1.128e-03
CNN- Att 1532.51 | 2.895e-03

Table 3: Mean training time for 100 epochs and inference
time for the testing sequences in seconds. The best values are
highlighted in bold.
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5 CONCLUSION

We presented a novel deep learning architecture for es-
timating relative camera pose, a critical task in computer
vision and robotics, particularly in Unmanned Aerial Vehi-
cles (UAVs), where onboard computational resources are of-
ten limited. Our method combines 3D Convolutional Neu-
ral Networks (3D CNNs) with a masked multi-head attention
mechanism that fuses visual and inertial data, specifically in-
puts from a monocular camera and an Inertial Measurement
Unit (IMU), both commonly available on UAV platforms.
Through extensive experiments, we evaluated the effective-
ness of our architecture under different configurations and
demonstrated that incorporating inertial measurements im-
proves generalization to unseen environments, reducing the
MSE error in all test trajectories. Additionally, the use of 3D
CNNs s contributes to 96% faster in training and 54% faster in
inference and more efficient inference by leveraging spatio-
temporal motion cues.

For future work, we plan to evaluate the robustness of our
method in real-world flight scenarios perform broader com-
parisons with state-of-the-art visual-inertial odometry and
SLAM approaches, and extend the model to estimate full six
degrees of freedom poses (translation and rotation) using ad-
ditional regression heads.
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Figure 2: Reconstruction of some trajectories used for train-
ing, ground truth (green), predicted by 3D CNN-Attention
IMU (blue), and predicted by 3D CNN-Attention (yellow).
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