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 Abstract  —  This  report  presents  an  optimized,  decentralized  way  of 
 searching  for  targets  using  swarms  of  rotary  based  unmanned  aerial 
 vehicles  with  information  available  from  onboard  EO/IR  sensors.  The 
 are  three  main  objectives  of  the  proposed  algorithm:  time-optimized 
 multi-target  search,  maximum  and  optimized  payload  drop,  and 
 maximum  area  coverage.  The  real-time  application  of  these  UAVs  is  in 
 Human  Aid  and  Disaster  Relief  scenarios  mostly  where  the  survivors 
 have  to  be  identified  and  given  relief  material.  The  proposed  controller 
 is  inspired  by  the  multi-target  particle  swarm  optimized 
 method(MTPSO)  and  its  limitations  of  convergence  towards  Pbest  and 
 Gbest  which  may  not  be  the  best  option  in  HADR  scenarios.  The 
 algorithm  involves  the  target  probability  distribution  of  the  cells 
 present  in  the  target  area  which  keeps  on  updating  dynamically  as  the 
 UAVs  dive  deeper  into  the  target  area.  The  deep  learning-based  model 
 for  target  detection  is  deployed  on  each  UAV  using  a  dual  camera  with 
 a  limited  field  of  view  and  its  target  discriminability  varies  as  a 
 function  of  the  Class  of  the  target,  environmental  conditions,  etc.  These 
 parameters  are  given  input  to  the  probability  distribution  method  for 
 generating  a  probability  map  using  which  the  UAVs  optimize  their 
 path.  The  algorithm  is  evaluated  on  Ardupilot's  SITL  platform  for 
 parameter  tuning  and  simulation  in  various  scenarios  which  are  later 
 compared with existing search methods. 

 Keywords—  Swarm,  Unmanned  Aerial  Vehicles, 
 Multi-target  Search,  Multi-agent  systems,  Particle  Swarm 
 Optimization  , Probability map, k-means, Hungarian  algorithm. 

 I.  I  NTRODUCTION 

 The  demand  for  Unmanned  Aerial  vehicles  has  increased  in  the 
 past  years,  as  they  are  capable  of  rapidly  covering  areas,  and 
 providing  better  surveillance  and  efficient  monitoring  areas  which 
 gives  them  an  edge  over  other  alternatives.  Because  of  these 
 characteristics,  the  role  of  UAVs  in  civilian  and  military 
 applications  has  become  popular.  The  ground  target  search 
 problem  is  one  of  the  most  important  and  popular  applications  of 
 UAVs.  Over  time,  the  problem  has  become  more  complex  as  the 
 number  of  targets  and  the  search  area  has  grown;  to  solve  these 
 huge  UAV  swarms  are  used.  In  this  type  of  mission,  it  is  essential 
 to  provide  aid  quickly  and  find  multiple  targets  as  quickly  as 
 possible. 
 There  have  been  multiple  solutions[1]  put  forward  by  various 
 researchers  for  the  problem  of  multi-target  acquisition.  The  most 
 common  is  a  simple  exhaustive  search,  i.e.  scanning  the  complete 
 area  using  pre-defined  trajectories.  Although  used  successfully, 
 this  method  has  certain  limitations.  First,  as  the  trajectories  are 
 pre-fed,  they  fail  to  adapt  according  to  the  dynamic  situations, 
 resulting  in  more  time  taken.  Second,  as  the  decisions  are  not  being 
 made  autonomously,  there  is  a  need  for  the  operations  team  to  look 
 after the mission which is both expensive and time-consuming. 

 There  are  also  unique  approaches  based  on  heuristic  methods  like 
 multiple  target  search  area  optimization  [2]  which  have  proven  to 
 give  good  results  during  operations.  The  algorithm  begins  with  an 
 exhaustive  search,  identifies  the  global  best  and  personal  best 
 during  the  search,  and  changes  their  behavior  according  to  them. 
 This  algorithm  satisfies  all  three  main  objectives  but  has  its 
 limitations  like  the  guidance  of  UAVs  away  from  multiple  targets 
 if  the  global  best  is  identified  somewhere  else.  Also,  the  percentage 
 of  the  area  covered  can  be  improved  if  additional  lines  of  UAVs 
 are added. 
 There  are  also  other  centralized  approaches  similar  to  our 
 algorithm  which  involves  dividing  the  target  area  into  small  n-cells 
 [3],[4]  and  assigning  a  probability  to  each  cell.  As  the  UAVs  move 
 further  into  the  search  area  the  probability  of  the  cells  keeps  on 
 updating  depending  on  the  targets  found  by  them.  This  creates  a 
 dynamic  updating  probability  map  of  the  search  area.  This  method 
 adapts  according  to  the  situation  but  has  its  limitations.  First,  the 
 centralized  controller  stores  data  from  all  agents  and  this  requires  a 
 robust communication architecture. 
 In  this  report,  we  propose  a  decentralized  swarm  controller  which 
 is  based  on  the  probability  method  which  has  been  proven  to  give 
 good  results  but  its  application  in  multi-target  searches  has  been 
 limited  due  to  a  lack  of  adequate  structure,  multi-UAV  collisions, 
 and  poor  navigation  in  unfamiliar  search  locations.  The  proposed 
 controller  has  a  defined  structure  to  optimize  search  and  payload 
 drops  and  incorporate  inter-UAV  collision  avoidance.  The 
 algorithm  is  scalable,  and  fault-tolerant  but  is  computationally 
 expensive  and  hence  requires  a  strong  OnBoard  Computer.  In  our 
 case,  we  chose  the  NVIDIA  Jetson  Nano  as  the  OBC  as  the 
 requirement  was  to  deploy  a  CPU-intensive  algorithm  for  search 
 and  GPU  intensive  deep  learning-based  model  for  object  detection. 
 Also,  for  the  communication  architecture  requirement,  we 
 integrated  a  software-defined  Radio  with  mesh  topology  to  test  the 
 controller in a real-world environment. 
 The  limitation  of  the  probability-based  method  was  the  need  for  a 
 centralized  controller  so  the  probability  map  is  the  same  for  all  the 
 UAVs,  but  the  current  controller  estimates  velocity  based  on  the 
 weight  assigned  to  the  cells  making  the  process  dynamic  and 
 real-time  hence  eliminating  the  issue  of  uniformity.  There  are  two 
 main  terms  in  the  velocity  vector  term,  first  the  inertial  term  which 
 controls  the  factor  exploration  vs  exploitation,  and  the  second  the 
 derivative  of  the  probability  distribution  curve.  The  weights  of 
 these  were  tuned  visually  such  that  there  was  no  saturation  in  the 
 local  minima  of  the  probability  distribution  curve.  The  exploration 
 and  exploitation  characteristics  are  also  analyzed  over  different 
 functions  which  have  given  different  performances  and  can  be  used 
 for different missions. [5]-[11]. 

 XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 
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 II.  P  RELIMINARIES 

 2.1       Problem Formulation 

 We  envision  a  swarm  of  quadcopter  UAVs  moving  across  a  search 
 region  specified  by  a  starting  waypoint  W  start  ,  an  ending  waypoint 
 W  end  ,  and  a  breadth  B,  seeking  numerous  targets  strewn  throughout 
 the  landscape.  Because  all  of  the  UAVs  are  at  the  same  altitude, 
 they  all  travel  in  the  same  direction.  The  position  vector  p  i  t  = 
 [x  i  ,y  i  ]  T  and  the  velocity  vector  v  i  t  =  [x  i  ,y  i  ]  T  where  N  is  the  number 
 of UAVs, may be employed for the UAV i (i = 1, 2,..., N) at time t. 

 Using  an  onboard  software  stack.  Each  UAV  has  an  onboard 
 camera  that  can  identify  and  locate  objects  inside  its  field  of  vision 
 (FOV).  Each  UAV  is  also  equipped  with  a  single  payload  that  may 
 be  dropped  at  one  of  many  different  target  locations.  The  ultimate 
 purpose  of  UAVs  is  to  scan  the  surveillance  area,  find  as  many 
 targets  as  possible,  drop  as  many  payloads  as  possible,  and  reach 
 the end of the search area while avoiding inter-UAV collisions. 

 A  partially  connected  ad-hoc  network  [12]  is  used  to  mimic  the 
 network  architecture  of  all  the  agents.  The  model  can  be 
 represented  mathematically  by  an  undirected  graph  G  =  (V,  E), 
 where  V  =  1,2,...,  N  is  the  set  of  nodes  and  𝐸  =  {(𝑖,  𝑗):  𝑖,  𝑗  ∈  𝑉,  ||𝑝𝑖 
 −  𝑝𝑗  ||  ≤  𝐷𝐶}  is  the  edge  set.  A  single  UAV  directly  connects  only 
 to its neighboring agents denoted by 𝑁𝐺 = {𝑗 ∈ 𝑉, (𝑖,𝑗) ∈ 𝐸} 

 Fig.1: Pictorial representation of D  safe  , D  wap,  and  D  C 

 Agents  only  share  the  bare  minimum  of  data,  such  as  their  location 
 data  for  inter  UAV-collision  avoidance,  the  GPS  location  and 
 probability  of  detected  targets  for  cooperative  convergence  on 
 target  clusters,  and  their  payload  status  for  smart  and  cooperative 
 payload  delivery  a  pictorial  representation  of  the  radii  are  given  in 
 fig.1.. 
 The  following  bounding  requirements  (in  order  of  priority)  confine 
 the algorithm: 

 ●  Avoid colliding with other UAVs. 
 ●  Identify every target in the search area 
 ●  Drop as many cargoes as feasible as fast as possible. 

 2.2        Probability Map Formulation 

 Initially  the  search  area  is  divided  into  N-cells,  where  the 
 dimension  of  each  cell  is  chosen  on  the  basis  of  the  computational 
 capability  of  the  Onboard  Computer  of  the  UAV.  In  our  case,  the 
 NVIDIA  Jetson  nano  can  support  up  to  30,000-40,000  grid  cells, 
 hence according to this limitation the cell dimension is decided. 

 An  object  detection  algorithm  has  been  used  to  execute  aerial 
 detection  of  the  objects  using  the  images  from  the  EO/IR  camera  . 
 After  deploying  and  testing  the  leading  models  for  object 
 detection,  YOLOV5  was  chosen  for  its  high  accuracy  while  also 
 maintaining  decent  FPS  when  deployed  on  the  Jetson  Nano.  You 
 Only  Look  Once(YOLO),  takes  in  the  images  from  the  EO/IR 

 sensor  and  predicts  the  classes  and  the  bounding  boxes  along  with 
 each  detection’s  confidence  value.  The  object  is  subsequently 
 geotagged using the field of view of the EO/IR sensor. 

 The  probability  and  area  of  influence  are  the  two  inputs  that  are 
 estimated  for  the  construction  of  a  probability  map.  The  probability 
 of  a  target  being  at  the  specific  cell  can  be  specified  by  the 
 confidence  level  that  the  YOLOv5  model  returns  and  has  a  range 
 of  (0.7,1).  The  area  of  influence  on  the  other  hand  has  various 
 factors  which  need  to  be  accounted  for  and  have  been  discussed 
 below briefly. 
 ●  Class  of  the  Object:  -  There  are  multiple  types  of  targets  that 

 we  took  in  our  test  case  e.g.  humans,  fuel  dumps,  type-A 
 vehicles,  and  type-B  vehicles.  Certain  classes  such  as  Type  A 
 vehicles  are  physically  larger  than  other  objects  such  as 
 Humans  and  easily  detected.  Moreover,  they  should  have  a 
 much  higher  area  of  influence  than  humans  as  the  presence  of 
 vehicles implies a greater concentration of possible targets. 

 ●  Altitude  and  Size  of  the  object  :-  For  a  given  class  the 
 relationship  between  the  altitude  of  the  UAV  and  the  size  of 
 the  object  in  the  image  plane  (  in  pixels  )  is  directly 
 proportional  and  can  be  calculated  using  the  field  of  view  of 
 the  camera  system  and  the  resolution  of  the  camera  using 
 basic trigonometry. 

 ●  Cluster of targets  :-  In real-world environments targets  tend 
 to stick together and travel in clusters, hence the probability 
 of a specific grid cell needs to be determined increased if the 
 other targets are also dedicated in its vicinity. This can be 
 represented mathematically just by adding the probability 
 over the cells again. 

 III.  A  LGORITHM  D  ESIGN 

 3.1  Initialization of UAVs 

 We  begin  the  target-search  method  in  a  thorough  manner,  with 
 UAVs  placed  in  a  line  at  the  start  of  the  search  region,  to  optimize 
 the  initial  exploration.  The  overlap  between  each  UAV's  FOV  is 
 limited  to  a  bare  minimum  and  remains  consistent  (Omin).  For 
 repeated  runs,  if  the  search  region  is  large  enough,  it  can  be 
 divided into many portions. 

 3.2  Inertial Term 

 The  inertial  velocity  term,  as  its  name  implies,  aids  in  maintaining 
 the  swarm  unit's  original  course  and  prevents  abrupt  changes  in 
 each  UAV's  trajectory.  It's  the  result  of  multiplying  the  current 
 velocity  by  the  inertial  function.  The  algorithm's  exploration  vs. 
 exploitation  features  is  controlled  by  the  inertial  function,  which  is 
 generally  calibrated  to  give  better  exploration  at  first  and 
 exploitation  as  the  swarm  reaches  deeper  into  the  area  and  has 
 already collected sufficient information about the area. 

 3.3  Probability Calculation 

 The  concept  is  based  on  the  fact  that  targets  stick  together  and 
 travel  in  clusters,  hence  a  probability  distribution  is  proposed.  The 
 mathematical  model  used  to  estimate  the  probability  distribution  is 
 the  Gaussian  /  Normal  distribution  curve  which  is  represented 
 below:- 

 𝑓 ( 𝑥 )   =     𝑒 
− 1 
 2 (  𝑥 −µ

σ ) 2 

÷ σ  2 π

 where, 
 σ = Standard Deviation 
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 μ = Mean 

 Fig.2:   Graphical representation of gaussian curve 

 σ  represents  the  area  of  influence  which  as  specified  in  the 
 previous  section  has  to  be  selected  according  to  the  class  of  targets 
 identified  during  the  search.  The  below  table  represents  the  area  of 
 influence for each class:- 

 S.No  Type of target  Range of Influence 

 1  Human  20-40 meters 

 2  Fuel Dumps  40-60 meters 

 3  Type-B vehicles  60-100 meters 

 4  Type-A vehicle  100-140 meters 

 Table 1:  Limits of σ for the type of class 

 The  reason  for  taking  the  limits  was  the  second  factor  which 
 corresponds  to  increase  in  probability  if  the  number  of  pixels 
 occupied  by  that  class  of  target  is  more.  For  YOLOV5  there  is  a 
 relationship  between  the  number  of  pixels  occupied  by  the  target 
 and the accuracy of the detection given as: 

 𝑚 ( 𝑥 )   =     1 

 1 + 𝑒  𝑠 ( 𝑥 − 𝑚 )

 Where:- 
 f(x) = Accuracy of the detection 
 x    = Size of the object 
 s    = Steepness 
 m   = Shift 

 Fig.3:     The S-shaped curve of m(x) 

 The graph for the above function m9x0 is shown in fig.3. 
 The  YOLOV5  model  was  tested  and  the  value  of  the 
 hyperparameters came out be: 
 S = -0.1 
 M = 16 

 These  parameters  represent  that  the  YOLOV5  model  can  only 
 detect  targets  with  good  accuracy  if  they  occupy  more  than  16 
 pixels  in  the  input  image.  Now,  this  behavior  of  the  graph  is 
 imposed  between  the  limits  to  increase  the  σ  if  the  number  of 
 pixels  of  the  same  target  class  increases,  hence  making  the 
 algorithm more operationally robust. 

    σ    =     𝑚 ( 𝑥 ) * ( 𝑈𝑝𝑝𝑒𝑟     𝐿𝑖𝑚𝑖𝑡    −     𝐿𝑜𝑤𝑒𝑟     𝐿𝑖𝑚𝑖𝑡 )   +     𝐿𝑜𝑤𝑒𝑟     𝐿𝑖𝑚𝑖𝑡 

 This  process  is  repeated  for  each  detected  object  to  generate  an 
 independent  probability  map  for  each  target  and  the  corresponding 
 probability  maps  are  added  up  to  find  the  final  probability  map 

 countering  the  third  point  that  probability  needs  to  be  𝑃 ( 𝑥 )   
 increased  further  if  more  targets  keep  on  detecting  in  high  probable 
 areas.  This  map  can  be  visualized  as  a  surface  plot  where  the  x  and 
 y-axis  represent  the  search  grid  and  the  z-axis  represents  the 
 probability  value  at  that  specific  grid  point.The  map  gives  a 
 representation like shown in fig.4. 

 𝑃 ( 𝑥 ) =
 𝑖 = 0 

 𝑛 

∑  𝑓 
 𝑖 
( 𝑥 )

 Fig.4: Gaussian-based probability distribution curve of the target area 

 3.4  Probability-Based Velocity 

 The  probability-based  velocity  term  aims  to  guide  the  UAVs 
 towards  the  high  probability  areas  using  the  probability  map 
 generated  earlier.  The  partial  derivative/gradient  of  the  probability 
 map  is  taken  to  get  the  following  surface  plots  representing  the 
 partial derivative in the x and y-axis respectively as shown in fig.5. 

 Fig.5: Partial derivative of P(x) in the x and y-axis respectively 
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 ,  𝐷 ( 𝑥 )   =    
 𝑑𝑃 (

 𝑖 = 0 

 𝑛 

∑  𝑓 
 𝑖 
( 𝑥 ))   

 𝑑𝑥  𝐷 ( 𝑦 )   =    
 𝑑𝑃 (

 𝑖 = 0 

 𝑛 

∑  𝑓 
 𝑖 
( 𝑦 ))   

 𝑑𝑦 

 The  probability-based  velocity  term  uses  this  gradient  to  guide  it 
 towards the high probability areas using the formula:- 

 𝑉 
( 𝑥 , 𝑦 )

=  𝑤 *  𝐷 ( 𝑥 ,  𝑦 )
 where, 

 w = Tunable constant 

 3.5  Payload Optimization 

 The  most  crucial  duty  in  the  quick  reaction  approach  is  the  payload 
 drop.  For  job  assignment  and  optimal  delivery,  we  begin  by 
 assigning  the  UAVs  to  one  of  three  states,  which  aids  in 
 determining  which  UAVs  should  continue  to  search  and  which 
 should proceed for payload drop: 

 State  Meaning 

 State ‘1’  Payload available 

 State ‘0’  Going to deliver the payload 

 State ‘-1’  Payload has been dropped 

 Table 2: Payload drop states 

 As  long  as  the  target  is  within  the  maximum  displacement  range, 
 the  locations  of  the  identified  targets  are  continuously  relayed 
 between  the  UAVs,  and  the  payload  delivery  job  is  assigned  to  the 
 UAV nearest to the target. 

 𝑣 
 𝑑𝑟𝑜𝑝 
 𝑡 + 1 =  𝐶 

 3 
* ( 𝑝 

 𝑑𝑟𝑜𝑝 
−  𝑝  𝑡 )   

 Furthermore,  if  the  UAV  detects  a  target  B  that  is  closer  to  target  A 
 while  dropping  a  payload  on  target  A,  it  moves  its  drop  location  to 
 target  B,  re-qualifying  target  B  for  payload  drop.  While  delivering 
 the  payload,  the  UAV  continues  to  seek  targets  and  communicate 
 with  other  UAVs.  It  does  not  return  its  steps  after  delivering  the 
 goods, instead of continuing the hunt from the drop spot. 

 3.6  Inter-UAV Collision Avoidance 

 To  maintain  the  safety  of  any  swarm  system,  inter-UAV  collision 
 avoidance  is  essential.  As  a  result,  we  use  the  consensus  equation 
 to  generate  an  extra  velocity  term  that  may  be  vectorially  added  to 
 each  agent's  final  velocity  [13].  If  the  distance  between  any  nodes 
 gets  lower  than  Dsafe,  avoidance  is  initiated.  This  method  is 
 simple to include in our framework and is represented as follows: 

 This  method  is  suited  for  our  application  since  it  just  considers  the 
 agents  coming  for  collision.  The  D  safe  parameter  is  usually  set  to 
 match  the  maximum  swarm  velocity,  although  it  can  be  manually 
 adjusted if necessary. 

 3.7  Net Equivalent Velocity 

 The  UAVs  communicate  with  each  other  to  share  information 
 about  the  targets  and  allow  for  the  decentralized  construction  of 
 probability  maps,  such  that  the  final  velocity  vector  can  be 
 calculated  onboard  each  UAV  independently.  Hence  the  final 
 velocity vector is as follows: 
 𝑉    =     𝑣 

 𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙    
+  𝑣 

 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
   +  𝑣 

 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒     𝐴𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒 
   +  𝑣 

 𝑃𝑎𝑦𝑙𝑜𝑎𝑑     𝐷𝑟𝑜𝑝 

 3.8        Return Mission 

 As  the  mission  in  MTSO  progressed  a  lot  of  empty  unsearched 
 gaps  in  the  search  area  were  left  behind  to  optimize  the  time  of  the 
 mission.  Thus  when  the  MTSO  mission  is  over  another  grid  search 
 mission  is  plotted  on  the  unsearched  regions  so  as  to  be  sure  that 
 no other targets are left behind. 

 3.8.1   K-Means Clustering Algorithm 
 In  the  return  mission  the  first  task  is  to  calculate  the  total 
 unsearched  area  left  behind  during  the  search  as  shown  in  fig.6. 
 Once  this  is  calculated  all  the  points  in  the  area  are  segregated  in 
 clusters  using  the  K-means  clustering  algorithm.  The  K-Means 
 Clustering  technique  divides  the  input  dataset  into  multiple  clusters 
 based  on  their  distances  from  the  centroids.  It's  a  clustering-based 
 approach  in  which  each  cluster  has  its  own  centroid,  which  is  used 
 to  characterize  the  clusters.  The  input  given  to  the  Kmeans  is  the 
 coordinates  of  the  unsearched  area  which  are  represented  as 
 d-dimensional  real  vectors  as  (x1,  x2,...,  xn).v  K  means  to  organize 
 the  n  groups  to  k  groups  where  k<=n.  The  main  equation  of  k 
 means is 

 where  μ  i  is  the  mean  of  points  in  S  i  .  This  is  equivalent  to 
 minimizing  the  pairwise  squared  deviations  of  points  in  the  same 
 cluster 

 Which can be reduced to 

 Fig.6:     Image showing the division of clusters and centroids using the 
 K-means algorithm 
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 Because  the  total  variance  is  constant,  this  is  identical  to  iteratively 
 maximizing  the  sum  of  squared  deviations  across  points  in  distinct 
 clusters. 
 The  number  of  clusters  in  which  the  unsearched  area  is  to  be 
 divided  is  decided  by  the  elbow  function.  The  elbow  method  runs 
 k-means  clustering  on  the  dataset  for  a  range  of  values  for  k  and 
 then  for  each  value  of  k  computes  an  average  score  for  all  clusters. 
 Using  these  scores  a  graph  is  plotted  as  shown  in  fig.7  and  the  line 
 with  the  highest  changes  in  slope  indicates  the  optimal  number  of 
 clusters that need to be made. 

 Fig.7:      Elbow method showing the max slope change at 6 clusters 

 3.8.2 Health Function 

 Once  the  clusters  are  divided,  UAVs  are  also  segregated  based  on 
 the priority order given below -: 
 ●  Payload  dropped  or  not-:  As  the  number  of  targets  and  the 

 number  of  UAVs  are  not  always  equal,  so  in  a  case  if  the 
 number  of  targets  is  less  than  the  number  of  UAVs  the  UAVs 
 that  haven’t  dropped  their  payload  yet  are  listed  first  for  the 
 return mission. 

 ●  Health  function  -:  The  rest  of  the  UAVs  with  the  highest 
 battery  percentage  and  proximity  to  targets  are  chosen  first 
 for the return mission. 

 3.8.3 Hungarian Algorithm 

 The  clusters  have  been  constructed,  and  the  UAVs  that  are 
 qualified  for  the  mission  have  been  separated;  now  each  cluster 
 must  be  assigned  to  a  UAV  that  will  conduct  the  search.  The 
 nearest  possible  cluster  should  be  assigned  to  each  UAV  for 
 mission  robustness  and  time  optimization,  and  the  Hungarian 
 method  was  utilized  for  this.  The  Hungarian  Method  is  a  technique 
 based  on  the  idea  that  if  the  same  value  is  added  or  subtracted  from 
 every  member  of  a  matrix's  row  or  column,  the  new  assignment 
 issue's optimal solution should be the same as the original problem. 

 3.8.4 Polygon Grid Search 

 The  Hungarian  algorithm  provided  each  UAV  its  cluster.  Now 
 each  UAV  is  to  be  assigned  waypoints  to  search  in  its  area.  To 
 assign  the  waypoints  a  self-implemented  polygon  grid  search  was 
 invented  that  can  work  on  any  polygon.  Our  algorithm  takes  in 
 the  coordinate  points  of  the  boundary  of  the  polygon  and  forms  a 
 perfect  rectangle  around  the  polygon  completely  enclosing  the 
 polygon  inside  it.  Now  the  Grid  search  method  is  applied  on  the 
 rectangle  providing  initial  and  final  waypoints  to  the  UAV  as  it 

 continues  the  mission.  To  overcome  the  extra  space  provided  by 
 the  rectangle  that  is  not  in  the  polygon  a  line  intersect  function  is 
 implemented to keep the UAV inside the polygon. 

 IV.  S  IMULATION  AND  TESTING 

 This  section  firstly  describes  the  methods  of  simulations  used  to 
 test  our  code.  Then,  a  comparative  study  of  the  tuning  of  different 
 inertial  functions  according  to  different  FOVs  is  given.  Lastly,  the 
 effectiveness  of  MTSO  is  compared  with  other  methods  in  various 
 simulated scenarios. 

 A.  Simulation Environment 
 To  simulate  the  algorithm  in  various  scenarios  and  later  on 
 compare  it  to  other  algorithms,  Ardupilot  SITL  was  utilized.  To 
 visualize  the  targets,  a  self-created  mavproxy  module  is  used, 
 which  selects  the  targets  at  random  and  visualizes  them  in  the 
 SITL  map  as  shown  in  fig.  8-11.  If  the  target  is  detected,  the 
 probability  map  is  updated  and  presented  continuously  using 
 OpenCV  and  matplotlib  libraries.  Because  the  SITL  only  accepts 
 GPS data, conversion to UTM coordinates were conducted. 

 Fig.8: Simulation Environment and Initialization of UAVs 

 Fig.9: Convergence of UAVs on targets in search area 

 Fig.10: UAVs halting and performing clustering 
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 Fig.11: UAVs searching their assigned cluster according to the 
 Hungarian algorithm 

 B.  Path Map of the Swarm 

 In  order  to  evaluate  the  mission  later,  a  real-time  map  of  each 
 UAVs  travel  trajectory  is  created  at  the  start  of  the  flight.  This  map 
 also  shows  the  target  that  was  discovered.  The  map  is  created  using 
 a  straightforward  openCV  function  and  is  shown  with  a  real-time 
 mission updates shown in fig.12. 

 Fig.12: (a)Path map of the swarm and (b) Probability Map for the test 
 case of FOV 140x80 

 C.  Quantitative Comparison with Different FOVs 

 The  algorithm  of  MTSO  with  probability  map  was  rigorously 
 tested  against  different  parameters  for  FOV  of  the  camera  to  find 
 its  performance  and  discrepancies  if  any.  These  tests  were  carried 
 out  while  the  camera  module's  FOV  was  changed.  The  FOV 
 settings  used  in  the  experiment  were  chosen  with  the  least  amount 
 of overlap in mind (O min). 
 Table  III  summarizes  the  outcomes  of  the  tests.  The  data  clearly 
 illustrates  that  expanding  the  FOV  enhances  exploration  since  the 
 majority  of  the  search  region  is  searched,  resulting  in  an  improved 
 overall  number  of  discovered  targets  but  also  increasing  the  total 
 time  needed  to  scan  the  environment.  So  it  is  essential  to  find  an 
 optimum  balance  of  efficiency,  time  optimization  and  total  area 
 scanned to get the best results for the mission. 

 Metrices 
 FOV (in meters) 

 55X32  70 X40  140X80 

 Target 
 Detected 

 15  17  20 

 Payload 
 Dropped 

 14  17  19 

 Time For 
 Mission(s) 

 188.14  182.24  176.89 

 Total 
 Area 

 Scanned 
 92.46  96.23  98.91 

 Table 3: Comparison between different FOVs 

 D.  Quantitative Comparison with other approaches 
 This  part  shows  the  comparison  between  MTPSO,  Exhaustive 
 Search  and  our  approach.  Below  in  table.4  is  a  summary  of  the 
 results  of  different  qualities  of  the  search  algorithm  by  changing 
 fov in different scenarios by all three algorithms. 

 Metrices  Method 
 FOV 

 55X32  70X40  140X80 

 Targets 
 Detected 

 Exhaustive Search 
 MTPSO 
 New Approach 

 19 
 15 
 15 

 20 
 16 
 17 

 20 
 19 
 20 

 Payload 
 Dropped 

 Exhaustive Search 
 MTPSO 
 New Approach 

 18 
 15 
 14 

 18 
 15 
 17 

 19 
 17 
 19 

 Time 
 For 

 Mission 

 Exhaustive Search 
 MTPSO 
 New Approach 

 402.63 
 207.86 
 188.14 

 422.75 
 200.01 
 182.24 

 454.56 
 193.45 
 176.89 

 Total 
 Area 

 Scanned 

 Exhaustive Search 
 MTPSO 
 New Approach 

 99.99 
 92.61 
 92.46 

 99.99 
 96.38 
 96.23 

 99.99 
 98.32 
 98.91 

 Table 4: Performance metrics evaluated for different approaches with 
 different FOVs 

 In  each  of  the  scenarios  outlined  above,  MTSO  with  probability 
 map  outperformed  exhaustive  search  and  MTPSO.  The  time  used 
 by  MTSO  was  roughly  half  that  of  the  exhaustive  search  in  terms 
 of  time  optimization.  Because  the  probability  map  aids  in  swarm 
 convergence  rather  than  selecting  a  Pbest  and  Gbest,  the 
 convergence  towards  the  goal  is  finer,  resulting  in  a  smaller 
 scanned  region.  The  processing  power  required  by  MTSO  utilizing 
 a  probability  map  is  significantly  lower  than  that  required  by  any 
 other  probability  graph  approach,  and  it  is  easily  implemented  in  a 
 decentralized  version  on  very  light  hardware  platforms  with 
 minimum connectivity. 

 Hyper 
 parameter 

 Value  Hyper 
 parameter 

 Value 

 D  wap  20m  v  min  0m/s 

 D  c  500m  N  20 

 D  max  2.5*FOV  D  safe  15m 

 N  s  5  w  30 

 α  105  o  μ  0 

 v  max  15m/s  m  16 
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 Table 5: Hyperparameters used for simulations 

 V.  C  ONCLUSION 

 The  new  algorithm,  unlike  the  earlier  MTPSO  algorithm,  does  not 
 limit  the  movement  of  UAVs  on  the  basis  of  only  PBEST  and 
 GBEST,  which  often  led  to  UAVs  getting  stuck  in  local  minima 
 and  being  unable  to  contribute  for  the  rest  of  the  mission.  The  new 
 approach  allows  the  movement  of  the  UAVs  on  the  basis  of  all  the 
 detected  objects  using  a  probability  map,  hence  areas  with  a  much 
 higher  concentration  of  objects  take  precedence.  Moreover,  the 
 impact  of  each  object  is  not  constant  unlike  the  previous 
 approaches  and  various  factors  like  Altitude,  Class  and  Model 
 Confidence  which  actually  affect  the  ideal  behavior  in  real-world 
 environments  are  taken  into  account  for  assigning  the  probability 
 which  leads  to  better  convergence  of  the  swarm.  This  also  allows 
 for  considerably  more  payloads  to  be  dropped  quickly,  when 
 compared  to  exhaustive  search  and  MTPSO  increasing  the 
 effectiveness  of  the  UAV  swarms  in  real-world  disaster  relief 
 scenarios.  To  overcome  the  limitation  of  the  new  algorithm  of 
 limited  coverage  of  the  search  area  a  return  mission  is  proposed 
 which  can  be  used  when  the  endurance  of  the  UAVs  allows,  to 
 exhaustively  search  the  left  out  areas  and  confirm  any  objects 
 missed by the initial pass of the algorithm. 
 The  various  hyperparameters  used  in  the  new  algorithm  have  been 
 tuned  manually  but  instead,  they  can  be  tuned  using  advanced 
 techniques  like  evolutionary  hyperparameter  tuning  which  can 
 further improve the performance of the algorithm. 
 In future work, the research aims to improve-: 

 ➢  Refining the revert mission to do an iterative MTSO. 
 ➢  Further  improving  MTSO  to  decrease  time  and  increase 

 efficiency. 
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