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ABSTRACT

Trajectory optimization is a challenging task in
the robotics community. Several factors need to
be taken into account when generating a feasi-
ble optimized trajectory. The optimization pro-
cess heavily relies on the dynamic model of the
system. Currently, there are various drone de-
signs available, categorized based on their actu-
ation status. In this study, we apply a trajectory
optimization technique to a fully actuated hexa-
copter (FA-Hex), which is a new application to
the best of our knowledge. This type of vehi-
cle has been successfully integrated into several
practical applications. Unlike the under-actuated
hexacopter (UA-Hex), the FA-Hex can perform
maneuvers with minimal banking angles, signif-
icantly enhancing the drone’s maneuverability.
Our research focuses specifically on trajectory
optimization for the FA-Hex and demonstrates
the adaptability of our method to different sce-
narios. We discuss two specific applications: a
drone filming without a gimbal joint and a drone
with a cable-suspended pendulum. We compare
the simulation results with the UA-Hex model
to highlight the differences in maneuverability
between the two systems. The trajectory opti-
mization is performed offline using CasADi in
the MATLAB framework.

1 INTRODUCTION

Aerial robotic systems have found extensive applications
in various fields, including package delivery, photography,
rescue operations, and construction inspection [1], [2]. These
missions have led to the development of different types of
vehicles tailored to meet specific requirements. Nowadays,
aerial systems utilize cable-suspended loads for package de-
livery in various environments. Additionally, vehicles de-
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signed for photography and inspection purposes often inte-
grate a gimbal joint to ensure optimal camera positioning. In
these cases, minimizing drone weight and optimizing trajec-
tory and energy consumption are essential objectives. How-
ever, striking a balance between control and vehicle design is
critical to achieving optimal performance.

Aerial vehicle systems can be classified based on their ac-
tuation level as under-actuated (UA), fully-actuated (FA), and
over-actuated (OV) systems [3]. A quad-rotor drone serves
as a common example of an UA system, which relies on total
thrust and three torques as virtual control inputs. However,
these virtual control inputs are insufficient to directly con-
trol all 6 degrees of freedom (DoF) of the system. On the
other hand, a FA system possesses a number of virtual con-
trollers equal to the DoF, matching the number of actuators.
Conversely, OV drones have an excess number of actuators,
enabling them to handle actuator failures using various con-
trol allocation techniques. FA vehicles have a more extensive
range of maneuvers compared to UA ones. Some drones can
adapt to online actuation changes by employing additional
servo motors that consider the tilt angle of the motors.
Indeed, hexacopters can be classified as either UA or FA sys-
tems based on their actuator configuration. Hexacopters with
actuators in one plane, which typically means they have fixed
propellers, are considered UA systems. On the other hand,
hexacopters equipped with tilting actuators, often known as
coaxial hexacopters or hexacopters with tilting propellers, are
recognized as FA systems. The ability of the latter to tilt
their actuators provides them with greater control authority
and maneuverability, allowing them to be fully actuated and
perform more complex maneuvers compared to the former.

This work’s primary contribution lies in its flexible ap-
proach to solving trajectory optimization problems, which
can be adapted to suit a wide range of drone applications.
The emphasis lies on scenarios where drones track specific
objects through photography. In such cases, it is vital for the
drone to maintain a clear field of view of the target by mov-
ing with minimal banking angles. Improving the trajectory
sent to the low-level controller enhances the drone’s ability
to accomplish assigned tasks effectively. Additionally, the
FA-Hex can be used for package delivery with the help of a
cable-suspended pendulum mechanism. This setup enables
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the drone to reduce oscillations and perform precise maneu-
vers, even in challenging and static environments.

1.1 Design and Control Strategies
Various vehicle design and control strategies have been

developed and utilized to manage the dynamics of FA drones.
Employing these vehicles offers the key advantage of inde-
pendent attitude and altitude control by decoupling their dy-
namics [4].

Non-linear control based on full geometric control, ensur-
ing precise position tracking, is applied by [5] and [6]. Sta-
bility of the resulting controller is established using Lyapunov
techniques. Furthermore, [7] proposes an optimal design for
the tilted angle based on the active set of possible wrenches
exerted by the FA drone, using a feedback linearization con-
trol approach with a PID controller to decouple position and
orientation control. Another approach is presented in [8], by
adding a tilting mechanism to the motors of the UA drone,
incorporating two servo actuators to rotate the rotor’s angle
in radial and tangential directions around the arm. Feedback-
linearization control is employed for managing the drone’s
dynamics. To handle environmental perturbations, [9], uses
adaptive control for the FA-Hex drone. Similarly, [10] pro-
poses adaptive sliding mode control for FA-Hex drones with
a cable-suspended pendulum, compensating for the inability
to measure the load’s position by developing an extended gain
observer-based adaptive sliding mode approach.

1.2 Trajectory Optimization
Generating a reference trajectory to be tracked by the

lower-level controllers is a demanding task when working
with FA vehicles. Currently, the literature review on trajec-
tory optimization primarily focuses on UA vehicles. There-
fore, it becomes a challenging problem to develop an opti-
mal controller that generates desired positions and orienta-
tions for FA vehicles. The research in this area can be cat-
egorized into two main approaches. Firstly, a differential
flatness approach is utilized to obtain a smooth and feasible
trajectory [11, 12, 13, 14]. Secondly, the dynamical model
is incorporated as a constraint in the optimization problem
[15, 16, 17]. Utilizing the differential flatness approach in
formulating the optimization problem has shown to reduce
computational time. It has been demonstrated by [14] that
the UA quad-rotor drones are differential flat systems, which
can be characterized by the following flat output vector: po-
sition (x, y, z) and heading (ψ), of the system. In contrast,
FA vehicles are considered to be differential flat based on the
full dynamics of the drone. In our approach, we have cho-
sen to incorporate the dynamical system as a constraint in the
optimization problem. Differential flatness is utilized to gen-
erate the trajectory of an UA vehicle, which is then used as an
initial condition for the optimization problem of the FA-Hex
vehicle. This overview is the basis of our contribution to the
study of a trajectory optimization problem for FA vehicles,
taking into account specific objectives.

We organize the remainder of the paper as follows. In
Sections 2.1 and 2.2, we present the mathematical model of
the FA-Hex and the extended model that incorporates a cable-
suspended pendulum, and in Section 3, we formulate the pro-
posed trajectory optimization problem. In Section 4 the simu-
lation results are presented based on the defined optimization
problem.

𝑥𝐼 𝑦𝐼

𝑧𝐼

𝑥𝐵
𝑦𝐵

𝑧𝐵
𝛼𝐿

𝛽𝐿

Figure 1: Fully Actuated Hexacopter attached to a payload
with Inertial (FI) and Body (FB) Frames.

2 MODEL AND SYSTEM VARIABLES

The importance of the dynamical system in achieving
workable results, as mentioned earlier, makes it necessary to
define the mathematical model of the system we’re looking at.
In this section, we present the dynamic model of the FA-Hex
and its extension to include the cable-suspended pendulum.
The model is derived from Newton’s Euler equation, while
taking into account the following assumptions:

• The drone is assumed to be a rigid body.

• The drone is assumed to be symmetric with respect to
its axis, and its inertia matrix is diagonal and denoted

as IB =



Ixx 0 0
0 Iyy 0
0 0 Izz


.

2.1 FA-Hex Modeling
The modeling approach of the drone involves two main

frames: the inertial frame (FI) defined by (xI , yI , zI) axis,
and the body frame (FB) defined by (xB , yB , zB) axis,
as illustrated in Figure 1. The rotation between FI and
FB is defined by the Euler angles µ = [ϕ, θ, ψ]T and the
corresponding rotational matrix R(µ) where:
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R(µ) =



CψCθ CψSθSϕ − SψCϕ CψSθCϕ + SψSθ
SψCθ SψSθSϕ + CψCϕ SψSθCϕ − CψSϕ
−Sθ CθSϕ CθCϕ




with the notations C∗ = cos(∗) and S∗ = sin(∗).
The position of the drone in the inertial frame is denoted as
ξ = [x, y, z]T , and its translation velocity is represented by
v = [vx, vy, vz]

T . The angular velocity in the body frame is
given by Ω = [p, q, r]T . The relationship between the Euler
rates µ̇ and the angular body rates Ω is expressed by the
transformation matrixW (µ), where µ̇ =W (µ)−1Ω such that



ϕ̇

θ̇

ψ̇


 =



1 SϕTθ CϕTθ
0 Cϕ −Sϕ
0 Sϕ/Cθ Cϕ/Cθ





p
q
r




where T∗ = tan(∗). The states of the FA-Hex are defined
as x = [ξT , vT , µT ,ΩT ]T , and the system dynamics are ex-
pressed as follows:

ξ̇ = v (1)

mξ̈ = mg +R(µ)

6∑

i=1

FBi (2)

IBΩ̇ =

6∑

i=1

τBi − Ω× IBΩ (3)

Here, × is the cross product operator, whereas FBi =
[Fxi Fyi Fzi ]

T and τBi = [τxi τyi τzi ]
T represent the forces

and torques exerted by the i-th motor expressed in the body
frame, respectively.

FBi and τBi depend on the propeller’s angular speed ωi,
as well as the motor’s orientation αi within the drone’s geo-
metric frame, and the tangential orientation β defined as the
angle between the motor’s axis zmi and the drone’s zB axis.

This is represented in Figure 2, where Fi =
√
F 2
xi + F 2

yi

is the projection of FBi in the (xB ,yB) plane. The ex-
pressions of FBi and τBi are given in Table 1. It can be
checked that FBi = Fthrusti , where ∥Fthrusti∥ = ktω

2
i ,

while τBi = τthrusti + τdragi , where ∥τthrusti∥ = ktlω
2
i

and ∥τdragi∥ = kqω
2
i . kt, kq and l stand for the thrust coef-

ficient, the drag coefficient, and the distance between the i-th
motor and the drone’s center of mass respectively.

2.2 FA-Hex Modeling with Cable Suspended Pendulum
The FA-Hex system with the cable-suspended payload

operates in a hybrid mode, which relies on the tension force
in the cable, as discussed in [14]. The payload’s behav-
ior is modeled under two main scenarios: taut and slack ca-
bles. The transition between these modes adds intricacy to
the modeling approach, thus augmenting the complexity of
the optimization function. Nevertheless, by introducing a lin-
ear complementary constraint into the optimization problem,
it is feasible to eliminate the necessity for the hybrid model
[15].

𝑦𝐵

𝑥𝐵

(𝑥𝐵𝑦𝐵)

𝛼1𝛼6

𝛼3𝛼4

𝛼2𝛼5

𝐹1

𝐹2

𝐹3
𝐹4

𝐹5

𝐹6

𝑧𝐵
𝑧𝑚𝑖𝛽

Figure 2: Forces projection in the lateral plane with the motor
tilting angles β between zB and zmi the axis of the i-th motor.

Fx1 = −ktSβSα1ω
2
1 τx1 = (−ktCβSα1 l + kqSβSα1 )ω

2
1

Fy1 = ktSβCα1ω
2
1 τy1 = (ktCβCα1 l − kqSβCα1 )ω

2
1

Fz1 = −ktCβω
2
1 τz1 = (ktSβ l − kqCβ)ω

2
1

Fx2 = ktSβSα2ω
2
2 τx2 = (−ktCβSα2 l + kqSβSα2 )ω

2
2

Fy2 = ktSβCα2ω
2
2 τy2 = (ktCβCα2 l + kqSβCα2 )ω

2
2

Fz2 = −ktCβω
2
2 τz2 = (−ktSβ l + kqCβ)ω

2
2

Fx3 = −ktSβSα3ω
2
3 τx3 = (−ktCβSα3 l + kqSβSα3 )ω

2
3

Fy3 = −ktSβCα3ω
2
3 τy3 = (−ktCβCα3 l + kqSβCα3 )ω

2
3

Fz3 = −ktCβω
2
3 τz3 = (ktSβ l − kqCβ)ω

2
3

Fx4 = −ktSβSα4ω
2
4 τx4 = (ktCβSα4 l − kqSβSα4 )ω

2
4

Fy4 = ktSβCα4ω
2
4 τy4 = (−ktCβCα4 l + kqSβCα4 )ω

2
4

Fz4 = −ktCβω
2
4 τz4 = (−ktSβ l + kqCβ)ω

2
4

Fx5 = ktSβSα5ω
2
5 τx5 = (ktCβSα5 l − kqSβSα5 )ω

2
5

Fy5 = ktSβCα5ω
2
5 τx5 = (ktCβCα5 l − kqSβCα5 )ω

2
5

Fz5 = −ktCβω
2
5 τz5 = (ktSβ l − kqCβ)ω

2
5

Fx6 = −ktSβSα6ω
2
6 τx6 = (ktCβSα6 l − kqSβSα6 )ω

2
6

Fy6 = −ktSβCα6ω
2
6 τy6 = (ktCβCα6 l − kqSβCα6 )ω

2
6

Fz6 = −ktCβω
2
6 τz6 = (−ktSβ l + kqCβ)ω

2
6

Table 1: Forces and Torques Projections

The state vector of the model is expanded and modified to
incorporate both the position and velocity of the load. This
state is denoted as x = [ξT , vT , µT ,ΩT , ξTL , v

T
L ]
T , where

ξL = [xL, yL, zL]
T represents the load’s position in the in-

ertial frame, and vL = [vLx , vLy , vLz ]
T represents the load’s

velocity. With the presence of the load, a new tension force
T comes into play, affecting the drone’s dynamics. Further-
more, due to the cable’s rotation around the inertial axis,
a unit vector describing a rotation RL(η) is introduced to
take account of the drone’s orientation in relation to the load.
Here, η = [αL, βL]

T , as depicted in Figure 1.

RL(η) =



sin(αL) cos(βL)
sin(αL) sin(βL)

cos(αL)




The extended dynamic model is then represented as follows:

ξ̇ = v (4)
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(m+mL)ξ̈ = (m+mL)g +R(µ)

6∑

i=1

FBi + TRL(η) (5)

IBΩ̇ =

6∑

i=1

τBi − Ω× IBΩ (6)

ξL = ξ +RL(η)L (7)

ξ̇L = vL (8)

ξ̈L = mLg − TRL(η) (9)

where T is the tension in the cable, L is the length of the
cable, and mL is the mass of the load respectively.

3 TRAJECTORY OPTIMIZATION PROBLEM

Optimization methods are employed to address trajectory
optimization problems by minimizing a cost function, while
taking into account different constraints. To achieve a vi-
able and physically relevant solution, the optimization prob-
lem needs to encompass the system dynamics along with the
practical restrictions on the states and inputs. Broadly, op-
timization problems fall into two primary categories: direct
methods [18] and indirect methods [16].

The indirect method involves formulating the optimiza-
tion problem as a boundary value problem (BVP) and solving
it by defining the co-state vector. It is worth mentioning that
the model of the system is incorporated into the Hamiltonian-
Jacobian-Bellman equation, which is solved using the BVP
approach. On the other hand, the direct optimization problem
takes into account a discrete dynamical model along with its
constraints. The main distinction between the two methods
lies in the integration aspect. Direct methods are known for
incorporating integrated solutions for the dynamical model
within their approach. It is worth noting that indirect meth-
ods generally tend to be more accurate than direct methods,
provided that a good initial guess can be obtained, which can
be challenging in practice. However, in the realm of robotics
applications, direct methods are widely utilized for designing
optimal controllers. This preference is largely attributed to
their expansive region of convergence [19].

In this work, our focus is on utilizing a direct method to
obtain the optimal trajectory. Direct methods can be formu-
lated using shooting and collocation methods, with the choice
depending on the specific dynamical equation. When an ex-
plicit model is available, the shooting method is often em-
ployed. This method involves decomposing the trajectory
into sub-optimal intervals and calculating the spline between
each interval. The formulation can be done through sin-
gle shooting, where only the state variables are optimized,
or multiple shooting, where both control inputs and states
are optimized at each control interval. The resulting dis-
crete problem is then addressed using non-linear program-
ming methods [18].

3.1 General Problem Formulation

We pose our trajectory optimization problem as follows :

min
x,u

J(x, u)

s.t. g(x, u) = 0 f(x, u) ≥ 0
(10)

In this formulation, x represents the state vector of the sys-
tem, and u denotes the angular speed of each motor. The
equality constraints g(x, u) encompass various constraints,
including the dynamical constraint of the system, while the
inequality constraints f(x, u) define additional inequality re-
strictions. To solve the optimization problem, we divide
the trajectory into N control sub-intervals. For this pur-
pose, we employ the direct multiple shooting optimization
formulation, which offers several advantages over other tech-
niques [18].

3.2 FA-Hex

First, we will define the optimization problem for the FA-
Hex targeting photography application.

a) Cost Function: The cost function to be minimized is
defined as follows:

min
x

J =Sf tf +

∫ tf

0

xTQxdt (11)

Here, x = [ξT , vT , µT ,ΩT ]T and Q ∈ R12×12 repre-
sents the weight cost assigned to the states of the sys-
tem, tf is the time allotted to the whole scenario, and
Sf denotes the slack weight used to handle the priority
of the specified time.

b) Dynamical Model Constraint: The dynamical model,
defined in Section 2.1, is discretized using fourth-order
Runge-Kutta. This model is employed to ensure the
attainment of dynamically feasible states by solving
xk+1 = h(xk, uk), where h is a vector field represent-
ing the discretized dynamical model of the system.

c) Multiple-Shooting Constraint: The method involves
computing the next state using the discretized model.
The computed next state is constrained to align with
the optimized parameter, which can be achieved by en-
suring that xnext − xk = 0. Here, xk represents the
system state at the k-th interval, and xnext corresponds
to the state calculated using the discretized dynamical
model.

d) Boundary Conditions: To ensure that the optimization
problem begins and ends within feasible constraints,
additional boundary constraints are included. The vari-
ables xinitial and xfinal are defined and incorporated into
the equality constraint g(x, u) as x0 − xinitial = 0 and
xN − xfinal = 0.
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e) State and Input Constraint: The states and inputs of the
system should not exceed their respective boundaries.
To enforce this requirement, two additional equations
(12, 13) are introduced to the function f(x, u).

xmin ≤ xk ≤ xmax (12)

umin ≤ uk ≤ umax (13)

f) Waypoint Navigation Constraint: The primary objec-
tive of this work is to navigate and fly over specific
points. To achieve this goal, an additional constraint is
introduced: wp − δ < xk < wp + δ, where wp rep-
resents the specified waypoint. The inclusion of δ in
this equation ensures the robustness of the algorithm
and helps avoid excessive equality constraints. It is im-
portant to note that this problem does not aim to op-
timize time since such optimization conflicts with the
defined constraint. For more detailed information on
time-optimal trajectory optimization the reader can re-
fer to [20].

3.3 FA-Hex With Cable Suspended Pendulum
In this section, we will introduce the extended constraints

and objective function that are used to optimize the trajectory
for FA-Hex with a cable-suspended pendulum.

a) Cost Function: The extended cost function to be min-
imized on the variables is defined as follows:

min
x,T,L

J = Sf tf +

∫ tf

0

xTextQLxextdt

+

∫ tf

0

(R̄0T + R̄1(L0 − L))dt (14)

Here, xext = [ξT , vT , µT ,ΩT , ξTL , v
T
L ]
T , QL ∈

R18×18 and the added terms R̄0T and R̄1(L0−L) rep-
resent the cost associated with the taut and slack modes
of the cable, where R̄0 and R̄1 are scalar weights, and
L0 is the initial length of the load in taut mode. These
terms are included in the objective function to address
the hybrid modeling problem of the pendulum. The
trajectory is generated with a corresponding slack and
taut mode, based on the weighting values.

b) Dynamical Model Constraint: The extended dynami-
cal model introduced in Section 2.2 is also discretized
using fourth-order Runge-Kutta and incorporated into
the equality constraints g(x, u).

c) Linear Complementary Constraint: This constraint is
added to eliminate the hybrid dynamical model, as-
suming that either the slack mode or the taut mode is
present. It is represented by T (L0−L), where L0 is the
cable length when taut, and T represents the tension in
the cable.

d) Tension Boundaries Constraint: To ensure a realistic
and feasible solution, it is important to impose bounds
on the tension. This can be achieved by incorporating
the constraint 0 ≤ T ≤ Tmax, where Tmax represents the
maximum allowable tension. The value of Tmax can be
determined based on prior information or known limi-
tations of the system.

e) Cable Length Constraint: In addition to the comple-
mentary constraint, the length of the cable should be
positive, L ≥ 0.

f) Payload Swung Angle Constraint: To prevent swinging
and potential collisions with the drone, a constraint is
introduced as αL ≥ αLmin andαL ≤ αLmax .

The other constraints defined in the FA-Hex drone are primar-
ily utilized as constraints for this particular application.

4 SIMULATIONS

The defined optimization problem is formulated as a non-
linear optimization problem using the CasADi Toolbox [21].
As mentioned earlier, this study considers two primary sce-
narios: simple FA-Hex and FA-Hex with a cable-suspended
pendulum. A comparison between FA-Hex and UA-Hex is
accomplished showing the enhancing of maneuverability of
the FA-Hex. The drone parameters used to simulate the drone
model are presented in Table 2.

m = 0.6656 kg l = 0.15 m g = 9.81 m/sec2

kt = 3.4 × 10−5 N/ω2 kq = 3.4 × 10−6 Nm/ω2 Ixx = 0.0411 kgm2

Iyy = 0.0478 kgm2 Izz = 0.0599 kgm2 α1 = π
6 rad

α2 = π
2 rad α3 = π

6 rad α4 = π
6 rad

α5 = π
2 rad α6 = π

6 rad β = π
8 rad

mL = 0.05kg

Table 2: Drone Simulation Parameters

4.1 FA-Hex and UA-Hex Trajectory Generation
The scenario involves the drone passing through multiple

waypoints. To assess the algorithm’s ability to achieve mini-
mal banking angles, several test cases were conducted. A tra-
jectory comprising four points is shown in Figure 4. The time
allotted for this scenario is tf = 8s, with N = 100 control
intervals. It’s worth noting that, as classified by [5], FA vehi-
cles belong to the category of Lateral Bounded Force vehicles
(LBF). In these vehicles, lateral acceleration is constrained to
be smaller than the vertical acceleration of the drone. The
UA-Hex shares the same parameters as the FA-Hex, except
for having a tilting rotor angle β = 0. The achieved velocity
of the FA-Hex is approximately 1.5m/s when flying without
banking, while the velocity of the UA-Hex can reach 2.5m/s.
Figure 3 displays the optimized Euler angles for both the UA-
Hex and FA-Hex in the considered scenario. Clearly, based
on the optimized trajectory, the FA-Hex maintains banking
angles close to zero degrees while striving to achieve the same
trajectory.
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Figure 3: Euler angles comparison between FA-Hex and UA-
Hex.
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2

Hexacopter Trajectory Optimization
UAHEX Trajectory
FAHEX Trajectory
P1
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Figure 4: Projection in the horizontal plane of the optimized
trajectory for FA-Hex and UA-Hex drones as they fly between
specified points and then return to their intial positions. The
points are defined by their coordinates: P1 = [0,−1, 1.3] ,
P2 = [2,−1, 1.3], P3 = [2, 1.5, 1.8] and P4 = [0, 1.5, 1.8].

4.2 FA-Hex With Cable Suspended Pendulum

In another application, the optimization problem is ex-
panded, as explained in Section 3.3, to be solved across the
optimization variables x, u, T, L, and q. As in Section 4.1,
the scenario involves flying between predetermined points.
Utilizing linear complementary constraints, it becomes fea-
sible to generate a trajectory with minimal slack, indicating
that the cable length remains close to L0 for the majority of
the trajectory. The simulation results are depicted in Figure
5, illustrating both the payload and drone trajectories.

4.3 Initial Guess

The initial guess plays a pivotal role in ensuring the op-
timization problem converges to its optimal solution. Pro-
viding a feasible initial guess that closely approximates the
expected solution is essential. This step is critical for achiev-

0 1 2

-1

0

1

2

FA-Hex With Cable Suspended Pendulum
FA-Hex Trajectory

Payload Trajectory

P1

P2

P3

P4

Figure 5: Projection in the horizontal plane of the optimized
trajectory for FA-Hex with cable suspended pendulum.

ing convergence and reducing computational time needed to
solve the problem. In this context, it is important to note
that the drone is initially treated as a UA system. The dif-
ferential flatness approach is employed to generate an initial
guess for the problem. Furthermore, motion planning algo-
rithms grounded in graph theory, such as the A∗ and RTT
algorithms, can be employed. These algorithms facilitate the
creation of a global path, effectively aiding in solving the tra-
jectory planning problem.

5 CONCLUSION AND EXTENSIONS

In this work, we have proposed a trajectory optimization
formulation for FA-Hex systems. The simulations demon-
strate the feasibility of this approach by generating trajecto-
ries with minimal banking angles. However, the algorithms
used in this study have certain constraints when it comes to
defining the nodes and time. The algorithm shows fast per-
formance when when the trajectory is divided into N = 100
control intervals, taking only a few seconds to converge to the
optimal solution. Future work could involve extending the
problem to incorporate avoidance of static defined obstacles
by implementing specific maneuvers.

As an extension of this paper, we are currently working
on the identification and control of the real FA-Hex system.
Our objective is to conduct real experimental flights to test the
optimized trajectory in the mentioned scenarios. The planned
tests will utilize the Paparazzi autopilot [22] with a modified
INDI controller or feedback linearization.
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