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ABSTRACT

Challenges in aggressive flights for a swarm
of quadrotors lie in optimal trajctory genera-
tion technologies. However, using the quadro-
tors’ physical input limits as the input bound-
aries in the optimization problem leaves no con-
trol margin to handle the deviation cause by dis-
turbance, model inaccuracy and sensor imper-
fection, etc. Artificially setting input bound-
aries cannot guarantee any optimality. In this
article, we describe a novel optimal trajectory
generation method considering flying time and
input boundaries for a swarm of quadrotors to
fly through pre-defined waypoints including dy-
namic waypoints without collisions. We verify
the method in the Gazebo simulations where a
swarm of 5 quadrotors can fly through a complex
6-waypoint track including 1 dynamic waypoint
in a 35m×35m space. Flight tests are performed
on two quadrotors passing through 3 waypoints
in a 4m×2m flight arena to demonstrate the fea-
sibility of the proposed method in the real world.

1 INTRODUCTION

Autonomous quadrotors are widely applied and play an
important role in multiple application scenarios and show
their potential applications such as disaster response and air
delivery scenarios. Due to their inherent agility, autonomous
aggressive flight has become a very hot research area in the
robotics community in recent years.

The most classic aggressive trajectory generation method
is the differential-flatness based methods [1, 2, 3], which
connect the waypoints using polynomials while keeping the
quadrotor’s inputs within pre-defined boundaries. These
methods are very straightforward and can be easily deployed
on real quadrotors. Thus, they are widely used in aggres-
sive flight applications. However, although the traveling time
between two waypoints can be minimized, the resulting poly-
nomials make the trajectories far from the true optimal as the

*Email address(es): shuo.li@zju.edu.cn

input curves cannot stay on the input boundaries for a long
time and usually, the input curve just touches the boundary
and then is bounced back immediately.

Another category of methods of generating aggressive
trajectories for quadrotors are optimization-based methods.
These methods treat the quadrotor’s states and inputs as op-
timization variables and the quadrotor’s dynamics, initial
states, target states, waypoints, etc as constraints to formulate
an optimization problem. By solving the optimization prob-
lem, the optimal inputs and the corresponding states can be
calculated to minimize an optimization object such as flying
time, total energy or a combination of both. For example, in
[4], the time-optimal trajectories are generated that can guide
one quadrotor to fly through pre-defined waypoints and the
quadrotor’s speed has surpassed the human pilots. To make
the optimal guidance and control method onboard, machine
learning techniques are used to learn the off-board generated
optimal trajectory libraries [5, 6, 7]. However, these methods
don’t take the quadrotor’s input boundaries into consideration
in their time optimization problems. If the input boundaries
are set exactly the same as the quadrotor’s physical limits,
the resulting trajectories should be very close to the ’theoret-
ical’ optimal trajectories. However, in real-world flights, the
quadrotor will have no more ability to handle the deviation
caused by disturbance, model inaccuracy and sensor imper-
fection, etc. A common way to handle this is to artificially
lower the inputs’ boundaries to leave some capacity for the
feedback controllers to handle the deviations. However, ar-
tificially setting input boundaries cannot guarantee any op-
timality. Furthermore, most research about the quadrotor’s
aggressive flight focuses on single drone scenarios instead of
a swarm of quadrotors.

In term of quadrotors’ swarm, the majority of research use
polynomials to navigate quadrotors but the optimality cannot
be guaranteed [8, 9]. In [10], a swarm of micro quadrotors
were used for the search and rescue tasks in an unknown
environment. Carlos et al. presented a novel real-time and
multi-vehicle motion planning framework, enabling complex
transition tasks to be performed [11]. Duisterhof et al. used
a swarm of quadrotors to seek gas-leaking in cluttered en-
vironments [12]. Zhou et al. realized a swarm of quadrotors
flying through a bamboo forest [13]. However, the velocity of
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the quadrotors in above research is still far from the quadro-
tors’ limits. In our previous work [14], we proposed a novel
optimization-based trajectory generation method for a swarm
of racing drones that can generate the time-optimal trajec-
tories for quadrotors to fly through the pre-defined waypoints
while avoiding collisions with each other. In this paper, based
on our previous work, we

1. jointly optimize the flight time and input boundaries in
a newly defined optimization objective to leave con-
trol margins to handle disturbance while keeping high
speed

2. add dynamic waypoint constraints to the optimization
problems, which enables a swarm of quadrotors to fly
through a more complex track

3. valid and analyze the proposed method in simulations
where 5 quadrotors can fly through 6 waypoints with a
maximum speed of 14m/s and also in the real-world
flight tests to demonstrate the feasibility of the pro-
posed method.

2 PRELIMINARY
For the benefit of the readers, we present the quadrotor’s

dynamics model below,

ẋ = fdyn(x,u) =





v

g + 1
mR(q)T

1
2Λ(q)

[
0

ω

]

J−1(τ − ω × Jω)

(1)

where

T =




0
0∑
Ts




is the thrust vector of the quadrotor and

τ =



l/
√
2(T1 + T2 − T3 − T4)

l/
√
2(−T1 + T2 + T3 − T4)

cτ (T1 − T2 + T3 − T4)




is the torque vector of the quadrotor. In the equations above,
v, q and ω are velocity, quaternions and angular velocity of
the quadrotor, respectively. R(q) is the rotation matrix. l
is the arm length. Ts is the thrust provided by the sth rotor,
which are the inputs of the dynamic system (1).

In the original CPC method [4], a progress measure vari-
able matrix λ and a progress change matrix µ are added to
the optimization problem to control the assignment of the
waypoints to ensure that one quadrotor can fly through the
pre-defined waypoints. To be more specific, the trajectories

are discretized to N nodes while matrice λ and µ, which are
the optimization variables, are used to assign the nodes to the
waypoints. The optimization goal is to adjust the flight time
tf (also the time interval between two nodes ∆t = tf/N
) of the entire trajectory while satisfying the waypoint pass-
through constraints and the quadrotors’ dynamics constraints.
However, the CPC method cannot be directly extended to
multi-drone scenarios as each quadrotor has its own tf so the
nodes cannot be aligned. As a result, it is difficult to add col-
lision constraints to the original optimization problem.

Thus, in our previous work [14], a novel method was pro-
posed to generate time-optimal trajectories for a swarm of
autonomous racing drones so that during the flight they can
fly through the pre-defined waypoints while avoiding each
other and arrive at the goals with minimum time. To address
collision avoidance between the quadrotors, the nodes of the
quadrotors are synchronized by using the fixed time interval
∆t. Then, the optimization problem is transformed from ad-
justing the total flight time tf while the quadrotor arrives at
the goal at the last node to adjusting the arrival node with the
fixed time interval ∆t. The constraints are listed in equations
below. Here, we use a left subscript i to indicate that the vari-
ables belong to the ith quadrotor.

i
λjk ≤ i

λj+1
k (2)

i
λjk+1 − i

λjk + i
µjk = 0 (3)

i
µjk(
∥∥
iPk − iP

wj
∥∥2
2
− iν

j
k) := 0 (4)

∥E(iPk − rPk)∥22 − δcol ≥ 0 i ̸= r (5)

where
i
λjk is a bool variable indicating if the ith quadrotor

has flew through the jth waypoint at time tk.
i
µjk means if the

ith quadrotor is passing through the the jth waypoint. iν
j
k is

a tolerance slack. The operator ’:=’ means a NAND (not
and) function. iPk is the position of the ith quadrotor at time
tk. jP

wp is the position of the jth waypoint and δcol > 0 is
the tolerance ensuring that two quadrotors do not collide with
each other. E is the matrix used to relieve downwash risk,
making quadrotors try to avoid collisions in x and y directions
instead of z direction. The readers are referred to [14] for
details of the proposed method.

As stated before, if we set the input boundaries of the
optimization problem to be the real quadrotor’s physical lim-
its, the quadrotor will have no ability to handle the devia-
tion caused by disturbance, model inaccuracy, sensors’ im-
perfection, etc, which in turn can significantly affect the flight
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performance or even cause failures. A common way to han-
dle this is to artificially lower the inputs’ boundaries to leave
some capacity for the feedback controllers to handle the de-
viations. However, artificially setting input boundaries can-
not guarantee any optimality. Thus, in the following part, we
model the flying time and input boundaries in our trajectory
optimization problem to generate trajectories that can guide a
swarm of quadrotors to fly through the pre-defined waypoints
while achieving the minimal optimization objective.

3 METHODOLOGY
3.1 Dynamic Waypoint Constraints

Inspired by some aggressive flight scenarios such as au-
tonomous drone racing where waypoints/racing gates are
not only static but also moving with some specific patterns
[15, 16], in this article, one of the waypoints moves with
a pre-defined trajectory while others keep static during the
flight. Thus, the generated trajectories may guide different
quadrotors to fly through the dynamic waypoint at different
locations. In our previous work [14], the corresponding con-
straints are expressed in equation (4).

However, in dynamic-waypoint scenarios, the position of
the waypoints is no longer a constant and it becomes a func-
tion of time. Thus, constraints (4) becomes

i
µjk(
∥∥
iPk − iP(k ·∆t)wj

∥∥2
2
− iν

j
k) := 0 t ∈ [0, N ], (6)

where t is the kth node.

3.2 Input Boundary Constraints
In the previous work, the optimization objective was to

minimize the time for the quadrotors to fly through the whole
tracks while keeping the inputs within pre-defined bound-
aries, which results in a bang-bang profile that the control
inputs spend more time at the boundaries [4, 17]. As stated
before, if the input boundaries are set exactly the same as
the quadrotor’s physical limits, the generated trajectories will
leave no margin to handle the deviation caused by distur-
bance, model inaccuracy and sensor imperfections, etc and
artificially setting lower boundaries may lose the optimality.
Thus, to solve this problem we introduce an input scaling fac-
tor ie for each quadrotor i to adjust the inputs’ boundaries.

0 ≤ ie ≤ 1 (7)

when ie = 1, the optimizer will take advantage of the
full throttle of the quadrotors and the generated trajectories
are the most aggressive but the quadrotors are vulnerable to
the disturbance as they have no ability to handle the devia-
tion. Now the input constraints of the original problem can
be written as

ie umin ≤ iu ≤ ieumax. (8)

The scaling factors ie serve as the optimization variables in
our optimization problem. Thus, the optimizer can limit the
inputs’ boundaries by adjusting ie and at last ie for each
quadrotor will converge to constant values to make the op-
timization objective minimal, which will be explained later.

3.3 Thrust Change Rate Constraints

According to [17], the time-optimal trajectory of a
quadrotor has a bang-bang structure which is very difficult to
be tracked by a quadrotor. Because the actuators have their in-
ertia, it is impossible for rotors to achieve the required RPMs
immediately. To model this property, we add the thrust’s
changing rate to avoid the thrust’s ’step’ change which is im-
possible to realize in the real world.

−u̇max ≤
uk+1 − uk

∆t
≤ u̇max ∀k ∈ [0, N − 1], (9)

where u̇max is the maximum thrust changing rate and ∆t is
the time interval between to nodes.

3.4 Multi-objective Optimization Target

The target of the optimization problem in this article is to
generate time-optimal trajectories while leaving some con-
trol margin for disturbance rejection. However, minimum
time and the inputs’ lowest upper boundary are contradictory.
Thus, the optimization object can be written as

min
X

J = Jt + Je (10)

where

Jt =

Q∑

i

S(iλ)

is an index measuring the total flying time of the quadrotors,
which is the sum of iλ matrices of all quadrotors and

Je =

Q∑

i=0

ie

is an index indicating the input boundaries of all quadrotors.
However, in most cases Jt ≫ Je. In order to optimize two
terms equally, here we introduce two functions F(·) and G(·)
to normalize these two terms. Then the target in (10) can be
written as

min
X

J = αF(Jt) + (1− α)G(Je) (11)

where α is the weighting factor. The selection of normalized
functionals F(·) and G(·) directly affects the optimization re-
sults and the iterations, which will be analyzed and compared
in detail in Section 4.
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𝒊𝒆 = 𝟎. 𝟖

Figure 1: Sketch of the proposed method. The time step is fixed so that it is possible to add collision constraints for multiple
quadrotors. The left figure shows the collision constraint and the dynamic waypoint constraint. The trajectory of dynamic
waypoints is shown as yellow circles. The right figure shows that the maximum thrust decreases with the optimization. The op-
timization objective is to minimize the sum of the iλ and ie while satisfying the dynamics constraints and collision constraints,
etc.

3.5 Optimization Problem Summary
The optimization objective is to minimize the flying time

and the input boundaries, which can be expressed as

min
X

J = αF(
Q∑

i

S(iλ)) + (1− α)G(
Q∑

i

ie) (12)

where Q is the number of quadrotors in the swarm. X is a
set consisting of the optimization variables ix of all the Q
quadrotors, and ix = [ie, ix0, ix1, ..., ixN−1] Note that all
nodes of each drone share the same energy variable ie in the
state variables ix, which is different from other state variables
are redefined at each node ixk.

4 NUMERICAL SOLUTION AND ANALYSIS

4.1 Numerical simulation setup
We utilize the nonlinear solver CasADi[18] to solve the

optimization problem described in Section 3. A 6-waypoint
track is designed to test the performance of the proposed
method. The position of the waypoints is listed in Table 1. It
should be noted that the second waypoint is a dynamic way-
point whose position changes in y direction by

Pwj
1 (t) =



x1(t)
y1(t)
z1(t)


 =




25
5 + 6 sin(2πt/1.5)

3




or

Pwj
2 (t) =



x2(t)
y2(t)
z2(t)


 =




25
5 + 3 sin(2πt/6)

3




to show the performance of the proposed method with differ-
ent dynamic waypoints’ speeds. 5 quadrotors (Q = 5) are
used in the optimization problem. In the following part of
this section, we will discuss the normalization functions and
the weighting factors in detail.

Table 1: The position of the waypoints

waypoint NO. x[m] y[m] z[m]
1 5 15 2
2 25 5 + y∗(t) 3
3 20 25 5
4 14 14 2
5 18 18 6
6 5 14 4

4.2 normalization function

We select the normalization function G(·) for Je as

G(Je) =
1

Q
Je (13)

since

Je ∈ [0, Q] (14)

so that

G(Je) ∈ [0, 1] (15)
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We also have two normalization functions F(·) as the
candidates to map the Jt term in equation (12) to [0, 1] which
are sigmoid function

Fsigmoid(Jt) =
expV(Jt)

1 + expV(Jt)
(16)

where

V(Jt) = 0.005(Jt − Vm)

and linear mapping function

Flinear(Jt) =
1

2(Vm − Vo)
1

Q
Jt −

Vo
2(Vm − Vo)

(17)

where

Vm = N

Nwp∑

i=0

i

Nwp

represents that the quadrotor passes through Nwp waypoints
with the same time interval and

Vo =
vmin
vmax

Vm

is the value obtained by using the ratio of the maximum ve-
locity vmax and minimum velocity vmin as the scaling factor.

To control the effects introduced by other variables, we
set α = 0.8 to check the optimization performance with dif-
ferent F(·). The result is shown in Table 2.
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time (s)

0

2

4

6

z 
(m

)

Figure 2: Trajectories of 5 quadrotors with two different dy-
namic waypoints. The trajectories of fast and slow dynamic
waypoints are shown in red and green curves respectively.

Both functions can be guaranteed to be differentiable
within the range of values. As shown in Table 2, the smoother
normalization function, sigmoid, achieves better results in

Table 2: Two different normalization functions

Function type sigmoid function linear function
Iterations 7165 13162

Objective value 4.02e−2 9.05e−1
Single iteration time (s) 71.94 0.73

Total time (s) 515450 9608
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Dynamic Waypoint

Reference 1
Reference 2
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Reference 5

Figure 3: The generated optimal trajctories for 5 quadrotors

fewer iterations than the lower objective function value. How-
ever, its total time is hundreds of times of the linear func-
tion. Thus, we select the linear function as the normalization
function. The generated optimal trajectories with F(Jt) =

1
2(Vm−Vo)

1
QJt − Vo

2(Vm−Vo) and α = 0.8 is shown in Figure 2
and Figure 3.

4.3 Weighting factor
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Figure 4: The flying time and maximum thrust with different
α

In this section, we do a parameter study of α to show how
this weighting factor influences the optimization result. We
solve the optimization problem (12) with varying α and the
track in Table 1 for 5 quadrotors and the result is shown in
Figure 4

As shown in Figure 4, as α gradually increases, the flying
time of the quadrotors decreases while the maximum thrust
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(a) (b)

Figure 5: Gazebo simulation environment. 5 quadrotors are flying through the dynamic gate.

increases as discussed in Section 3. Figure 4 gives us a rough
idea of how to tune α for some specific application scenarios.

5 SIMULATION AND REAL-WORLD FLIGHT
EXPERIMENT

We first verify the proposed method in Gazebo simulation
environments. The racing gates (waypoints) are deployed ac-
cording to Table 1. The optimization result is used as the ref-
erence trajectories to be tracked by the quadrotors. A nonlin-
ear model predictive controller (NMPC) is used for trajectory
tracking and the control structure is shown in Figure 6. The
model used in the NMPC is a 9-state quadrotor model whose
states are the quadrotor’s position, velocity, quaternions while
the inputs are the angular velocities of the quadrotor. The an-
gular velocity controller is a default PX4 PID controller for
tracking the commands provided by the NMPC. The ACADO
software is used to implement the NMPC algorithm. The
readers are referred to [19] for the implementation details.

𝑷𝑟𝑒𝑓, 𝒗𝑟𝑒𝑓, 𝒒𝑟𝑒𝑓

𝑻𝑟𝑒𝑓, 𝝎𝑟𝑒𝑓

𝑇𝑐𝑚𝑑, 𝝎𝑐𝑚𝑑

Trajectory 
Generation

NMPC

𝑷𝑒𝑠𝑡, 𝒗𝑒𝑠𝑡, 𝒒𝑒𝑠𝑡

Betaflight
/PX4

Figure 6: The control structure for the trajectory tracking.
The nonlinear model predictive controller is used to track the
reference trajectory. The PX4 is used as a low-level controller
in simulations while the Betaflight is used in the real-world
experiments.

The simulation results show that the proposed method can
generate aggressive trajectories for a swarm of racing drones
to fly through a pre-defined track including a dynamic way-
point. Also, as we use α to leave control margins for distur-
bance and model inaccuracy.

For the real-world experiments, we develop a new micro
quadrotor that only weights 100g as shown in Figure 7. This

Figure 7: The 100g flying platform used in the experiment.

quadrotor runs the Betaflight onboard to provide an angular
rate loop controller as it has a very accurate and stable an-
gular velocity tracking performance. It receives angular ve-
locity commands and throttle commands from the high-level
controller. The high-level controller NMPC runs on a laptop.
The onboard autopilot sends the IMU measurements and the
attitude estimation to the laptop using the MAVLink proto-
col via the onboard WiFi module and the Optitrack motion
capture system also sends the quadrotors’ position measure-
ments to the laptop. The NMPC optimizes the control inputs,
the angular rates and the throttle in our case, and sends them
to the onboard autopilot via the WiFi module to control the
quadrotors to track the trajectories.

Due to the very limited size of the flying arena 4m ×
2m × 2m, we use two quadrotors to give a flying example
to demonstrate the performance of the proposed method in
the real world. The virtual dynamic waypoint moves in y
direction by Pwj1 (t). The virtual dynamic waypoint and the
trajectories of the quadrotors are shown in Figure 8.

From Figure 8, it can be seen that in the real world, the
proposed method can generate the optimal trajectories for a
swarm of quadrotors to fly through dynamic waypoints and
also minimize the input boundaries to leave margin for the
disturbance and model inaccuracy.
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Reference 1
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Figure 8: The collision-free trajectories of two quadrotors
in the real-world experiment. The trajectory of the dynamic
waypoint as shown in dashed red gates

6 CONCLUSION

In this article, we proposed a novel trajectory generation
method for a swarm of quadrotors that considers the inputs’
boundaries in the optimization objective. So that the gener-
ated optimal trajectories leave control margins for rejecting
the deviation caused by the disturbance, model inaccuracy
and sensors’ imperfection. Furthermore, we also take dy-
namic waypoints into consideration in our optimization prob-
lem so that the quadrotors can fly through them with the
optimal trajectories. Furthermore, the simulation and real-
world flight results valid that the proposed trajectory genera-
tion method can guide a swarm of quadrotors flying through
the waypoints (including dynamic waypoints) with the op-
timal index which is not only time optimal but also leaves
control margins for the deviation correction.
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