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ABSTRACT

Due to weather-related signal loss, GPS-based
aerial localisation is challenging for Unmanned
Aerial Vehicles (UAVs). Consequently, vision-
based techniques have been devised to tackle this
problem by leveraging the cameras integrated
into UAVs. The main objective is to achieve
UAV localisation throughout a flight mission us-
ing aerial images and Convolutional Neural Net-
works (CNNs). To address this, we introduce
an aerial localisation methodology that integrates
continual learning and a multi-model approach,
augmented by the concept of sub-mapping in-
spired by Simultaneous Localisation and Map-
ping (SLAM) systems. This methodology in-
volves mapping an area into different zones and
re-localising the camera when it reaches a known
point. We compared results using the ORB-
SLAM2, a keyframe searching method based on
colour histograms, and a single model to vali-
date our methodology. Our results demonstrate
that it is possible to find corresponding sub-maps
and acquire the camera pose from aerial images,
achieving an average accuracy of 0.77 and a pro-
cessing speed of 69 fps.

1 INTRODUCTION

Aerial localisation presents a challenge for UAVs that rely
on GPS coordinates for outdoor flight missions. This reliance
on GPS devices often hinders pose capture and has led to
the development of several vision-based methods such as fea-
ture matching [1], Visual Odometry (VO) [2], and SLAM [3].
However, these methods are computationally expensive, lead-
ing to deep-learning methods with CNNs to estimate cam-
era poses. For the latter, CNN architecture is trained using
datasets with pose labels, resulting in a learning model with
sufficient accuracy to estimate the camera poses from a single
image.

Current research uses the PoseNet architecture [4] to
regress the camera pose using a single image. This archi-
tecture can solve the aerial localisation problem and deter-
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Figure 1: The outlined framework consists of three stages:
1) Dataset creation with poses designated as classes; 2) Con-
tinual learning using MobileNet for camera localisation and
InceptionV4 to train the keyframes for sub-maps; 3) Multi-
model evaluation, accomplished through keyframe searching
from InceptionV4 results.

mine the camera poses on the UAV [5]. Nevertheless, train-
ing the model can be time-consuming during flight missions
due to the large dataset and limited computational memory.
An alternative approach to tackle this issue is to use contin-
ual learning strategies, which enable incremental training of
CNN with small dataset samples and avoid catastrophic for-
getting when new information arrives.

A latent replay strategy can be helpful in training mod-
els for in-flight missions, especially when dealing with con-
strained resources or uncertain surroundings. CNNs can ad-
just and enhance their performance without re-training, con-
tinuously updating the model with new information whilst
leveraging previous knowledge. This consists of the repeata-
bility of the last data patterns in external memory and inte-
grating them with the new incoming data. Furthermore, the
segmentation of the environment into distinct sections can
yield advantages, facilitating a more concentrated and tar-
geted approach to the learning process. Overall, continual
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learning strategies can improve the performance of models
used, where real-time adaptability is necessary for localisa-
tion tasks.

Motivated by the above, we propose a methodology that
learns hierarchically with two networks employing a latent
replay strategy. To this end, we generated the sub-maps
throughout the trajectory, where representative keyframes
were extracted for each sub-map and trained the first network
to localise the map in the area. Then, we train the second
network with camera pose information in a multi-model fash-
ion where each model generated represents one sub-map with
flight coordinates information. Finally, we evaluate a testing
dataset to identify the sub-map and load the corresponding
model to obtain camera poses. An overview of our frame-
work, which is divided into three stages, is presented in Fig-
ure 1.

To present our work, this paper is organised as follows.
Section 2 discusses related works on localisation and contin-
ual learning approaches. Section 3 outlines the dataset gener-
ation process, sub-maps creation, and continual learning us-
ing the two architectures. Section 4 presents the experimental
design and a comparison with other methods for localisation.
Finally, conclusions and future work are summarised in Sec-
tion 5.

2 RELATED WORK

Aerial localisation for outdoor scenarios is often challeng-
ing for UAV flight missions, especially for autonomous navi-
gation tasks. Several works have proposed solutions to obtain
aerial localisation from methods such as multi-sensor fusion
with vision [6], visual odometry [7], feature matching [1],
and SLAM. The latter has played an essential role in robotics,
allowing us to map scenarios from features extracted in im-
ages. Therefore, one of the best-known SLAM systems is
ORB-SLAM2 [3, 8] used in inspection tasks where GPS is
denied [9].

In contrast, deep learning has had a significant advance
using convolutional neural networks (CNNs) for place recog-
nition tasks [10], geo-localisation with cross-view and satel-
lite imagery [11], and goal localisation [12]. The latter
uses reinforcement learning to decouple scans on different
goals finding nearby localisations. However, repetitive re-
producibility may delay the acquisition of the pose. Instead,
other methods obtain localisation by comparing map mo-
saics [13], dense scenario match [14], and using multi-task
networks with visual odometry, and auxiliary learning [15].

In this way, PoseNet is an architecture designed for pose
estimation from an image [4]. This advantage has been used
for pose estimation, and localisation under multiple scenes,
sharing the images’ features across the entire scenario [16].
Nonetheless, pose acquisition is still linked to end-to-end
training with large datasets. An alternative is to freeze the
learning in some layers inside the architecture, reducing re-
source consumption in the training stage [17]. On the other

hand, in [5, 18], eliminate some layers in the CNN to lever-
age the time and parameterisation reduction with a compact
network.

Due to the time and training constraints present in tradi-
tional learning, recent works have focused on continual learn-
ing strategies using small data [19, 20]. Strategies based on
latent replay of data represent better performance in robotics
tasks, keeping accuracy and avoiding catastrophic forgetting
of prior learning [21–23]. However, these works are fo-
cused on continual learning for classification tasks, resulting
in other solutions for localisation. For example, in [24, 25],
they present hierarchical models for predicting semantic 2D
worlds and incremental mapping from 3D measurements with
stored representative features. These works allow prediction
and scenario reconstruction to obtain the localisation using a
single image.

On the other hand, [26] presents a method based on a
buffer with 3D information of the scene and strategic sam-
ples. iMAP [27], maps an implicit scenario updating the dis-
crepancies with keyframes to fill unsee parts. This has led to
the goal of obtaining the pose using mapping and 3D mod-
elling of the scenario, acquiring the localisation from a sin-
gle image. To the same end, [28, 29] present methodologies
for a continual SLAM using two architectures to learn and
adapt in new scenarios and using a continual dictionary with
a Quadratic Bayesian Surprise (QBS). Consequently, [30]
present a sub-mapping approach with a multi-model process
and continuous learning for aerial localisation.

Finally, these works give us a panorama where localisa-
tion is performed from sub-maps, multi-scenes, and multi-
models using a hierarchical scheme. Motivated by the latter,
in this paper, we propose continual hierarchical learning and
adopt the SLAM concept to learn small parts of the scenario
as a way of sub-mapping, thus creating learning models for
each sub-map. Regarding SLAM, our approach can be seen
as a hierarchical system that identifies keyframes to load a
model corresponding to the sub-map and obtain the image’s
pose.

3 METHODOLOGY

This section outlines the methodology for continual hier-
archical learning with two deep network architectures: Mo-
bileNetV1 and InceptionV4. Firstly, we collected aerial im-
ages from a monocular camera onboard the UAV and asso-
ciated them with GPS coordinates during the flight. After-
wards, we save a keyframe set for each trajectory section,
which we consider sub-maps of the whole path. Finally, we
incrementally trained the networks to create a model contain-
ing the pose information and another model containing the
submap information.

3.1 Dataset Generation
We split the dataset generation process into two steps.

The first step involved obtaining aerial images paired
with GPS coordinates, while the second entailed creating
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keyframes to represent sub-maps. For the latter, the Robot
Operating System (ROS) facilitated communication with the
drone, and the Ground Control Station (GCS) received the
image stream and corresponding GPS data. We perform
initial flight missions to capture images at a resolution of
128 × 128 pixels and convert GPS coordinates into meters.
Thus, we generate small samples of flight coordinates divided
into classes, yielding about 50 classes for each trajectory. In
addition, we defined sub-maps containing the information of
5 flight coordinates and created a new map when the drone
covers a distance of 50 meters. Finally, we save keyframes for
each submap to train the InceptionV4 network, whose infor-
mation determines the trajectory zone to which they belong.

Figure 2 illustrates the creation and division of sub-maps
with 5 flight coordinates and the storage keyframes with three
images for each sub-map. These keyframes represent the im-
ages of the sub-maps beginning, middle and end, correspond-
ing to classes 1, 3, and 5, respectively. Besides, we consider
the distance between the points to create a new sub-map when
the drone travels approximately 50 to 100 metres.

Figure 2: Training dataset acquisition, sub-maps creation,
and keyframe saving. Cian shows the flight dron trajectory,
where the circles represent GPS coordinates. The orange rect-
angles illustrate the sub-maps created.

In Figure 3, we visually represent the trajectories overlaid
in Google Earth using GPS-derived information. Simultane-
ously, Figure 4 illustrates the covered area of the routes trans-
formed into meters. These trajectories represent the flights
carried out to collect the training dataset and generate the
keyframes, and the flight coordinates are presented by red cir-
cles in Figure 4. The length of the traversed trajectory is 0.53
km for trajectory 1, 1.4 km for the second, and 2.4 and 2.9
km for trajectories 3 and 4, respectively. Moreover, we have
47 flight coordinates for trajectory 1, 50 for the second and
third trajectories, and 52 for the last trajectory, representing
the classes along the entire path.

Figure 3: Flight paths into Google Earth with GPS informa-
tion like waypoints. We show the beginning path in a red
waypoint and the end in green.

Figure 4: GPS coordinates in metres with a total trajectory
length of 1) 0.53 km with 42 poses; 2) 1.4 km with 50 poses;
3) 2.4 km with 50 poses; 4) 2.9 km with 52 poses.

3.2 Continual Learning

For this section, we adopt the concept of sub-mapping
used in SLAM systems, which divides the whole trajectory
into several parts to achieve better data processing and estab-
lish aerial localisation under a hierarchical learning method-
ology. The goal is to acquire the image’s poses once it is
located within one of the sub-maps along the trajectory. To
achieve this, we split the methodology into two parts and con-
tinually train two CNNs: MobileNetV1 and InceptionV4.

First, we use the continual learning strategy called latent
replay to train MobileNetV1. This allows us to train on the fly
information, saving the essential patterns in external memory,
where each pattern set represents the classes. This method
combines new data with old ones, rejuvenating the previously
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learned weights and consolidating learning. As a result, the
network can learn 1000 classes whose previous information
is stored in a latent layer within an external memory in the
pool6 layer. However, we set a limit of continuous learning
with around 50 classes to avoid saturating the memory with
parameters and to prevent catastrophic forgetting.

In this way, the network continuously learns the 50 poses
it receives from the information obtained from the drone, col-
lecting 200 images for each established coordinate. Splitting
the labels into subsections can improve the evaluation step,
training a model with five coordinates representing one sub-
map in the entire path. To train the InceptionV4, we save
three keyframes of the sub-maps generated, as shown in Fig-
ure 5. The flow of information is trained with MobileNetV1,
and the keyframes are stored for training the InceptionV4 net-
work. Finally, we keep 27 keyframes for trajectory 1, 30 for
trajectories 2 and 3, and 52 for trajectory 4.

Figure 5: Continual training of the networks in a hierar-
chical way where MobileNet is trained using aerial images
with information on flight coordinates and InceptionV4 with
keyframes generated for each sub-map as labels.

Secondly, we employ continual learning of InceptionV4,
which uses the keyframes and their labels to select the sub-
map for the aerial image. The network is structured to learn
an input image, whereby we encapsulate the features within
a vector format. As a new keyframe of the matching class
appears, we update the weights within a temporal vector and
combine them with the previous ones. Conversely, if a differ-
ent keyframe class arrive, we assign new features in a new
index, expanding the features vector to adjust information
from both classes. At the end of the training, we concate-
nate the features vector with the temporal vector, merging all
keyframe features into one. This approach enables the net-
work to learn from the continuous data stream and update its
weights dynamically, improving its performance over time.

Thereby, hierarchically, we have a methodology capable
of localising an aerial image inside the trajectory and acquir-
ing the position. To carry out the continual learning of the
networks, we take the following parameters summarised in
Table 1. It is all on one computer with Cuda 11.1, PyTorch
1.9, and 8GB RAM with a GeForce 640M Nvidia card.

Table 1: Parameters used for continual training of the net-
works MobileNetV1 and InceptionV4.

Network MobileNet InceptionV4
Optimiser SGD SGD
Batch size 128 1
Epoch 20 1
Loss Function Cross Entropy Cross Entropy
Learning Rate 0.001 0.001
Latent layer Pool6 Layer Temporal Vector
Patterns/Features 3500 1536

4 EXPERIMENTS AND RESULTS

We carried out two experiments to assess the efficiency
of our hierarchical aerial localisation approach. The first ex-
periment aimed to identify the corresponding sub-map for
the given aerial image using the InceptionV4 and a colour
histogram-based method. In the second experiment, we lever-
aged the hierarchical framework to obtain the poses of an in-
put image and ascertain the associated sub-map labels. We
then loaded the MobileNet model with pose information to
establish localisation. We also evaluated a single model, the
ORB-SLAM2 re-localisation module, and a keyframe search
using the colour histogram to compare our approach. Finally,
we measured each method’s performance speed expressed in
frames per second (fps), running on Ubuntu 20.04, Python
3.8, OpenCV 3 and ROS Noetic.

4.1 Sub-Maps Results
In this experiment, we trained the InceptionV4 network

on the fly using previously saved keyframes generated while
creating sub-maps. Each keyframe is labelled with an in-
dex representing the corresponding sub-map number. When
a new keyframe of a different class arrives, the network ex-
tracts the features and stores their weights in a temporary vec-
tor, merged with the previous ones. In this way, once the final
sub-map is trained, the feature vector contains information on
all keyframes learned, along with their respective labels. To
evaluate the learning model, we conducted 4 test flights near
the training trajectory, where each image was fed as the in-
put to the network. The network’s output provides the sub-
map index and the total number of features corresponding
to the closest keyframe. Thus, the network returned the la-
bel with the highest similarity of features found in the stored
keyframes, which corresponded to the sub-map class.

We have implemented a keyframe search engine based on
the image’s colour to provide a comparison. Firstly, we divide
the keyframe into five quadrants and extract the colour his-
togram, which is then concatenated into a single histogram.
This provides more precision in finding descriptors during
the evaluation step. Subsequently, we calculate the colour
histogram of each image and compare it with the keyframes
using the chi-square metric, where a value close to zero in-
dicates a higher similarity with the keyframe. Tables 2 and
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Figure 6: Hierarchical aerial localisation. We hierarchically evaluate each image, first passing for the InceptionV4 network
to find the corresponding sub-map. Then, given the sub-map, we load the MobileNet model with information on 5 flight
coordinates. Finally, the same image passes through the model to find the camera pose and get the aerial localisation using a
single image.

Table 2: Accuracy results with the test dataset using a colour
histogram descriptor to find the submap.

Trajectory SubMap Kfs Found Accuracy
1 9 87 0.6041
2 10 65 0.5555
3 10 56 0.6666
4 10 310 0.5107

Table 3: Accuracy results with the test dataset using the In-
ceptionV4 network to find the submap.

Trajectory SubMaps Kfs Found Accuracy
1 9 117 0.8125
2 10 84 0.7179
3 10 60 0.7142
4 10 467 0.7693

3 present the result of the first experiment involving Incep-
tionV4 and colour histogram. We also report the number
of correctly localised images, their corresponding keyframes,
and accuracy results. This experiment provides an overview
of the keyframe search, highlighting the effectiveness of the
InceptionV4 network in learning trajectory zones, given its
continual training.

4.2 Hierarchical Learning Results

The second experiment evaluates our approach using the
hierarchical concept for aerial localisation. For this, we fol-
low the diagram in Figure 6, where we pass an input image
through the IncetionV4 network, resulting in the sub-map la-
bel to which it corresponds. Then, we load the MobileNet
model of the sub-map found and evaluate the input image,
giving in the output one of the five classes learned. We argue
that methodology can get the zone localisation and image’s
pose in a level fashion in contrast to the traditional localisa-

tion frameworks.
For comparison, we evaluate other methods to visualise

aerial localisation using a single learning model, the ORB-
SLAM2 localisation module, and a keyframe search engine
using the colour histogram. The learning of a single model
consists of continual learning with the latent replay strategy
of the data. However, instead of having one model for each
sub-map, we learn and update all classes in a single model.
This can impact learning, leading to catastrophic forgetting of
previous data when more information arrives on the network.

On the one hand, in the ORB-SLAM2 re-localisation
module, we create the map using the training dataset and save
the image poses in a text file. Then, we use the test dataset,
deactivating the mapping to re-localise the images with fea-
ture matching. Thus, a test image with the same descriptors is
automatically re-localised inside the map. Nevertheless, we
take the distance between the test frame and the keyframe
to recover the position by determining the coordinate cor-
responding to the nearby keyframe. On the other hand, we
apply our same hierarchical methodology for the histogram
results, changing the Inception network for the colour his-
togram, and we evaluate the test dataset. For this case, we
define the bins of Hue, Saturation and Value channels in (8,
12, 3) to have a better result in the searching step.

Hence, we present in Table 4 the comparison results for
an aerial localisation task. In the table, we expose the in-
formation on the poses inside the entire path, the number of
testing images, and the accuracy of each method. This accu-
racy consists of the number of correctly re-localised images
from acquiring the sub-map to the corresponding pose. Our
methodology keeps the best localisation results, successfully
obtaining more images re-localised on the first two trajecto-
ries with an average accuracy of 0.74. In comparison, ORB-
SLAM2 performs better on the last two trajectories with an
average accuracy of 0.81.

This evaluation indicates that our methodology wins in
the first two trajectories while the SLAM system obtains more
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Figure 7: We utilised test images to re-localise and establish the ground truth based on the training trajectory. The circles in the
results represent the recovered poses for each evaluated method. The first column corresponds to the evaluation using a single
model, the second with ORB-SLAM2, the third using a histogram colour method, and the last with our hierarchical approach.

poses in the last two. Nevertheless, we present a similar result
to SLAM, arguing that localisation is achieved in these trajec-
tories. For the latter, the SLAM system drops its performance
in complicated scenarios lacking descriptors or with a repet-
itive pattern, such as trajectories 1 and 2. In contrast, a deep
learning methodology keeps the accuracy enough to establish
the localisation, learning the essential features. Nonetheless,
the results with a single model demonstrate our assumptions
regarding catastrophic forgetting of the first data. Even with
a continual learning strategy, the network loses knowledge as
more information arrives.

The results of the learning method with a single model
demonstrate a maximum accuracy of 0.43. Conversely, the
methodology using a keyframe search system with a colour

histogram improves pose acquisition to below 0.67. Never-
theless, the similarity of several images in colour affects this
outcome, particularly in the first two trajectories. Thus, a
colour histogram and feature extraction may not be advan-
tageous, particularly in complex trajectories. Therefore, a
multi-model-based system has the potential to alleviate the
burden of rigid and data-sensitive training by enabling the
learning of poses to be split into different models.

As a final result, we present the camera poses recovered
with each comparison method using a testing trajectory simi-
lar to the training. Thus, if an aerial image is re-localised, we
obtain the sub-map and its pose close to the ground truth. Fig-
ure 7 shows the trajectories results and poses returned using
each method. We can see that in some cases, there are empty
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Table 4: Accuracy results for re-localisation poses using comparison methods.
Trajectory Poses Images Single Model Histrograms ORB-SLAM2 Hierarchical

1 47 144 0.2500 0.3055 0.1041 0.7083
2 50 117 0.2564 0.3076 0.5897 0.7777
3 50 84 0.2976 0.6071 0.9166 0.8928
4 52 607 0.4382 0.6690 0.7166 0.7001

Table 5: Fps results using the comparison methods.
Approach Traj. 1 Traj. 2 Traj. 3 Traj. 4

Single model 55.30 48.28 55.64 62.76
Histogram 59.63 62.40 64.80 61.87

ORB-SLAM2 85.47 83.33 92.57 89.28
Hierarchical 77.44 68.52 67.63 63.37

spaces in the trajectories, and this is because the method can’t
obtain the correct localisation in that zone. In addition, to
analyse the response time of each method, we present in Ta-
ble 5 the processing speed in fps, where ORB-SLAM2 ob-
tains a higher speed but not so far from that obtained with our
approach.

Finally, our method outperforms the others when con-
sidering the number of correctly localised images, as shown
in Table 6. However, ORB-SLAM2 demonstrates superior
re-localisation performance for trajectories 3 and 4 but not
for the earlier ones. We argue that our methodology could
be helpful for inspection tasks and as a backup localisation
method in case the GPS signal is lost, as it obtains a greater
number of images re-located even in the last trajectories.

Table 6: Comparison of the images used to retrieve the poses
by each method in the four flight trajectories.

Approach Traj. 1 Traj. 2 Traj. 3 Traj. 4
Single model 36 30 25 225

Histogram 44 36 51 266
ORB-SLAM2 15 69 77 435
Hierarchical 102 91 75 425

5 CONCLUSION

We have presented a hierarchical continual learning ap-
proach to aerial localisation using two networks and a con-
cept based on sub-mapping. In addition, we have developed
a multi-model process for each sub-map divided into the en-
tire trajectory, with information on the flight coordinates. The
methodology aims to identify a sub-map that best represents
the course using the InceptionV4 network to determine the
image location and load the corresponding model to obtain
the pose. To achieve this, we have continuously trained the

networks during a flight mission using the latent replay strat-
egy while storing representative keyframes of the sub-map to
determine which model to load. As a result, this methodol-
ogy offers the advantage of maintaining good accuracy while
reducing the computational resources in the training step.

In addition, to alleviate catastrophic forgetting, we pro-
posed dividing the training into multiple training models,
each with information on five camera poses. Our approach
outperforms the localisation results compared to a single
model training and a methodology based on the colour his-
togram. Nonetheless, we maintain enough accuracy with the
ORB-SLAM2 system. Moreover, we have demonstrated this
approach as a backup localisation for UAVs with an average
accuracy of 0.77 and a performance speed of 69 fps, which
is sufficient for real-time systems. For future work, we will
improve the methodology to inspire new techniques based on
autonomous navigation, localisation and vision tasks using
continual learning strategies, including a regression network
to estimate poses instead of getting the label class.
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Hichem Sahli, Francky Catthoor, and Georges Gielen.
Learning to slam on the fly in unknown environments:
A continual learning approach for drones in visually
ambiguous scenes. arXiv preprint arXiv:2208.12997,
2022.

[30] Aldrich Alfredo Cabrera-Ponce, Manuel Isidro Martin-
Ortiz, and Jose Martinez-Carranza. Multi-model contin-
ual learning for camera localisation from aerial images.
In G. de Croon and C. De Wagter, editors, 13th Inter-
national Micro Air Vehicle Conference, pages 103–109,
Delft, the Netherlands, Sep 2022. Paper no. IMAV2022-
12.

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 48


	Papers
	Hierarchical Continual Learning for Single Image Aerial Localisation


