
ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2023-27 14th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

Automating Fixed Wing Forced Landings with Offline
Reinforcement Learning

*Alexander Quessy, Thomas Richardson, and Sebastian East
University of Bristol, Queens Building, United Kingdom, BS8 1TR

ABSTRACT

Executing off-field landings in unprepared lo-
cations is a crucial skill for single-engine pis-
ton fixed-wing aircrew, particularly during sud-
den engine failures. The unpredictability and
challenging nature of such failures often leads to
flight crew overload and accidents. Further, as
autonomous air vehicle capabilities advance, in-
corporating the ability to autonomously land fol-
lowing engine failure is likely to become a vital
design requirement.

This paper presents a unified forced landing
methodology that leverages reinforcement learn-
ing (RL) to develop adaptable policies for a wide
range of forced landing scenarios, with a focus
on model-based offline RL. The research out-
lines a graphical simulation environment, proce-
dures, and algorithms for training an RL-based
controller. The effectiveness of the proposed ap-
proach is demonstrated, highlighting that offline
RL is a promising solution for designing con-
trollers capable of executing glide approaches
into predetermined locations.

1 INTRODUCTION

Executing off-field landings in unprepared locations is a
key skill required by all Single Engine Piston (SEP) Fixed
Wing (FW) aircrew as engine failures or fires can occur sud-
denly and unexpectedly at any point in flight. Executing a
dead-stick/no-power landing is challenging and requires the
aircrew to fly the aircraft within an appropriate airspeed range
to avoid stalling or over-speeding. They must also navigate
to a safe landing spot, all while not being able to maintain a
fixed altitude for a pre-planned approach. The suddenness of
engine failures can complicate matters further, as the aircrew
must quickly identify a landing site to navigate to before los-
ing too much altitude and the option to land. The suitability
of a landing site may only become apparent when the aircraft
is low and near the final landing location. At this point, there
may not be enough energy available to land elsewhere.

Regulations reflect this limitation requiring operators to
glide-clear [1], remaining 1,000 feet above built-up-areas and
preventing scheduled commercial air transport on SEP FW

*Email address: aq15777@bristol.ac.uk

aircraft, within Europe. Despite forced landing training be-
ing an integral part of SEP aircrew training and assessment,
incidents involving engine failures still tragically result in fa-
tal accidents due to a loss of control and failure to identify
suitable landing sites [2, 3, 4].

The numerous concurrent tasks that must be completed to
safely execute a forced landing place large cognitive demands
upon the aircrew, these include, but are not limited to:

• Identifying that a loss of power has occurred and taking
appropriate immediate actions to prevent loss of con-
trol.

• Control of the aircraft through the use of visual refer-
ence and instruments, which may become inoperative
if reliant on the engine driven vacuum pump.

• Visual identification of an appropriate landing location,
which often depends on the aircraft’s attitude, requiring
the aircrew to maneuver the aircraft to visualize the lo-
cations depending upon the airframe geometry.

• Navigating towards the designated landing zone whilst
accounting for wind direction and speed.

• Attempting engine restart, shutdown or fire con-
trol/suppression procedures as appropriate.

• Coordinating with air traffic to arrange search and res-
cue operations after the forced landing.

As a result, a common cause of engine failure incidents
leading to accidents is aircrew overload, where startle follow-
ing an engine failure leads to either a loss-of-control or a fail-
ure to position the aircraft to make an approach towards an
appropriate landing location [5]. Further, as the size and ca-
pabilities of autonomous pilot-less aircraft gradually increase,
SEP FW aircraft are a sensible platform owing to their ubiq-
uity and low operational cost (compared to multi-engine and
turbine types). It is reasonable to expect that autonomous off-
field engine-out landings will become a certification require-
ment to enable these types of operations.

Designing methods to automatically solve this task is
challenging as it requires a balance between online explo-
ration and exploitation, while acting upon limited informa-
tion with high-stakes outcomes. Reinforcement learning (RL)
offers a solution to this problem by enabling policies to be
learned that can generalize to complex tasks through the use
of previous experiences.

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 216



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2023-27 14th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

This work presents a unified forced landing methodology
that aims to serve two purposes: assisting aircrew in execut-
ing forced landings to help reduce startle, surprise and over-
load and establishing the groundwork for autonomous fixed-
wing forced landings. Our contributions can be summarized
as follows:

• Section 3 presents the general challenge of landing
a fixed-wing aircraft in an off-field location, and de-
scribes a 2D graphical simulation environment to sim-
ulate aircraft landing following an engine failure in var-
ious locations. Source code for this environment at the
following URL . . ..

• Section 4 details the procedures and algorithms used
to generate offline data for training an RL-based con-
troller, their relevance to the fixed-wing landing prob-
lem, and their application to model-based offline RL.

• Section 5 showcases the effectiveness of offline RL
in designing controllers capable of executing glide ap-
proaches into predetermined locations by learning from
demonstrations. The performance of the learned con-
troller is evaluated in a variety of both in-distribution
and out-of-distribution scenarios.

2 RELATED WORK

2.1 Fixed-Wing Forced Landings
Previous research on fixed-wing off-field landings is

fairly limited. [6], focused on identifying landing sites
through edge detection algorithms applied to real-world data.
The authors of [6] used 3D Dubin’s path-planning meth-
ods [7] to generate trajectories, whereas our work employs
sampling-based approaches, constraining the aircraft to a
fixed rate of descent and airspeed. Unlike our approach, [6]
allows the aircraft’s pitch angle, and therefore rate of de-
scent, to vary. Additionally, [8] and [9] considered landing
site reachability analysis.

2.2 Model Based Offline Reinforcement Learning
RL is a type of machine learning that uses a reward signal

from an agent to train a policy capable of achieving task spe-
cific goals [10]. Combining deep neural network based func-
tion approximators with RL has proven to be hugely success-
ful to solve a variety of complex tasks including games [11],
robotics [12] and natural language processing [13]. This work
focuses on the offline RL setting, which involves learning
from a dataset of offline demonstrations. Behavior Cloning
(BC) is the simplest version of this, where the policy is di-
rectly learned from (s, a) state-action pairs, under the as-
sumption that the demonstrations come from an optimal pol-
icy demonstrator π∗ [14].

Unlike model-free RL methods such as SAC [15] and
DDPG [16], model-based offline RL methods, such as
MoREL [17] and MOPO [18], learn both a model and a

policy, enabling online planning similar to Model Predictive
Control (MPC) [19]. This approach results in an improved
online policy compared to pure BC examples, thanks to the
added benefits of planning. This work uses Model-Based Of-
fline Planning (MBOP) [20] to learn a value function that en-
ables zero-shot online adaption to new goals or constraints.
MBOP also provides improved interpretability by allowing
the loss and accuracy of the dynamics and value function to
be viewed directly throughout the training process.

3 PROBLEM STATEMENT

This section provides a detailed description of the moti-
vation and methodology behind the FW forced landing sim-
ulation environment. It also explains how this problem can
be formulated as a Markov Decision Process (MDP) and how
RL can be used to solve it. The source code for the envi-
ronment is available at the following URL [released with full
paper] for use by other researchers.

3.1 Fixed-Wing Environment
The flyer simulation environment models aircraft dy-

namics using a 3D Dubin’s car, represented by the dynamic
equations specified in equation 1. The aircraft’s position is
represented by a 3D point in space, denoted as (x, y, z), with
a heading angle specified as θ. The aircraft’s velocity, V , rate
of descent Ż, and the simulation time step δt are pre-defined
and fixed. Wind and atmospheric effects are not incorporated
in the simulation, hence all headings are considered as tracks
and airspeeds as ground speeds.

Only bank angle φ is used to control the aircraft’s position
and heading, constrained to a maximum of 30 degrees. The
aircraft’s turn-rate is then calculated using cφ which causes
the aircraft to turn at a standard rate of 3 ◦/s at 15 ◦ angle
of bank. Bank angle is then used as the action in the MDP
formulation.

xt+1 = xt + V cos(θ)δt

yt+1 = yt + V sin(θ)δt

zt+1 = zt − Żδt
θt+1 = θt + cφφδt

(1)

Observations consist of either an 800x800 RGB image
captured from a downward-facing camera with a 30-degree
field of view, gimbled to be level along the xy earth plane
from the aircraft, as shown in Figure 1. Additionally, the
aircraft’s state is represented as a tuple (x, y, z, θ). For this
report, only the aircraft’s position and attitude observation is
considered, but the RGB image is left within the simulation
and provided source code for future work.

The termination criterion is met when the aircraft comes
to a stop on the ground, which can be either due to a crashed
state or when the ground roll is completed. A crashed state
occurs when the aircraft’s preassigned health property falls to
zero, by default this is an integer set to 1. Colliding with an
obstacle like a rock usually causes damage reducing health

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 217



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2023-27 14th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

Figure 1: Image observations are generated by a simulated
camera, θcamera = 30◦.

by one. Some obstacles like crops are destroyed in this event,
others like trees persist inflicting damage at the next time step.

The simulated world comprises several landing terrain
types each with varying levels of complexity, from easiest to
hardest:

1. Grass: an open grass field, the entire area is unob-
structed and safe for landing.

2. Orchard: a grass field containing sparse uniformly dis-
tributed apple trees, collision with a tree causes the air-
craft to crash. The field also contains stumps and rocks
that cause one damage as the aircraft passes over the
object.

3. Crops: a dirt field containing crops, collision with a
crop deals one damage and removes the crop. Crops
are clustered together as a 2D Gaussian distribution.

4. Forest: a dirt field containing trees, collision with a tree
causes the aircraft to crash. Trees are clustered together
as a 2D Gaussian distribution.

5. Beach: a narrow sand area containing banana trees.
The area is thin and only exists where water meets land.

6. Water: a water area, any landing in this region results
in a crash.

Figure 2: Landing terrain types in the flyer environment, with
order of landing difficulty/danger increasing from left to right

The Flyer environment is procedurally generated offering
the user large amounts of control as to how the environment is

3D OpenSimplex Noise 2D Terrain Map

Figure 3: OpenSimplex (Perlin) noise used to generate land
and water tile types on the map

constructed, whilst also allowing for a huge range of environ-
mental diversity. 3D OpenSimplex Noise, similar to Perlin
noise [21], is initially used to smoothly separate the environ-
ment into land and sea and beach terrain types with beach be-
ing placed along the intersection. The noise function returns
a single value for each (x, y, z) point in 3D space, sweep-
ing across all (x, y, z = 0) positions and returning the noise
value at each. If the noise value is less than the water noise
threshold the tile is assigned as water, otherwise it is a land
type of tile, this is shown in Figure 2.

To generate fields npartition points are randomly placed
across the ground xy plane and a nearest neighbor Voronoi
decomposition [22] is used to create regions. Each region is
assigned a terrain type using a multi-noulli distribution based
upon the prior probability of each terrain type existing within
the environment, a (256, 256) texture map is created as a re-
sult. Objects, such as trees and bushes, are placed within ter-
rain types using the probability distribution for each object
within the terrain type.

Figure 4: Crop to render aircraft image observation

A base image is rendered by tiling 16× 16 RGB textures
onto the (256, 256) texture map, objects are placed on-top
of this image by selectively replacing pixels in appropriate
locations. The resulting 4096 × 4096 base image is cropped
based on the aircraft camera’s location. This image size is
set using z tan(θcamera) and the crop centered around the
aircraft’s location, as shown in Figure 4. The 30◦ camera
angle used for the aircraft crop simulation is equivalent to a

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 218



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2023-27 14th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

35mm full frame camera lens.

3.2 MDP Formulation
Based on our simulation we can define the problem

of fixed wing landings as an MDP, defined by a tuple
(S,A, P,R, γ, µ). The goal is to learn a policy π(a|s) that
maximizes the expected cumulative discounted reward of the
MDP.

• S and A are the state and action spaces respectively.

• P (s′|s,a) maps states and actions to a probability dis-
tribution over subsequent states.

• R(s,a) represents the reward function, R : S × A ×
S → R.

• γ ∈ (0, 1] is the discount factor.

• πβ(a|s) is the behavior policy used to generate the
datasetD ∼ Pπβ , which is itself used to train the online
policy πφ(a|s).

• s0 ∼ µ is the starting distribution of the MDP.

The objective of RL is to find the policy π∗ that maxi-
mizes the expected discounted sum of rewards:

π∗(st) = arg max
a∈A

{ ∞∑

t=0

γtr(st, π
∗(st))

}

In the Flyer MDP reward is sparse and binary:

R(s) =

{
1, if safe-landing
0, if crashed

Assuming that the real environment is not available dur-
ing training, we have access only to a dataset of demonstra-
tions D containing tuples of (st, at, rt, st+1). The objective
in offline learning is to learn a policy that can achieve zero-
shot online task adaption by using the offline dataset. It is
also assumed that the policy used to generate these demon-
strations, while effective in reaching the goal, is suboptimal.

4 METHODOLOGY

This section outlines the methods used to locate a suit-
able landing site and train an RL-based controller to identify
and execute an approach into the destination. The process is
viewed as a 2-step approach that involves generating an of-
fline dataset from simulation to train the controller, followed
by training an offline RL controller to execute the approach
into the destination.

To generate a dataset of sub-optimal landing trajecto-
ries, we use an Importance Sampling (IS), Monte-Carlo Tree
Search (MCTS) based algorithm where the value of each
node is found using the L2 distance from a target position
and optimal trajectory, found by backtracking along nodes
connected by edges with the maximal value. The target posi-
tion is found by searching for the Pole of Inaccessibility (PoI)
[23] on all grass arrays using the grass terrain map.

4.1 Target Position Search
Algorithm 1 provides a description of the procedure used

to calculate the PoI. We assume access to the full terrain map
creating a binary array, where positions with grass fields are
assigned 1 and everything else is 0. A point is assigned to be
the PoI if the sub-array formed by expanding linearly around
the point being tested of distance dist is all grass with value 1,
and the sub-array does not exceed the bounds of the problem
space. We show this search procedure graphically in figure 5.

Algorithm 1 PoI Search

Require: Tgrass grass terrain map
1: distmax ← 0
2: for (ix, iy) in T do
3: dist = distmax + 1
4: while BOUNDSCHECK(ix, iy , t, dist) do
5: if Tgrass[ix : ix+dist, iy : iy +dist] == 1 then
6: distmax = dist
7: xPoI = [ix, iy, 0]
8: end if
9: end while

10: end for
11: return xPoI

Algorithm 2 Within Bounds Check

1: procedure BOUNDSCHECK(ix, iy , array, dist)
2: if ix − dist < 0 then
3: return False
4: end if
5: if iy − dist < 0 then
6: return False
7: end if
8: if ix + dist > array.xlength then
9: return False

10: end if
11: if iy + dist > array.ylength then
12: return False
13: end if
14: end procedure

4.2 Monte-Carlo Tree-Search
An IS-MCTS algorithm [24] is used to generate a tra-

jectory from the initial starting position xstart to the final
goal position xgoal. The action sampling in this algorithm is
weighted based on the distance from the goal state. Figure 6
illustrates a simplified example of the IS-MCTS algorithm.
After initialization IS-MCTS is a 3-step process of select-
ing which nsamples edges to expand along the horizon length
Hn. The flyer environment is used to simulate the roll-out of
each selected node by Hn steps. The tree is then expanded
by adding the new edges and vertices into the tree and the

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 219



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2023-27 14th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

Figure 5: Target Point Grass Check

probability of each node is updated to reflect this weighting.
Once the maximum number of steps has been sampled, back-
propagation is performed along nodes with the highest value
to calculate the optimal trajectory.

Algorithm 3 provides the full IS-MCTS algorithm used
in the flyer environment where xgoal = xPoI, found using
algorithm 1. The following functions are used through IS-
MCTS to obtain useful demonstrations:

• fdyn: Aircraft dynamics from the flyer environment, as
described in equation 1.

• fu: Control sampling function, modelled as a Gaussian
distribution where the mean is the last bank angle and
variance is fixed at 0.2, ut ∼ N (µ = ut−1, σ = 0.2).

• fconstr: Space constraint function that returns true if
(x, y, z) position values are in the range [[0 < x <
255], [0 < y < 255], [0 < z < 64]] and false other-
wise.

• fx: A multinomial distribution, where the probabil-
ity mass function can be formulated using the gamma
function as:

Γ
∑
i xi + 1

ΠiΓ(xi + 1)
Πk
i=1p

xi
i

The vertex in V with the maximum value is closest to the
goal state xgoal. From there, the edges contained in G are
backtracked to select the optimal trajectory τopt. This is illus-
trated graphically in Figure 7, sampled with hyperparamaters:
Nsteps = 2000, Nsamples = 100, Hn = 10.

0.32

0.32

0.12

0.11

0.02

0.04

0.03

0.03

0.01

Figure 6: Simplified 2D IS-MCTS algorithm

4.3 Model Based Offline Planning
Using the data generated by the previously described goal

searching and navigation algorithms, MBOP (Model Based
Offline Planning) a model-based offline RL algorithm that
combines a BC policy with an iterative guided n-step shoot-
ing method. Classical supervised learning is used to train the
model on the dataset D containing nepisodes, this includes 3
components:

1. A one-step dynamics model, fdyn : S × A → S × R,
such that (rt, st) = fdyn(st, at).

2. A behavior cloned policy, π : S × A → S , such that
at = π(st, at−1).

3. A truncated value function, V : S ×A → R, providing
the expected return over horizon N of taking action a
in state s, such that R̂H = V (st, at−1).

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 220



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2023-27 14th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

Algorithm 3 IS-MCTS

Require: xstart, xgoal, Hn, Nsamples, Nsteps, fdyn,
fu(x) = Pr(U = u|X = x), fconstr
G = (xstart, ∅) . Create list of edges and vertices
V = {xstart : ‖xgoal − xstart‖2} . Create dictionary of
vertex values
pv ← {xstart : V [xstart]∑

V } . Probability of selecting an
edge v at point x
for Nsteps do

for i in Nvalues do
pv[xi] = V [xi]∑

V . Update probability
end for
fx = Pr(x0, . . . ,xk; pv[x0], . . . , pv[xk])
for i in Nsamples do

xi = fx() . Sample from multinomial distribution
for ih in Hn do

ui+ih ← fsample(xi+ih ,ui+ih)
xi+ih+1 ← fdyn(ui+ih |xi+ih)
if fconstr(xi+ih+1) == False then

G ∪ (xi+ih , {xi+ih : xi+ih+1})
V ∪ {xi+ih+1 : ‖xgoal − xi+ih+1‖2 }

end if
end for

end for
end for

Figure 7: MCTS Results: sampled points are shown in blue
and the final trajectory points in red. Vertices not shown for
clarity.

Each component is represented with a deep neural net-
work, with input and output layers of the same size as the
function shown above, and 2 hidden layers of size 500. Af-
ter experimentation, we found that ensemble network repre-
sentations were not required in comparison to the original
MBOP algorithm [20]. The samples from MCTS are ob-
tained from a uniformly distributed cube with a start posi-

tion xstart = [x, y, z], where x ∼ U [x0 − 10, x0 + 10],
y ∼ U [y0 − 10, y0 + 10], z ∼ U [z0, z0 − 10], and x0 =
[128, 128, 64], which is the center-point of the map. The tar-
get position for all examples is xgoal = [14, 198, 0]. Only the
MCTS samples that successfully land within the target field
are used to train MBOP. The 3 components described above
are trained over 1×106 steps using 500 episodes, as shown in
Figure 8.

Online MBOP-Trajopt is used to sample trajectories over
a horizon length Hn using a combination of sample based
Model Predictive Control (MPC) and the behavior cloned
policy π. Mixing of the noisy behavior cloned action at =
π(st, at−1) + ε, and the best last action τai=min(t,H−1)

is con-
trolled with a mixing parameter β. Algorithm 4 provides a
full description of the online MBOP trajectory optimization
procedure.

Algorithm 4 MBOP-TrajOpt

Require: Dynamics Model fd, Policy π, Value V , Horizon
Hn, MDP Dynamics P , MDP termination T
s ∼ µ . Initial state
τa = [00, . . . , 0Hn ]
terminated = False
while terminated == False do

RN = 0N . N trajectory returns
AN,H = 0N,H . N action trajectories of length H
for n = 1 . . . N do

s1 = s, a0 = τa, R = 0
for t = 1 . . . Hn do

ε ∼ N (0, σ2)
at = π(st, at−1) + ε . BC Action Sampling
An,t = (1− β)at + βτai=min(t,H−1)

(st+1, rt+1) = fdyn(st,An,t)
R = R+ rt+1

end for
Rn = R+ V (sHn+1,An,H)

end for
τa =

∑N
n=1 e

κRnAn,t+1∑N
n=1 e

κRn

s = P (s, τa0)
terminated = T (s)

end while

5 EXPERIMENTS

Results comparing MCTS to pure BC and MBOP with
TrajOpt are presented in Figure 9. There is clear improvement
in both the reliability and accuracy of the task with MBOP
and BC compared to MCTS. It was found that a 100% task
success rate could not be achieved using BC or MBOP due to
constraint violations resulting from crashing into obstacles or
leaving the boundaries of the flyer environment, as defined in
fconstr.

1. Operating too far from the known dynamics so plans

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 221



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2023-27 14th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

(a) Value V Loss

(b) Policy π Loss

(c) Dynamics fdyn Loss

Figure 8: Loss Plots for each of MBOP’s components, 100
data point rolling average is shown in green and the underly-
ing data in blue.

are not accurate.

2. We violated the constraints of the flyer environment (as
described in fconstraint).

NOTE TO REVIEWER: Further results will be presented
in final paper including training over a larger number of en-
vironment seeds, along with a comparison of the effect of

Figure 9: Comparison of methods over 5 seeds, using 100
samples, 1SD is shown with error bars.

dataset quantity on MBOPs accuracy and final task perfor-
mance. We will also include the full hyper-parameters in a
table within the appendix. We will also include the URL link
to a public github repository

6 CONCLUSIONS AND FUTURE WORK

This work presents a methodology for autonomous land-
ing control based entirely on offline data. Although the
datasets used were obtained from computer simulations, fu-
ture research would benefit from using real-world offline data
collected from an actual aircraft. The study demonstrates how
the planning function enables detection of possible constraint
violations by the aircraft, making our approach useful as an
assistive tool for flight crew.

REFERENCES

[1] J Hanafin. (uk) standardised european rules of the air,
exceptions to the minimum height requirements. ORS4,
01, 2021.

[2] UK Air Accidents Investigation Branch. Aaib investiga-
tion to grumman aa-5, g-bbsa. Air Accidents Investiga-
tion Branch, 2022. Loss of power after takeoff, Teesside
International Airport, 25 September 2021.

[3] UK Air Accidents Investigation Branch. Aaib investi-
gation to piper pa-46-350p (modified), g-hyza. Air Ac-
cidents Investigation Branch, 2022. Propulsion system
failure and forced landing, one mile north of Cranfield
Airport, 29 April 2021.

[4] NTSB. Report era14la383, n50xv. National Transporta-
tion Safety Board, 2014.

[5] Javier Rivera, Andrew B. Talone, Claas Tido Boesser,
Florian Jentsch, and Michelle Yeh. Startle and sur-
prise on the flight deck: Similarities, differences, and
prevalence. Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, 58(1):1047–1051,
2014.

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 222



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2023-27 14th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

[6] Luis Mejias, Daniel Fitzgerald, Pillar Eng, and Xi Liu.
Forced landing technologies for unmanned aerial vehi-
cles : towards safer operations. 2009.

[7] Giuseppe Ambrosino, Marco Ariola, Umberto Ciniglio,
Federico Corraro, Alfredo Pironti, and Micuel A. De
Virgilio. Algorithms for 3d uav path generation and
tracking. Proceedings of the 45th IEEE Conference on
Decision and Control, pages 5275–5280, 2006.

[8] Matthew Coombes, Wen-Hua Chen, and Peter Render.
Reachability analysis of landing sites for forced landing
of a uas in wind using trochoidal turn paths. In 2015 In-
ternational Conference on Unmanned Aircraft Systems
(ICUAS), pages 62–71, 2015.

[9] Matthew Coombes, Wen-Hua Chen, and Peter Render.
Landing site reachability in a forced landing of un-
manned aircraft in wind. 10 2016.

[10] Stuart J Russell and Peter Norvig. Artificial intelligence:
a modern approach. Malaysia; Pearson Education Lim-
ited,, 2016.

[11] David Silver, Aja Huang, Christopher J. Maddison,
Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Do-
minik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Ko-
ray Kavukcuoglu, Thore Graepel, and Demis Hassabis.
Mastering the game of go with deep neural networks
and tree search. Nature, 529:484–503, 2016.

[12] Ananye Agarwal, Ashish Kumar, Jitendra Malik, and
Deepak Pathak. Legged locomotion in challenging ter-
rains using egocentric vision, 2022.

[13] OpenAI. Gpt-4 technical report, 2023.

[14] Dean A. Pomerleau. ALVINN: An Autonomous Land
Vehicle in a Neural Network, page 305–313. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
1989.

[15] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic
actor. CoRR, abs/1801.01290, 2018.

[16] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander
Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. In Yoshua Bengio and
Yann LeCun, editors, ICLR, 2016.

[17] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netra-
palli, and Thorsten Joachims. Morel : Model-based

offline reinforcement learning. CoRR, abs/2005.05951,
2020.

[18] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon,
James Zou, Sergey Levine, Chelsea Finn, and Tengyu
Ma. MOPO: model-based offline policy optimization.
CoRR, abs/2005.13239, 2020.

[19] Manfred Morari, Carlos E. Garcia, and David M. Prett.
Model predictive control: Theory and practice. IFAC
Proceedings Volumes, 21(4):1–12, 1988. IFAC Work-
shop on Model Based Process Control, Atlanta, GA,
USA, 13-14 June.

[20] Arthur Argenson and Gabriel Dulac-Arnold. Model-
based offline planning. CoRR, abs/2008.05556, 2020.

[21] Ken Perlin. An image synthesizer. SIGGRAPH Comput.
Graph., 19(3):287–296, jul 1985.

[22] Anton Francois. Voronoi diagrams of semi-algebraic
sets. PhD thesis, University of British Columbia, 2004.

[23] Daniel Garcia-Castellanos and Umberto Lombardo.
Poles of inaccessibility: A calculation algorithm for the
remotest places on earth. Scottish Geographical Jour-
nal, 123(3):227–233, 2007.

[24] Christopher M. Bishop. Pattern Recognition and Ma-
chine Learning (Information Science and Statistics).
Springer, 1 edition, 2007.

6.1 Referencing to literature
APPENDIX A: DATA

If appendices are necessary, they appear at the end of the
document. Use ‘appsection’ instead of ‘section’.

APPENDIX B: MORE DATA

Even more data.

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 223


	Papers
	Automating Fixed Wing Forced Landings with Offline Reinforcement Learning


