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ABSTRACT

This technical report presents our proposed solu-
tion to the IMAV 2023 Drone Competition. The
competition suggests an autonomous block re-
covery mission using a quadcopter with obstacle-
avoidance capabilities. Our drone hardware
and software architectures are discussed herein,
and, in particular, we introduce a ROS-less cus-
tom configuration for intermachine communi-
cation between a high-level, low-sampling-rate
Companion Computer and a low-level, high-
sampling-rate Flight Controller. In addition,
the developed controllers and state machines to
tackle the different phases of the competition are
presented. Finally, the necessary computer vi-
sion algorithms for relative navigation amongst
obstacles, windows, and blocks are explored.

1 INTRODUCTION

This paper aims to present the drone brought to the IMAV
2023 indoor competition by the IONLAB team. The compe-
tition challenge involves collecting and stacking cone blocks
with known dimensions and weight. Different path alterna-
tives are to be followed to fetch the blocks, each with its cor-
responding complexity level and associated score. Each team
can decide which path to follow. This paper focuses on the
path that involves landing on a rotating platform and passing
through a window with a moving obstacle.

This article is organized as follows. Section 2 explains
the architecture of the drone hardware while Sec. 3 explores
its software counterpart. Section 4 presents the simulations to
validate our strategy. Section 5 introduces the state machine
of the drone. Section 6 explains the computer vision tasks
necessary for relative navigation in a GNSS-denied environ-
ment. Finally, Sec. 7 summarises the work presented in the
paper and provides findings.

2 HARDWARE ARCHITECTURE

Our platform builds on a pre-built Holybro X500 V2
frame equipped with Pixhawk 6X Autopilot Flight Controller
hardware. Except for configuration parameters (i.e., propeller
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number and geometry, transmitter mapping, and calibration
data for inertial sensors and magnetometer), the correspond-
ing driving PX4 software code has not been modified from
the community development tree1. Instead, an Nvidia Jet-
son Nano Companion Computer with in-house tailored be-
havior for guidance, altitude control, and computer vision
broadcasts attitude and thrust setpoints to the Pixhawk board.
Additionally, stereo and monocular cameras retrieve visual
information from the surroundings (see Fig. 13). Finally, a
downward-facing LiDAR sensor measures the relative alti-
tude from the ground. Figure 1 summarizes the drone’s avion-
ics.

The mechanism chosen to pick the blocks is two 3D-
printed pins fixed between the legs of the quadrotor. The
pins are attached to a cartesian mechanism that enables them
to slide recovering or releasing the cone depending on the
section of the competition. The sliding mechanism will be
controlled by a servomotor through a circular-to-linear mech-
anism, being this motor directly connected and controlled to
the Pixhawk board.

Figure 1: Avionics architecture.

3 SOFTWARE ARCHITECTURE

This section describes the distributed control routines op-
erating asynchronously in the Flight Controller (i.e., Pix-
hawk) and the Companion Computer (i.e., Jetson Nano)
boards. The Flight Controller provides low-level high-
frequency (i.e., sampling rate up to 400Hz) sensing, stabiliza-
tion, and control. At the same time, the Companion Computer
provides high-level lower frequency (around 50Hz) guidance
routines. The latter also includes computer vision through a

1More specifically, commit hash 3303323971f02cff6eb2fc029562bc4.
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dedicated Graphics Processing Unit (GPU) and the state ma-
chine that manages mission phases and respective guidance
laws switching conditions and mechanisms.

3.1 The Flight Controller Flight Stack
The PX4 software consists of two layers: the flight stack,

an estimation and flight control library, and the middleware,
a general robotics layer that supports many platforms (e.g.,
fixed-wing aircraft, rotary-wing copters, rovers), providing
communication interfaces and hardware abstractions. The
flight control architecture is dependent on the platform. In a
quadcopter, for instance, the control flight stack consists of a
cascade of Proportional-Integral-Derivative (PID) controllers
according to Fig. 2.

Figure 2: PX4 quadcopter cascaded controller. (Adapted
from the official PX4 online documentation [1].)

Each PID controller is a separate process in the Pixhawk
6X board, and all PX4 processes share the same memory
space (through NuttX operating system calls). The PID con-
trollers exchange data internally (i.e., in Flight Controller
scope) through the uORB messaging middleware. For inter-
machine communication, the µXRCE-DDS middleware ex-
poses Flight Controller uORB topics through a UDP socket
interface.

3.2 The Intermachine Communication Bridge
While the commonplace strategy to deploy intermachine

communication between the Pixhawk Flight Controller and a
Companion Computer is to install the Robot Operating Sys-
tem (ROS) and rely on the native µXRCE-DDS client on PX4
and respective predeveloped µXRCE-DDS ROS agent mod-
ules on the Companion Computer side, we have decided to
develop our own µXRCE-DDS agent, namely, the PILION
project, circumventing the need of ROS (see Fig. 3). We
avoid ROS usage in our projects due to portability issues:
some of our drones operate QNX and other Real-Time oper-
ating systems incompatible with ROS. Thankfully, µXRCE-
DDS is compatible with QNX, for instance. Nevertheless,
our Companion Computer in this drone does operate Linux
Ubuntu.

The Companion Computer broadcasts the desired control
setpoints every 20ms to the Flight Controller. In case of inter-
machine communication failure, a Flight Controller timeout
(natively included in PX4) automatically switches to an au-
tonomous hold mode for safety.

Figure 3: Intermachine interface. (Adapted from the official
PX4 documentation [2]).

PX4 provides a set of uORB messages for setting desired
setpoints to the drone. The setpoint abstraction level choices
go from high-level input, such as desired position, down to
desired torque and thrust inputs. According to the chosen set-
point abstraction level, higher-level PID controller modules
should be turned off in the Flight Controller to avoid mes-
sage conflict due to multiple setpoint masters. For example,
referring to Fig. 2, if the Companion Computer periodically
sends acceleration setpoints, the first two PID controllers of
the cascade should be neglected. To give a position, velocity,
or acceleration setpoint, PX4 requires a Global Navigation
Satellite System (GNSS) receiver. Since the drone partici-
pates in an indoor competition, decent GNSS coverage is not
guaranteed. Consequently, we chose to have the Companion
Computer send attitude setpoints through the uORB message
Vehicle Attitude Setpoint. This message requires
a quaternion setpoint and a normalized collective thrust in-
put. For that to occur, the internal Flight Controller PX4 flight
mode should be set to Offboard. The PX4 flight mode dic-
tates the PID controller setpoints’ origin. In our case, we ne-
glect pilot and ground control setpoints through the offboard
mode). Fast switching to stabilized mode (where pilot inputs
are taken as velocity setpoints instead) is available for safety
through a pilot transmitter switch.

3.3 The Companion Computer Controller

Figure 4 shows a schematic of the overall Companion
Computer controller architecture. It achieves position control
through a series of PD controllers for each axis. The z-axis
controller drives the drone’s thrust input, while the x-axis and
y-axis controllers drive the pitch and roll angles, respectively.
Implementing a yaw controller is unnecessary since this angle
is unrelated to any positional input. Finally, roll, pitch, and
yaw reference angles are wrapped together as a quaternion
setpoint before being sent to the Flight Controller.

Finally, we developed a State Machine in the Companion
Computer to adequately tackle the different mission phase re-
quirements. Accordingly, depending on the mission phase,
the State Machine decides if relative target position measure-
ments should come from the forward-facing or downward-
facing camera computer vision modules.
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Figure 4: Companion Computer control diagram.

4 SIMULATION

The PX4 development environment provides a Software-
In-The-Loop (SITL) simulation environment using the
Gazebo Engine to simulate the exact Flight Controller code
in a simulated environment with visualization and debug-
ging interfaces available and the possibility of connecting
to QGroundControl. The later open-source application pro-
vides ground station functionalities. However, a MATLAB
model simulating PX4 behavior (drone dynamics plus low-
level PID control) was conceived for controller tuning to an-
alyze the Companion Computer PID controllers’ response
through MATLAB practical functions and toolboxes.

4.1 Tuning Gains for the Companion Computer Controllers

The Companion Controller PID controller gains, which
takes a target relative position as input and outputs quaternion
and thrust setpoints for the Flight Controller PID controllers,
are computed through the pole placement technique. Figure
6 shows the step response outcome on the x-axis.

The dynamical response is satisfactory regarding over-
shoot, being less than 4%. The performance on the other axes
has similar behavior.

4.2 Landing on a Moving Platform

Once the Companion Computer controller is designed, a
MATLAB simulation is performed to test its behavior when
landing on a moving platform. A state machine manages the
landing decision-making process, inspired by others seen in
literature [3, 4]. Let the error vector be the difference be-
tween the drone’s position on the x-y plane – namely, the
plane of the platform’s rotation – and the platform’s position.
The drone will track the target (i.e., the platform’s position)
while keeping a constant altitude. The drone starts descend-
ing while following the target when the error norm is below
a predefined threshold. If the target is lost, meaning that the
error norm becomes higher than the predefined threshold, the
drone will return to a given altitude and repeat the process
until the landing is fully archived. For this simulation, no
computer vision module was implemented, and the platform’s
position for landing is assumed to be known. Also, the po-
sition of the drone itself is considered to be known: in the

competition environment, this is not true since GNSS signal
is not available, and instead, the relative difference between
the drone and the target is considered. The Simulink model
used to archive this simulation is shown in Fig. 5. Finally, the
competition platform rotates in a 50 centimeter radius at an
angular velocity of 10o/s.

Figure 8 shows the simulation results. The drone starts
seeing the platform 20 seconds from the start of the simula-
tion and starts to follow the platform. Complete landing is
archived in 5 seconds, as shown in Fig. 7. The final error at
the moment of landing is 10 centimeters, which is low enough
for the competition.

5 STATE MACHINE

We subdivide the proposed complex mission into several
tasks that the drone performs in an orderly fashion. This di-
vision allows for Companion Computer orderly instructions
determination at each point and is implemented as a state ma-
chine. Figure 9 illustrates the state machine at the highest
level. Starting from the drop zone, the drone flies through a
window while avoiding a moving obstacle, then reaches the
pickup zone and picks up a cone-shaped load. Then, it returns
to the original stack zone while avoiding the same obstacle
and places the block on a pile of previous ones or the ground,
in the case of a first iteration.

We further break down each one of the blocks of the high-
level state machine into programmable commands. Figure 10
depicts the logic for moving through the transit zone. A se-
ries of references are established in order of priority for the
drone to detect and follow. First, it looks for the window and
approaches it. If the window is not found, it goes towards the
QR code behind it. If the latter is not detected, it follows the
line on the ground. If the line is not found, it flies toward the
known magnetic trajectory of the target while still searching
for any of the previous visual references. When the window is
detected and approached, it stops at a 1 m distance, where the
forward camera can see the whole screen. It waits in front of
it until the moving obstacle is cleared, and it advances follow-
ing the guideline. While crossing the window, altitude is no
longer read with the Lidar range sensor but with the barom-
eter to avoid noise caused by sudden attitude changes due to
the window’s frame. After passing the window, a similar cas-
cade of references approaches the QR code at the end of the
transit lane.

Figure 11 shows the algorithm followed to pick up the
block. Once the forward camera sees the ArUco code, the
drone approaches it until it is visible to the vertical down-
facing camera. At that point, the drone starts following the
circular motion of the platform until it is consistently over
the code, a point at which it starts descending. The drone
then lands on the platform, the cone is mounted manually, and
the drone takes off again to a predefined mission altitude. In
case of loss of QR code visuals, the drone returns to mission
altitude and repeats the process.

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 210



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2023-26 14th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

Figure 5: The Simulink model of the Companion Computer control diagram. On the left side, the state machine and the guidance
laws represent the Companion Computer controller, while the block on the right represents Flight Controller controllers and the
drone dynamics.

Figure 6: Step response on x-axis.

The last of the high-level blocks of the state machine is
the release of the cone on top of the cone pile. At the end
of the transit back, the drone searches for the QR code of the
drop zone, reaches the position on top of it, and slides slightly
left. For the first block, it simply descends to an altitude cal-
culated based on the cone height and releases it. Then, it takes
off again at the right altitude and yaw and proceeds towards
fetching the next cone. For the consecutive ones, the drone
approaches the QR code, looks for the stack, and centers it-
self on top using the vertical camera. The drone descends to
a height calculated from the number of cones stacked and re-
leases the load. Safety protocols are implemented in case of
loss of target visuals or centering.

Figure 7: z-axis plot.
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Figure 8: x-axis and y-axis plot.

Figure 9: High level state machine.

Figure 10: Transit state machine.

6 COMPUTER VISION

The purpose of the computer vision is to provide a set-
point for an active control loop, based on the visual informa-
tion acquired by cameras. The setpoint is a 3D relative pose
given by the special Euclidean group (SE(3)) or its compo-
nent.

6.1 Architecture
The drone uses two cameras; one forward-looking Intel

Realsense D455 depth camera, and one down-looking fisheye
monocular camera. The field of views (FoV) of the camera

Figure 11: Block collection state machine.

Figure 12: Block release state machine.

when looked from the side are depicted in Fig. 13.
The depth camera allows to acquire the depth data of

the scene directly without using computationally costly al-
gorithms. The fisheye camera reduces the blind spot between
the two cameras.

The computer vision software module comprises of five
main classes. The name and output of each class is provided
in Table 1.

To allow various camera types, each class is independent
of the camera model. Different camera models are dealt by
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Figure 13: Drone architecture from computer vision perspec-
tive and side field of views (FoV) of cameras.

Table 1: Computer vision module classes with their outputs.
Class Output
ArUco Detector Transform matrix (SE3) from marker to camera (Tcm)
Window Detector Transform matrix (SE3) from window to camera (Tcw)
Cone Detector 3D position of cone in camera coordinate system.

Release Decider
3D position of cone in camera coordinate system.
Boolean which is true when it is decided that the cone is safe to be released.

Line Tracer Approximate relative bearing of the line with respect to the drone.

the abstract camera representation as used by some visual
odometry (VO) or simultaneous localization and mapping
(SLAM) algorithms such as ORB-SLAM3 [5]. Considering
the FoVs of the camera used, the depth camera is modelled by
the Brown[6]-Conrady[7] model, and the fisheye monocular
camera by the Kannala-Brandt [8] model.

Figure 14 shows the essential state machine with active
classes for each mission phase.

Figure 14: High-level state machine from computer vision
perspective.

6.2 Marker Detection and Pose Estimation
The goal of the marker detection is to provide the drone

with the relative 6 DoF pose of the drone with respect to the
marker. The perspective-n-point (PnP) algorithm estimates
the pose of the camera, given n number of 3D points of an
object in the camera coordinate system and corresponding 2D
pixel points in the image.

Since a marker is planar, a special type of PnP algorithms
called infinitesimal plane-based pose estimation [9] (IPPE)
can be used. In this case, minimum 4 pairs of points are
needed, and many open-source libraries such as OpenCV al-

lows to acquire positions of 4 vertices of a marker as well as
its ID. IPPE can yield at most two possible solutions.

Along with the solution ambiguity of IPPE, other factors
may affect the pose estimation quality, such as the distance
from the marker to camera with respect to its focal length[10].
To improve the robustness on estimation, three enhancement
methods were applied:

1) initial pose guess is obtained by solving PnP with ran-
dom sample consensus[11] (RANSAC) to remove outliers.

2) if the difference between the guess obtained from 1)
and the previous pose is larger than a threshold, the guess is
ignored.

3) if the pose difference is less than the threshold, the
guess obtained from 1) is iteratively refined using Levenberg-
Marquardt[12][13] method.

Figure 15 shows the visual result of the ArUco marker
pose estimation.

Figure 15: Detected ArUco marker and its estimated pose
represented by the axes.

6.3 Cone Detection, Tracking and Pose Estimation
The goal of cone detection is to provide the relative 3D

position of the target cone which the drone aims to approach.
Two approaches were considered to detect the cone: 1) tra-
ditional method based on the image processing using geo-
metric characteristics and extracted features, 2) deep learn-
ing method based on the neural network trained with custom
dataset. Both approaches have their own weaknesses. The
former is more prone to change in the scene such as perspec-
tive, and the latter is more dependent on the dataset quality.

The mean average precision (mAP) is a metric to eval-
uate the performance of an object detection algorithm. The
mAP of deep learning algorithms surpass most traditional al-
gorithms [14]. Therefore, You Look Only Once (YOLO) ob-
ject detector was selected as the basis for the cone detection.
Specifically, YOLOv4-tiny was chosen to achieve faster in-
ference under limited computing resources.

In addition to detection, tracking is required to follow
only one cone out of multiple cones, if they exist. Hence, after
the detection of cones, one cone is locked for tracking based
on a certain criteria, such as the distance from the image cen-
ter. Then, a (Channel and Spatial Reliability Tracking) CSRT
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[15] tracker is used to track the one. When tracking is lost, a
new cone is locked. Figure 16 shows the cone detection and
tracking result.

Figure 16: Detected cones (Green) using YOLOv4-tiny
trained with custom cone image dataset, and the locked cone
(Blue) for tracking using CSRT tracker.

During the tracking, the relative position of the cone can
be estimated by unprojection. For the depth camera, the
needed depth is directly obtained. For a monocular camera,
the known dimensions of the cone can be used to infer the
depth.

6.4 Cone Release
The goal of cone release decision is to signal the drone

when it is believed to be safe to release the cone. First, the
desired 3D position of the cone is projected to the image. The
bounding box of the projected cone will be named as the tar-
get box. The bounding box of the cone output by the tracker
will be named as the tracker box. Then, the cone is released
when the intersection over union (IoU) between the target box
and the tracker box is over a certain threshold. Figure 17
shows the cone before and after the release decision.

Figure 17: Cone release decision based on the IoU between
the target and tracking bounding boxes. Before release (left),
after release (right).

6.5 Window Detection and Pose Estimation
Window detection can be classified as an object detection

problem in computer vision. Since the exact shape of the
window is not provided, the image processing approach was
chosen over the deep learning one.

The depth image obtained by the depth camera is first
thresholded by the depth boundaries from 0.3 to 4 m to

get the foreground. This image is binarized with Canny
edge detection [16], then quadrilaterals are found using
the Ramer–Douglas–Peucker algorithm [17, 18]. Figure 18
shows the scene with a window, and the detected window.

Figure 18: Scene with a window (left), and detected window
using depth camera (right).

However, the this method has following expected limita-
tions.

1) if the window is not perfectly quadrilateral, the possi-
bility of detection is scarce.

2) the frequent noise in the depth image near the window
leads to 1).

3) depending on the threshold used for the Canny edge
detection and on the lighting condition, some edges might
not be detected. This case also leads to 1).

To overcome these limitations, a more robust algorithm is
required.

Once the contour of the window is determined, the rela-
tive pose between the window and the camera can be found
using the PnP algorithm. If the orientation is not needed, the
relative translation can be found by unprojecting the centroid
of the contour.

6.6 Colored Line Tracing
The goal of line detection is to provide the relative bear-

ing of the line with respect to the drone. In addition to the
bearing, the approximate relative 2D position of the line also
needs to be provided to keep the drone lined up.

To extract only the blobs of a specific color from an im-
age, thresholding based on color can be used. However, color
is heavily dependent on the lighting condition. Therefore,
to improve the robustness [19], red-green-blue (RGB) color
space is first converted to hue-saturation-value (HSV) color
space. Still, the line can be detected as fragmented blobs due
to the varying lighting condition. The reduce this fragmenta-
tion, morphological transformations are applied. Next, con-
tours having reasonable areas are sought, along with smallest
rectangles that enclose them. The rectangle that has the max-
imum fineness ratio in the image is assumed as the guiding
rectangle. Finally, the relative bearing is set to the angle be-
tween the longer side of the rectangle and the vertical axis
of the image. The geometric center of the guiding rectangle
is used to estimate the relative 2D position of the line with
respect to the camera. Figure 19 shows the detected red line
and the center and relative bearing derived from the guiding
rectangle.
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Figure 19: Detected red line and its computed relative bear-
ing (left) in the image of hand-drawn lines of three different
colors (right).

7 CONCLUSION

This draft paper intends to give some insight into the work
process that went into preparing the drone for the IMAV 2023
competition. In it several aspects of the project are explained,
from the architecture, to the dynamics involved, to the avion-
ics that goes with it. Given the degree of autonomy required
for the drone, computer vision is also a fundamental part of
the project. Additionally, an oversight of the logical pro-
cess represented by the state machine is also explained, cor-
responding to the actions performed in the different phases of
the mission. It is worth noting that the paper is not a com-
plete walk-through of the work doen since as of the day of
the delivery, the project is not finished.
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