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ABSTRACT

To reduce the workload of operators in situa-
tions like coordinated search and rescue mis-
sions, in which a large number of heterogeneous
Unmanned Aerial Vehicles (UAVs), are used, an
automated fleet management can be of signifi-
cant benefit. As part of the fleet management
the different tasks must be allocated to the avail-
able UAVs. Multiple algorithms have been de-
veloped in the past to perform task allocation
without any conflicts. In this paper we provide a
concise introduction to prevalent algorithms and
adapt a task allocation algorithm to work in dy-
namic environments, such as those commonly
found in rescue operations. Based on the Asyn-
chronous Consensus-Based Bundle Algorithm,
the new “central mediator” is introduced, which
guarantees a conflict-free allocation at every step
of the allocation process and eliminates the com-
munication between the agents representing the
UAVs. The presented algorithm is applicable
in any environment with reliable network con-
nections between the “central mediator” and the
agents. Furthermore, the algorithm is designed
to be part of a fleet management system that con-
siders heterogeneous UAVs.

1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are becoming more
vital to the efforts of emergency responders due to their cost
and resource efficiency and lower operational risk compared
to conventional means of aerial or ground reconnaissance.
This is especially true in the case of major incidents, where
nowadays an increasing number of different rescue organi-
sations involved in the disaster management is using UAVs.
This leads to a wide variety of UAVs present at the site, each
suited for their dedicated purpose.

The resulting heterogeneous fleet of UAVs will possess a
broad range of operational airspeeds and ranges. Moreover,
in a highly dynamic environment, emergency responders
must coordinate the said fleet of UAVs. Simultaneously the
airspace in the vicinity of the incident is shared with other
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airborne rescue forces including rescue helicopters. All of
these factors would leads to a substantial workload for the
fleet operator, if no automation is implemented.

This paper is based on the requirements of the
GrenzFlug+ research project, which focuses on the use
of UAVs in cross-border rescue operations.. The project
aims to automate the fleet and task management to reduce
the workload of rescue forces. Objectives and their order of
priority are defined by the rescue forces. These objectives
are subsequently transformed into tasks by the “Task
Management”, as shown in Figure 1, and assigned a priority
accordingly. In the subsequent stage the UAVs are assigned
these tasks. This paper focuses on the second step, “Task
Allocation”, and assumes that the “Task Management”
has provided the corresponding tasks and priorities. The
“Fleet Management” reduces the operator’s workload by
eliminating the need to consider UAV-specific parameters
when defining objectives.

...

Figure 1: Generalized System Overview

To address the task allocation, a distributed algorithm
based on the Asynchronous Consensus Based Bundle Algo-
rithm (ACBBA) [1] is developed. In the algorithm each UAV
is represented by an agent, which results in an agent-based
approach.

In the opening section of this paper we will provide a
brief overview of related work. Next, we explain the pro-
posed approach for the task allocation algorithm, outlining
the architecture, introducing the “central mediator” and giv-
ing a straight forward example. The paper concludes with the
presentation of the analysis of the results of the implemented

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 240



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2023-30 14th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

algorithm for some test cases.

2 RELATED WORKS

2.1 Management in Multi-UAV environments
There are different architectures for the management of

numerous heterogeneous UAVs. To enhance comprehension
of the various architectures, Figure 2 provides an overview
of the different topologies.

Central
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(a) Centralized

Agent
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Main Server
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Central
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Figure 2: Overview of different architectures

In a centralised architecture (Figure 2 (a)) the entire
task allocation problem is solved as a single optimisation
problem. The advantage of centralised architectures is that
they rely on a reduced amount of communication needed
during the computation, as the algorithms gather relevant
information a-priori and can be executed on modern multi-
core computing systems. The communication performance
of the single computing machine may be a limiting factor, as
it needs to receive all the data relevant to fleet task manage-
ment, including the necessary data from the UAVs, , services
supplying airspace data and other relevant data sources. In
sparsely connected environments the problem may occur that
the central solver may find a solution, but cannot transmit it
to all agents for execution. This may result in conflicts as not
all agents work with the same task allocation. [2]

In distributed architectures (Figure 2 (c)), there are
separate computing modules communicating with each other.
Depending on whether they are implemented on a single
machine or on separate machines, communication can be
over shared memory or network connections. Distributed
architectures lose performance compared to a centralised
architecture as additional communication is required but
enable the system to exploit the computing power of multiple
machines. In contrast to decentralised architectures, the
distributed architecture relies on high performance and
reliable communication between the different computing
machines. [2]

A decentralised architecture (Figure 2 (b)) omits the
central computing unit and performs all computation
on-board of the UAVs. As each agent solves the task
allocation problem separately, communication is only needed
to negotiate between the agents. This has the advantage,
especially for sparsely connected systems, that the agents
can find a solution with minimal input from other systems.
Decentralised architectures are usually not designed to find
the mathematically optimal solution but a solution close to
the optimum to reduce the required computation time. The
disadvantage is the often reduced computing performance
when operating in a robust network. [2]

As discussed in Section 3.1, a distributed environment
with a decentralised algorithm is chosen because it allows
a flexible architecture while reducing the necessary commu-
nication with the UAV. A brief overview of the algorithms
used is given below.

2.2 Consensus-Based Bundle Algorithm (CBBA)[3]

The Consensus-Based Bundle Algorithm (CBBA) is
an algorithm developed using a decentralised architecture.
It uses a bidding process to allocate tasks to agents. The
algorithm consists of two phases:
First, in the bundle construction phase, each agent creates
a bundle of tasks it wants to perform. After all agents have
completed the first phase, the consensus phase starts. In this
phase the agents need to exchange information about the
bundles. With the information from the other agents each
agent now checks whether it has been outbid by other agents
for the same task. In case it has been outbid, it cannot carry
out that task. As the planning for all the tasks after this one
in the bundle has also become invalid, the agent must release
the rest of the bundle along with the task or which it was
outbid. With the reduced bundles, the bundle generation
phase starts again.[4]

Choi et.al. [4] have shown that the CBBA ensures 50%
optimality. As per an empirical investigation, one may an-
ticipate performance within 93% of the optimal solution in
practice [5].
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2.3 Asynchronous Consensus-Based Bundle Algorithm[1]
The ACBBA is a modification of the CBBA that includes

support for asynchronous operations. Similar to the CBBA,
the ACBBA is designed for execution in a decentralised en-
vironment. However while the CBBA necessitates waiting
for all agents to complete the bundle generation before be-
ginning the second phase. The ACBBA modifies the consen-
sus phase to enable bundle generation phase and consensus
phases to be executed asynchronously across various agents.
During the modified consensus phase, five distinct actions can
be taken upon receiving a new plan from a another agent.

1. Update & Rebroadcast: Update the own state and
broadcast the received plan

2. Leave & Rebroadcast: Leave own state and broadcast
it instead of the received plan

3. Leave & No-Rebroadcast: The own plan is not changed
and nothing is broadcasted

4. Reset & Rebroadcast: The own plan is deleted and the
received plan is broadcasted

5. Update Time & Rebroadcast: Update the time stamp
and broadcast the own plan with the update’s time
stamp

Actions 2, 4 and 5 are needed to resolve conflicts or in-
consistencies between the current states of the various agents.
[1]

The ACBBA has been shown to be convergent in dynamic
environments as long as it can reach a solution before the en-
vironment is modified by changing the tasks to be allocated.
For dynamic environments where tasks are added and deleted
quicker then convergence is reached the algorithm remains
operational but does not reach a convergent state. Due to the
nature of the ACBBA, an analytical evaluation of the optimal-
ity of the algorithm is not possible. [1]
For lossy networks, it has been shown that the ACBBA may
not always find a conflict-free solution. In order to achieve
such a solution, additional measures that increase the negoti-
ation overhead are needed [6]. This paper addresses this issue
by implementing the algorithm in a distributed environment
and introducing the “central mediator”.

3 CONCEPT

3.1 Architecture
In a decentralised architecture, it would be necessary to

compute all paths and their corresponding costs on-board.
These calculations would be performed on the same ma-
chine as the flight safety critical processes, such as the con-
flict avoidance, or would require additional hardware, which
would decrease flight performance. The sharing of these re-
sources is only acceptable if the path planning is performed
infrequently. For the given use-case the task distribution and

segmentation shall be optimized for the available UAVs. This
requires more iterations and an increased computational ef-
fort on each UAV. To meet this requirement, a distributed ar-
chitecture was chosen for the given use-case. The algorithm
runs on a single high-performance machine to ensure the nec-
essary computational effort. For each UAV, the architecture
features an individual agent that runs on a separate thread on
the same machine as the central coordinating instance.

A further advantage of employing a distributed architec-
ture, as opposed to a decentralised one, is that the UAVs do
not require constant communication with one another and
that no external data, such as environmental information,
must be transferred to them. This reduces the bandwidth re-
quired for mission planning and therefore frees up bandwidth
for communication relevant to flight safety.

As the fleet management system incorporates heteroge-
neous UAVs, it is feasible that tailored path planning tools for
individual types of UAV may be utilised in the future. This
would prove a challenge in a centralised architecture. In ad-
dition, employing a distributed approach enables future ex-
pansion of the fleet task management system via inclusion of
new modules.

3.2 Task Allocation

For the task allocation within the fleet task management
the ACBBA [1] has been selected as the foundation. The
ACBBA is preferred due to its ability to support asyn-
chronous operations and independence from the underlying
path planner. This is a necessity when using different path
planners with different execution times for a heterogeneous
fleet. Furthermore, the ACBBA can adapt to a dynamic
environment where new tasks are constantly added and
removed; a critical feature when the task allocation algorithm
is employed with the task management.

In the ACBBA all calculations are performed by the
agent’s on-board processing unit. In a first adaption step
all calculations are moved into the distributed environment,
where separate threads on the same machine perform calcu-
lations for each UAV. This allows the ACBBA’s asynchronous
operations to be maintained while taking advantage of the
benefits of a distributed architecture.
As the ACBBA was developed for a decentralised environ-
ment, it requires significant effort to resolve conflicts aris-
ing from each UAV’s individual current bidding result [1][6].
However, in a distributed environment where communica-
tion is assumed to be nearly instant and fully reliable, these
complex algorithms can be replaced by a central negotiation
instance - the mediator. The bundle generation phase de-
fined in the CBBA [4] is carried out independently and asyn-
chronously for each agent, with the consensus phase shifted
from the agents to the mediator. By achieving conflict-free
resolution following each iteration, the task can be terminated
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and the current solution can be utilised without necessitating
additional conflict checks.
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including the cor-

responding bundles
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Figure 3: Flow Chart of the Task Allocation Algorithm

The procedure utilized in the proposed adaptation of the
ACBBA is illustrated in Figure 3. The initial step involves
broadcasting the existing tasks, along with the corresponding
winning bid and the currently winning agent for each task, to
all agents. In the first broadcast no winning bids and agents
are included as there has been no bidding process yet.. With
the task list and the current allocation each agent attempts to
secure additional tasks by bidding higher than the currently
allocated agent.

Firstly the agent calculates its bid for all tasks not yet in
its own bundle. Next, the agent determines whether its bid
would surpass the current winning bid. Finally, among all
the bids that beat the current winning bid, the agent selects
the one with sthe highest bid. Afterwards, the path planner
is executed to generate a path that considers all tasks in the
updated bundle, including the newly added task. These steps
are repeated until the agent is unable to add further tasks to
its bundle. This happens either when the agent has added
all the tasks where it can outbid the current winning agent
or, when it is unable to complete any more tasks due to

reaching its limitations, which vary depending on the UAV
represented by the agent. A possible example for such a limit
is that the maximum flight distance achievable by the UAV
has been reached or that the remaining tasks are unreachable
due to obstacles.

For the specific application of a major disaster, the key
consideration is the timeline for completing the task and the
task’s priority. Task priority measures the value of a task
and is defined by the “Task Management”. The time taken
to complete a task is calculated by the agent and represents
the cost. The bid is determined by employing equation (1) in
which j denotes the task number and ai the agent currently
performing the bundle generation. The resulting bid, cai,j is
determined by the task priority pj , the time required for task
completion tcompletion,j and the scaling factor T . For the
scope of this paper T = 1 s will be assumed.

cai,j = pj −
tcompletion,j

T
(1)

Once the Agent i has completed the bundle generation , it
transfers the bundle along with the corresponding bids to the
mediator. As the mediator always stores the most recent task
allocation, the assessment of the update times for each of the
bids can be omitted, thus simplifying the consensus phase.
During the mediation phase, the mediator iterates through the
bundle of Agent i, as depicted in Figure 4. It should be noted
that a consensus phase may lead to a task, previously allo-
cated to an agent, having no agent assigned.

If, during the consensus phase, there is a change in the
task allocation, the new allocation is broadcasted to all agents
along with their updated bundle, thus initiating a new bundle
generation phase. If the task allocation remains unchanged,
but Agent i’s bundle changes, only Agent i will be send the
updated information as only it needs to repeat the bundle
generation phase. If neither task allocation nor bundle are
changed, Agent i has achieved consensus with the present
task allocation. If no other agent is performing a bundle gen-
eration phase at this point, the final task allocation was found.

3.3 Simplified Example Scenario for the Task Allocation Al-
gorithm

For a improved comprehension of the adapted algorithm
an example involving three tasks and two UAVs is given (see
Figure 5). The Agent TW (aTW ) is a tilt-wing aircraft flying
in fixed-wing configuration with a constant ground speed of
20 m

s , whereas the Agent MR (aMR)is a multi rotor system
flying with 10 m

s ground speed. All three tasks are waypoints
to be reached with a priority factor pj = 20. For the sake of
simplicity, curves are omitted.

Each agent has a bundle vector storing the current bundle
(baTW and baMR ) and a corresponding bid vector (caTW and
caMR ). As a first step the mediator broadcasts the complete
list of all tasks, with no winning agent and no winning bids.
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Figure 4: Flow Chart of the consensus step performed by the
mediator

From the given allocation both agents generate their cor-
responding bundles. For the given case Agent 1 generates
the bundle bIaTW =

[
t1 t2 t3

]T
with the corresponding

bids cIaTW =
[
18 15 12

]T
. Agent TW is quicker in com-

pleting the bundle generation phase and therefore initiates the
first mediation phase. After this mediation phase the mediator
has the task allocation shown in Table 1.

awinning cwinning
tI a1 aTW 18
tI a2 aTW 15
tI a3 aTW 12

Table 1: Task Allocation after the first consensus phase with
the bundle from Agent TW

As the task allocation has changed, the mediator broad-

´

aTW

aMC

t1 t2

t3

40m

60m

60m

70m

60m

Figure 5: Locations of tasks and UAVs for the simplified ex-
ample

aTW

aMC

t1 t2

t3

2 s

3 s

3 s

Figure 6: Simplified path planned by aTW

casts it to both agents . As Agent TW determines that the al-
location corresponds with its own bundle and thus, does not
perform a new bundle generation phase while Agent MR is
still running its first bundle generation phase. Therefore this
broadcast does not trigger any new bundle generation phases
at this moment. When Agent MR completes its initial bun-
dle generation phase, it triggers the second mediation phase
with the bundle bIaMR =

[
t3 t2 t1

]T
and the correspond-

ing bids cIaMR =
[
14 8 2

]T
.

awinning cwinning
tI b1 aTW 18
tI b2 aTW 15
tI b3 aMR 14

Table 2: Task Allocation after the second consensus phase
with the bundle from Agent MR

As the Agent MR has out-bid Agent TW on on the first

aTW

aMC

t1 t2

t3

6 s

6 s

6 s

Figure 7: Simplified path planned by aMR
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task in its bundle and has been out-bid on the second task in
its bundle, the task allocation and both agents will perform
a new bundle generation phase using the input data from Ta-
ble 2. During this bundle generation phase Agent MR gen-
erates the bundle bIIaMR =

[
t3
]

and the corresponding bids
cIIaMR =

[
14
]
. Agent MR does not select tasks t1 and t2 as

it is aware that it cannot outbid Agent TW for these tasks.
Similarly, Agent TW does not select task t3 as it acknowl-
edges that it cannot outbid AgenttMR for this particular task.
Since neither of the agents modified its bundle, the allocation
remains unchanged in the following mediaton phases. Thus,
the task allocation algorithm has reached a convergent state.

4 RESULTS

The task allocation algorithm, as outlined in section 3.2,
is implemented using ROS2 with C++ and Python being
the primary languages employed. This implementation was
tested with varying number of tasks, each requiring a set
point to be reached under a specific heading. The test sce-
nario was tackled by 10 agents, each planning dubbins paths
to complete the different tasks. The number of agents was
selected to compare the outcomes of the ACBBA presented
in [1] and the results attained through the algorithm proposed
within this paper.

With the described scenario and path planner it was found
that the bundle generation phase was at least four times
slower than the mediation phase for the lowest number of
tasks, while it was approximately fifteen times slower for the
largest number of tasks. As 10 agents were used to tackle
the given tasks the mediator becomes a bottleneck when the
bundle generation phase is less than 10 times slower than the
mediation phase. Since the utilized path planner does not con-
sider obstacles or flight performance, it may be assumed that
this issue will be resolved with the implementation of more
advanced path planners.

The scenarios were executed on various systems, enabling
the agents to compute independently. During the evaluation
of the results, it is evident that the number of mediations is di-
rectly proportional to the time required to reach a convergent
state for a given system. To have a measure of the conver-
gence speed that is independent from the processor speed the
number of mediations was used to evaluate the results. Fig-
ure 8 illustrates the number of messages against the number
of tasks in the specified scenario.

For the test scenarios, a linear relationship is evident
between the number of tasks and the mediator steps required.
This is the expected behaviour as an increase in number
of tasks leads to a larger bundle size, resulting in a more
dropped tasks during the mediation phases when an agent is
out bidden by another agent.

For the comparison between the ACBBA [1] and the de-
veloped algorithm, it is necessary to compare the number of
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Figure 8: Number of mediator steps required to reach con-
sensus for the given number of tasks including the median

messages used by the ACBBA and the number of mediation
phases required. However, it is important to note that one me-
diation phase is equivalent to nmsg ≈ nagents − 1 messages.
This relation results from broadcasting of the task allocation
at the end of the mediation phase, which is the equivalent to
sending a message to each of the nine other agents.

When comparing the performance of the ACBBA and
the developed mediator-based algorithm, three sections ex-
hibit distinct comparison results. For the scenarios with 20 or
fewer tasks the performance of both algorithms is similar with
a slight advantage for the developed mediator approach. For
the scenarios with 20 < ntask ≤ 35, the developed mediator-
based algorithm proves significant superior to ACBBA. For
instance, in the scenarios with 30 tasks, the median number
of messages required by the ACBBA is thrice that of the de-
veloped mediator-based algorithm.

For the scenarios featuring over 35 tasks, the ACBBA per-
forms increasingly better, so that the median number of mes-
sages required by ACBBA for the scenarios with 60 tasks is
only 30% higher than that of the developed mediator-based
algorithm. An explanation for the reduction of required mes-
sages was not provided by Johnson et.al. [1]. However, it can
be assumed that the agents have a limit on the maximum path
length. This would result in fewer conflicts to resolve for
higher numbers of tasks, thus reducing the number of mes-
sages required. The simulation of the developed mediator-
based algorithm did not have a similar limit. Therefore, the
comparability of the two algorithms is reduced for all scenar-
ios with more than 35 tasks.

5 CONCLUSION

An adapted task allocation algorithm is presented for
the use case of a connected UAVs in a search and rescue
scenario. The algorithm has been designed to run in a
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distributed environment and is based on the Asynchronous
Consensual Bundle Based Algorithm [1]. This choice was
made because the algorithm enables the integration of
heterogeneous UAV as agents. To improve performance
the consensus phase of ACBBA has been replaced by the
newly introduced mediation phase, which is executed by the
new central mediator. The performance improvement was
demonstrated performing simulation runs of the developed
mediator-based algorithm and comparing the results with
simulation runs for the original ACBBA.

The task allocation algorithm has been designed with fu-
ture extendability in mind. A planned extension is integrating
an interface to the U-space system for the planning phase, in
order to identify potential conflicts and request prioritisation
or perform strategic deconfliction.

Further work is needed to determine if the mediator-based
algorithm developed can also exhibit a reduction in required
messages, as demonstrated by the ACBBA, for a larger num-
ber of tasks. . The function used to compute each agent’s bid
is also a topic for future work, as is the impact of the intro-
duction of a range-limit for the agents.
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