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ABSTRACT

Physical interaction with the outdoors is a key
application of UAVs. However, in these situa-
tions aircraft must compensate for external dis-
turbances such as wind. Fully-actuated UAVs are
well suited to this, but consideration is needed
in control design. This work focuses on how
Model Predictive Control (MPC) can be applied
here. MPC has the advantage of being able to
take system constraints into account, and its util-
ity is investigated in wind rejection tasks. This
work has focused on the formulation of appro-
priate constraints on craft-orientation and motor
efforts. Also incorporated are frequency depen-
dent actuator weightings, and basic disturbance
estimation. Overall, in simulation, modelling of
motor constraints was not found to be effective
when compared to prior controllers. However,
the use of MPC with angle constraints was found
to improve position regulation. The controller
was then verified with wind tunnel experiments.

1 INTRODUCTION

In recent years, Unmanned Aerial Vehicles (UAVs) have
rapidly increased in their civil applications [1]. Examples of
use cases include agriculture [2] or medical device supply [3].
This work in particular focuses on multirotor UAVs, which
are advantageous for their agility and vertical takeoff abil-
ity. Furthermore, unlike fixed-wing UAVs, they can hold a
position, which allows for physical interaction with the en-
vironment. This interaction has a range of implications, and
it allows the use of UAVs in scenarios such as canopy sam-
pling [4]. However, one major concern in these tasks is wind
disturbances. Not only do winds have a mean component to
resist, but also, unpredictable stochastic components.

One method by which rejection of these stochastic com-
ponents can be eased is by using fully-actuated UAVs. Fully-
actuated UAVs can produce forces and torques in any di-
rection, and as such, translation and rotation of the aircraft
are decoupled. This contrasts more conventional quadrotors,
which must tilt to translate. Tilting is limited by the rotational
inertia of the aircraft, which limits the bandwidth of this ac-
tuation. Meanwhile, fully-actuated UAVs and their ability to
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directly generate lateral forces, have significantly higher ac-
tuation bandwidths, making disturbance rejection easier. One
type of fully-actuated drone is the fixed-tilt UAV, on which
rotors are canted at constant angles. An example is shown in
Figure 1, and this work will focus on these fixed-tilt UAVs.

A range of authors have already developed wind distur-
bance rejection for fully-actuated UAVs, and one example is
the work in [6]. This describes a robust adaptive controller
for a fully actuated octocopter similar to that shown in Fig-
ure 1. To account for disturbances, force-torque disturbances
are estimated and used for regulation. The controller is then
validated in simulation with a ’gust function’. While the con-
troller shows good regulation ability, there are some limita-
tions in the methodology. Firstly it is unclear whether the
’gust function’ is backed up by literature. Furthermore, there
are no experiments. However, these limitations are not unique
to this work. The authors of [7] implement active disturbance
rejection control on a passively-tilted craft, and similarly, they
focus on simulation, using simple functions to generate force
histories representing ’wind shear’ or ’wind blow’. Mean-
while, the authors of [8] explore the application of sliding
mode control for a tilting-rotors quadcopter. In this case, CFD
is used to estimate the worst case disturbances, which are
in turn used in simulation. However, this work again lacks
experiments, and furthermore, the CFD methodology is not
presented. Finally, the authors of [9], have designed another
sliding mode controller for a tilting-rotors quadcopter. In the
control design, torque disturbance effects are ignored, and a
cuboid is used for the aerodynamic models. However, the
use of mean wind, and Dryden turbulence models to generate
wind profiles, does lend more validity. Nonetheless, experi-
mental results are still not presented.

In the aforementioned work, a trend can be seen in fully-
actuated UAV literature to only use simulation for the testing
of wind rejection, with varying vigor. However, experimen-

Figure 1: Fixed-tilt Octocopter, utilised in [5]
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tal validation is obviously of high importance. One work that
provides this is [5]. Its author has designed anH∞ controller
for wind rejection on a fully-actuated octocopter. Experimen-
tal testing is then carried out in a wind tunnel to validate the
controller’s station keeping performance and shows improve-
ments when compared to more traditional cascaded PID con-
trollers. This work is not without issues though. One exam-
ple, is that in simulation, some scenarios required re-tuning of
the controller to avoid saturation of motor Pulse Width Mod-
ulations (PWMs). In the literature, there do exist other meth-
ods of experimental wind disturbance testing. For example,
the authors of [10] fly aircraft outside. However, methods
such as this, are limited by their repeatability. Meanwhile,
the authors of [11] develop Iterative Learning Control for a
fully-actuated craft and use air blowers to generate wind dis-
turbances. However, in this case, details aren’t present re-
garding wind affected area, or turbulence qualities. Across
the works that have developed wind-rejecting controllers for
fully-actuated UAVs, it is worth noting that none of them have
explicitly dealt with the problem of saturation or constraints.

To handle the issue of constraints, one possibility is
Model Predictive Control (MPC). MPC is an established con-
trol method, which relies on online optimisation. At each
time step, a discrete plant model is used to gauge the response
of the system to inputs. These control inputs are then chosen
to minimise a cost function, and optimise future performance.

One of the critical advantages of MPC, is its ability to
handle constraints, by incorporating them into the optimisa-
tion problem. This has been used on fully-actuated crafts in
various works. The work in [12] constrains the forces and
torques that the UAV produces in order to model the craft-
limits. However this is possibly problematic in that the limits
of each motor under combinations of forces may not be prop-
erly represented. The work in [13] provides an alternative
solution to the actuator saturation problem. The authors of
[13] discuss the fact that MPC applications on multirotors of-
ten apply a cascade control structure, with an unconstrained
attitude controller. In these works constraints are then placed
on state variables such as velocity or acceleration. Rather,
in [13] a single monolithic Model Predictive Controller is
used to control motors individually. Constraints are then ap-
plied to propeller rates for each rotor. A similar technique is
utilised in [14] with constraints on propeller velocities. How-
ever, state constraints can still be valuable when, for example,
obstacles need to be avoided in a trajectory, as shown in [15].

MPC can also be adapted to compensate for disturbances,
via a range of techniques, some examples of which are given
here. A common method, is the addition of control com-
ponents for disturbance estimation. In [16], a wind distur-
bance is modelled as being driven by normally distributed
noise. The disturbance is then estimated by an Extended
Kalman Filter (EKF), and provided to the Model Predictive
Controller. A similar approach is also taken in [12], where
an EKF is used to compensate for disturbances and model

uncertainty. Techniques other than Extended Kalman Filter-
ing have also been used in works such as [17], where an Ex-
tended State Observer is used. One interesting point in [17], is
that integral components are also incorporated into the Model
Predictive Controller to reject slow moving disturbances. Fi-
nally, works such as [18], represent a more holistic incorpo-
ration of disturbances. In [18], robust MPC is used, in which,
the optimisation is modified to minimise the cost, while con-
sidering the worst case disturbances. However, methods such
as this can be overly conservative and complicated.

Overall, the work in [5] provides a strong basis for the
continuation of wind rejection experiments for fully-actuated
UAVs. However, constraints, such as motor saturation, re-
main an area to be explored. The literature has provided a
range of methods to handle constraints with MPC. The main
contribution of this paper is the implementation and experi-
mental testing of a Model Predictive Controller on a fixed-tilt
UAV, under wind disturbances. This facilitates investigation
of the ability of MPC to improve constrained performance.

2 MODELLING

The UAV utilised is shown in Figure 1. It has a flying
mass of 1.72 kg and a rotor-to-rotor diameter of 500mm. It
is technically over-actuated due to its 8 rotors, but the focus
in this work is on the features coming from full-actuation.

2.1 Co-ordinate Systems
Shown in Figure 2, a reference frame attached to the UAV-

body is denoted by B•. Positive B[x, y, z]⊤ denote the front,
right and down directions respectively. Meanwhile W• de-
fines the inertial frame in which the UAV’s position can be
perceived. For the wind, the simplifying assumption is also
made that the dominant component is in the Wx direction.

2.2 Octocopter Dynamics
As discussed earlier, there are two ways of actuating this

craft. Attitude-based thrusts arise due the horizontal force
produced when the UAV is tilted. The desired components
of the net vector, are denoted as WFA, and this is produced
by manipulating roll ψ and pitch θ. The unique translational
forces that an Octocopter can generate are then discussed
as Vectored thrust (BFV,x,y). In this case, rotors are selec-
tively sped up to generate a net horizontal force. Given the
higher bandwidth, it is desired to use vectored thrust to reject
high frequency wind components. Meanwhile, attitude-based
thrust should ideally be used to reject other components of
the wind, given its better efficiency. These actuation methods
are shown in Figure 2. Because attitude-based thrust is to be
used for low frequency wind components, and mean wind is
assumed to exist in the Wx axis alone, roll control will be ig-
nored in this work. Rather, any Wy regulation will be done
with BFV,y . This work also assumes ψ (yaw) deviation is
negligible, such that the Bxz and Wxz planes are coincident
throughout control. Note that this does not assume τz = 0,
but rather that the yaw regulation is perfect.

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 150



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2023-18 14th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

Figure 2: Craft dynamics illustrations. (a) Octocopter
Schematic [5]; (b) Attitude-based thrust WFA in the Wy di-
rection; (c) Vectored thrust BFV in the By direction

2.3 Existing Control Architecture and Model Components

The numerical model of the UAV is taken from [5], and
includes a motor model, rigid body dynamics model and
aerodynamic correlations. While detailed, limitations of this
model include omitted dynamics, due to the empirical nature
of the aerodynamic models, and unmodelled interactions be-
tween adjacent rotors due to cross flow. Alongside the phys-
ical components, the low-level control elements also need to
be considered, as they are to be incorporated in the overall
plant model that MPC uses. This includes the baseline atti-
tude controller, as well as a motor mixer. Figure 3 then shows
how all of these plant model components are combined.

This allows the designation of inputs for the model pre-
dictive controller to manipulate, as follows. The first two
inputs are WFA,x and WFA,z . Together these define the
attitude-based thrust vector to be produced. They are con-
verted to a single Bz thrust (the magnitude) and an angle set-
point θ. The Attitude Controller utilised here is the default
from the PX4 flight stack, and it generates the torque vector
for the aircraft. Vectored thrusts BFV,x and BFV,y are also
directly manipulated by the model predictive controller. Ma-
nipulation in the body frame is used to ease the conversion of
these values to motor efforts. The body to world frame con-
version is then encoded via the linearisation, and any effects
should be small near the operating point. From the torques
and vectored thrusts supplied as commands to the UAV, the
Multirotor Mixer then generates PWMs for each of the mo-
tors. For this craft, the mixer is simply a matrixM∈ R8×6

Figure 3: Model to be controlled by the Model Predictive
Controller, developed in [5]

3 MODEL PREDICTIVE CONTROL FORMULATION

The aforementioned model is included in the controller
as a discrete time state space model, for prediction. At each
time step, a cost function is minimised, for the next Np time-
steps. To achieve this objective, the first Nc control actions
are manipulated. When an optimal control sequence is de-
termined, the first-time-step control action is applied to the
plant. Constraints are then incorporated, by defining them as
a linear inequality of inputs and outputs, with the format in
Equation 1. In this equation u and y are input and outputs of
the plant, G is a vector of constraint boundaries and E/F are
matrices that encode the constraint coefficients.

Eu+ Fy ≤ G (1)

In MATLAB and Simulink, a suite of tools are used to setup
the optimisation. As such this section details the formulation
of appropriate architectures, constraints and models.

3.1 Controller Architecture
Mentioned earlier was the use of vectored and attitude-

based thrusts at appropriate frequencies (Section 2.2). A po-
tential method is the integration or filtering of a single con-
trol input to allocate between vectored and attitude-based
thrust. However, the induced coupling between the thrusts
would make constraint satisfaction difficult. Consequently,
they were controlled independently. To add frequency depen-
dent allocation, auxiliary states for the low-passed vectored
thrust were added to the controller and weighted. This al-
lowed for the penalisation of mean-value build-up in the vec-
tored thrust. Meanwhile, the attitude-based thrust was con-
trolled via an integral component. As such the output of the
controller was d

dtFA,x. By weighting the change in attitude-
based thrust, high frequency components could effectively be
penalised. This control architecture is shown in Figure 4.

Figure 4: Model Predictive Controller Architecture
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3.2 Constraints

3.2.1 Motor Constraints

The motivation for motor constraints arises in [5], in which,
a range of different conditions necessitated re-tuning of the
developed H∞ to avoid violation. To formulate constraints,
each motor was constrained individually, similar to [13].
However, in the case of this work, PWMs are constrained
rather than propeller rates. This is because PWM saturation
was highlighted in [5]. The core issue here was to determine
how to appropriately constrain the PWMs, when they were
not directly controlled. To do so, the motor map was used,
allowing constraint formulation as shown in Equation 2. In
Equation 2, the PWMs are on a normalised scale of [0, 1].

0 ≤M
[ BCη

BT

]
≤ 1 (2)

In this equation BCη and BT are the vectors of torques and
forces respectively, produced by the craft. However, not all
forces and torques are generated by the Model Predictive
Controller. The first two elements of BT , (FV,x and FV,y)
are manipulated directly by the controller. However, the other
elements must be approximated or measured.

One assumption can be made with respect to roll and yaw.
They have zero references, and so do not contribute to craft-
translation. In fact, in simulation the roll and yaw angle val-
ues have standard deviations less than 0.2◦. As such, the roll
and yaw torques are assumed not to significantly affect the
remaining dynamics, and they are decoupled in the model.
They are then simply measured by the Model Predictive Con-
troller, and input to the constraints.

BTz can also be easily approximated. This thrust is gen-
erated from FA,z and FA,x, by a two-norm operation. This
can simply be linearised about an operating point. Similarly,
while the pitch torque is not generated by MPC, it is related to
FA,x, FA,z and the internal states of the attitude controller. As
such, the pitch torque can be approximated from the estimates
of the attitude controller states. The overall relationships are
formulated in Equation 3.

0 ≤




M⊤
τx

M⊤
τy

M⊤
τz

M⊤
Tx

M⊤
Ty

M⊤
Tz




⊤ 


τx
c1FA,x + c2FA,z +C1x̂PID

τz
FV,x
FV,y

c3FA,x + c4FA,z



≤ 1 (3)

In Equation 3, c1, c2, C1, c3 and c4 are linearisation con-
stants. Also note that FV,x and FV,y are outputs of the con-
troller, while τx and τz are measured. Finally, x̂PID repre-
sents the internal state estimates for the attitude controller.

3.2.2 Angular Constraints

While not an initial concern in [5], another constraint consid-
ered was the aircraft orientation. An orientation limit may be
motivated by a tool being used, or a requirement to keep a low
vertical profile. As the wind is assumed to be coming from
theWx direction, the focus was on pitch constraints (θ).

This was considerably easier to incorporate into the con-
trol architecture, compared to PWM. The pitch angle was al-
ready a state in the model, and was constrained between two
limits. The pitch angle setpoint was also constrained. Sim-
ilar to the BTz thrust, the pitch setpoint was directly related
to FA,z and FA,x. This relationship was again linearised to
generate the pitch set-points of the aircraft, and subsequently
constrained. It is worth noting that these constraints were soft.
This is because the controller was not necessarily able to di-
rectly manipulate θ, as it was a state variable, rather than a
control input. The use of soft constraints defines a limit, with
a significant cost being imposed if said limit is exceeded.

3.3 Linearisation and Model Generation
One requirement for the Model Predictive Controller gen-

eration was a linear model to predict from. From [5], a non-
linear model model was already available. This had also
been linearised in [5], but to account for new plant outputs,
this was repeated. The linearisation point was found by trim
analysis. This was carried out with an input wind speed of
u = [5.6 0 0]m/s, and with the constraint that attitude-
based thrust was exclusively being used to reject this mean
wind. The wind velocity was chosen for consistency with re-
sults in [5]. Edits were then made to include features such as
the low passing of vectored thrust and decoupling of yaw and
roll torque measurements from controller states. A minimal
realisation was also taken to eliminate one state that did not
effect the weighted or constrained dynamic behaviour.

3.4 Disturbance Estimation
In the MPC toolbox used, a Kalman Filter was generated

automatically. This allowed estimation of unmeasured com-
ponents such as the attitude controller’s internal states. How-
ever, this tended to fail under non-zero-mean disturbances,
including both deviations of the mean wind from 5.6m/s,
and biases in sensor measurements. To compensate, simple
disturbance estimators were added. These were formulated
as auxiliary plant model states, which were in turn estimated
by the Kalman Filter. These auxiliary states were modelled
as integrators, driven by gaussian noise, shown in Equation 4.

ẋaux = Bwd (4)

For input disturbances, the estimated state, is then fed into the
state space model as shown in Equation 5.

ẋ = Ax+Bu+Bdxaux (5)

Meanwhile, for output disturbances the auxiliary state is sim-
ply added to the respective output as a bias.
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The wind is modelled as an input disturbance, and the
Bd matrix maps how a change in wind speed from the equi-
librium point impacts the plant. This matrix was found dur-
ing linearisation, and it allows the controller to perceive the
effects of mean wind deviations. Meanwhile, output distur-
bances were included on the measured pitch angle, and the
world frame velocities, to improve state estimation quality.
Under preliminary simulation, disturbance estimation was
found to help prevent Wx steady state errors. In this sense,
the disturbance estimator acted similarly to an integral com-
ponent in the controller. However, it has the dual advantage
of also improving state estimate accuracy overall.

3.5 Final Parameters
The sample time was chosen by comparing the Model

Predictive Controller’s computational requirements to a
known significant load on the PX4 flight stack in simula-
tion. This informed a sample rate choice of 10Hz. To deter-
mine the control and prediction horizons, they were chosen
by balancing performance (as measured by root mean square
(RMS) position error) and the allowable computational load.
This resulted in horizons of Nc = 3 and Np = 8.

In testing, the baseline controller for testing is the H∞
controller developed in [5]. As such, the Model Predictive
Controller weights were tuned by running it, and theH∞ con-
troller under wind, and ensuring that the standard deviations
of each actuation method: e.g. FV,x and FA,x, were similar.
The power spectral densities were also verified to ensure they
were fairly similar in shape. The weights manipulated were
those on velocity, vectored thrust, and attitude-based thrust-
rate. The velocity weight was increased mainly due to per-
ceived resonance issues during preliminary experimental im-
plementations. Meanwhile, throughout tuning, changing the
low pass portion of the weighting did not significantly affect
frequency allocation, as the normal vectored thrust weight
was sufficient to generate the required effect. The final pa-
rameters chosen are summarised in Table 1. Note that scale
factors were also used to improve numerical conditioning.

x, y, z FV,x FV,y FA,z ẋ, ẏ, ż ḞA,x Fxlp
1 6.66 4 3.3 1.2 0.06 0.1

Table 1: Model Predictive Controller weights

4 TESTING METHODOLOGY

4.1 Simulation Methodology
The simulation is based on the non-linear model de-

scribed in Section 2, Also included for simulation is a sen-
sor model, as well as input wind trajectories. The trajectories
utilised are also taken from [5], and are comprised of gener-
ated turbulent wind data with a mean speed of 5.6m/s. The
turbulence intensities are 10.03%, 8.28% and 8.02% for the
Wx,Wy andWz axes respectively. At the beginning of each
simulation a 10s period is allowed for the wind to ramp up.

To test PWM constraints in simulation, actuator satura-
tion was induced for each controller. For H∞, saturation is
induced between the mixer and motors (Their relative posi-
tions in simulation are as shown in Figure 3). Meanwhile,
for MPC, the optimisation’s perception of the constraints is
instead tightened. Under different saturation levels, the sim-
ulation is run for 120s, and the data is inspected to determine
if position diverges. To impose angle constraints with H∞
the pitch component of the angle setpoint was saturated. For
MPC, the angle limits were updated in the optimisation. With
angle limits, position variation was used for comparison.

4.2 Experimental Methodology
To convert the Model Predictive Controller for use with

the PX4 flight stack, Simulink code generation was used.
This generated a C++ class, with methods to execute each
control step. This class was then added to the flight stack as
its own module. Using radio-controlled switches, the MPC
and Default controllers could then be switched as appropri-
ate. The flight hardware used was a Pixhawk 4 controller.

The experimental results themselves came from the
closed loop wind tunnel shown in Figure 5. For UAV flight,
this was equipped with a motion capture system to provide
accurate position feedback. A turbulence grid was also in-
stalled in the tunnel, and induced time varying components in
the flow. The turbulence intensities in each axis are 11.6%,
6.2% and 7.3% for theWx,Wy andWz axes respectively.

Figure 5: University of Auckland Closed Loop Wind Tunnel,
with a turbulence grid and motion capture system.

5 RESULTS

5.1 Unconstrained Performance
5.1.1 Simulation

First tested was an unconstrained Model Predictive Con-
troller. This was simulated for the purposes of verifying that
actuator allocation was occurring as designed. Figure 6 shows
the variation of attitude-based and vectored thrust based ac-
tions for the tuning described in section 3.5.

While it can be seen that attitude-based thrust is success-
fully used to compensate for mean wind, the vectored thrust
seems to have less variation at all frequencies. This is due
to the match to the actuator usage in [5]. However, a weight
modification, shown in Figure 7, demonstrates that more ap-
propriate actuator usage is possible. In this figure, vectored
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thrust is shown to dominate at high frequencies. However,
further experiments retain the matched tuning.

Figure 6: Simulation results of unconstrained MPC, showing
the Wx vectored and attitude-based thrusts used

Figure 7: Actuator power spectral densities from simulation.
The upper plot shows the frequency content for the default
tuning. The lower plot shows the frequency content with
more aggressive weights (wFV,x = 0.666;wḞA,x = 1)

5.1.2 Experiment

Figure 8 shows the Wx position trajectory for a 50s period.
Overall, the mean is −8mm, and the standard deviation is
10mm. In the other axes, performance is less strong, with
theWy andWz mean values being−82, and 110mm respec-
tively. However, this is easily explained by the fact that wind
is only modelled in theWx axis. As such disturbances or im-
balances in other axes can not be accounted for. The standard
deviations for these axes are still low, at 6mm and 7mm re-
spectively. After removing the steady state errors the RMS
position error was found to be 13mm. This is comparable, to
theH∞ controller from [5], albeit slightly worse.

5.2 Motor Constraint Testing
The simulation stability of the controllers under different

motor constraint conditions is shown in Table 2. Figure 9 then

Figure 8: Experimental unconstrained MPC position tracking

shows the position trajectories of the H∞ and Model Predic-
tive Controllers for the test case [0.405 0.595]. Overall, the
H∞ controller appears to be slightly better at handling actu-
ator saturation. This is counter-intuitive, but it is theorised to
be related to the inherent redundancy provided by the craft’s 8
rotors. When 4 rotors are saturated, the aircraft can often still
maintain quadrotor-like control schemes. Meanwhile, the fact
that the MPC destabilises earlier is suspected to be related to
the approximate nature of constraints and the extensive lin-
earisation use. The ultimate conclusion is that this cascade
MPC architecture is insufficient for handling actuator limits.

Lower
PWM Limit

Upper
PWM Limit

H∞ Stable MPC Stable

0.4 0.6 Y Y
0.405 0.595 Y N
0.41 0.59 N N
0.4 1 Y Y
0.425 1 Y N
0.430 1 N N
0 0.54 Y N
0 0.535 N N

Table 2: Constrained simulation stability. Full range: [0 1]

5.3 Angle Constraint Testing
5.3.1 Simulation

From trim analysis, the required pitch angle for a 5.6m/s wind
is 8◦. As such, the controllers are tested with a smaller limit
of 6◦. The controller performance is shown in Figure 10,
demonstrating that with MPC, the constraint is obeyed, with
only occasional violations. Furthermore, the MPC shows far
better regulation performance. The minor violations can be
compensated for with a safety factor in the constraint.

5.3.2 Experimental Results

When angle is constrained to 6◦ under a wind of 5.6m/s, the
Wx axis results can be seen in Figure 11. In this case, per-
formance is worse compared to Figure 8, with a steady state
error of approximately -58mm. This is because, when under
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Figure 9: Simulation results of MPC (top) and H∞ (bottom)
position tracking with imposed constraints [0.405, 0.595]

Figure 10: Simulation comparison of MPC and H∞ under
turbulent wind. Top: Wx position tracking; Bottom: pitch
angle θ with a soft limit of 6◦ (MPC Only)

an angle constraint, vectored thrust is rejecting mean wind
components, while also being weighted at low frequencies.
However, this is still less than the performance degradation
seen for H∞ in simulation. Namely, while simulation and
experiment cannot be compared directly, simulation showed
that transient angle-constrained H∞ performance was much
worse than MPC (Figure 10). Translating this relative per-
formance into experiment, it would be expected that the in-
creased variance under H∞ exceed the MPC steady-state er-
ror. In any case, this steady state error could also be fixed by
position-integral weights. The standard deviation in the Wx

axis is also increased compared to the unconstrained case, at
14mm, but the change is slight. Finally, in the Wz axis, a
377mm steady state error, is introduced under an angle con-
straint. This is again suspected to be related to mean wind in
this axis, and the fact that the UAV is operating at an angle

below that of the linearisation point. As such, the mean ver-
tical thrust required changes, which cannot fully be corrected
by MPC, while staying at the origin. As above, this could be
fixed with integral weights.

Figure 11: Experimental results of MPC position tracking

The angle constraint was also satisfied as shown in Fig-
ure 12. It shows that angle increases up to a limit, after which,
BFV,x begins to vary more, and partially reject mean wind.

Figure 12: Experimental comparison of constrained and un-
constrained MPC with turbulent wind. Top shows pitch angle
regulation; bottom shows BFV,x (vectored thrust) usage

6 CONCLUSION

This work has presented the development of a Model Pre-
dictive Controller for a fully-actuated UAV under wind distur-
bances. The ability to handle wind is key for physical envi-
ronmental interaction, and prior work has established a range
of control methods to facilitate this. However, one concern
that arose was constraint handling. MPC development for
the constraint of motor efforts and orientations has been car-
ried out. Other controller features are weightings that provide
frequency-based actuator allocation, and disturbance estima-
tors to handle deviations in the wind from the operating point.

In simulation, UAV motor effort constraints were found to
be ineffective compared to the priorH∞ controller. However,
MPC usage for the constraint of angle showed promise. In
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experiments, under an increasing wind, the Model Predictive
Controller successfully restrained the angle to 6◦.

Future work will more rigorously test the controller. In
particular, variations in wind speeds and craft parameters
need to be investigated. The controller could also be ex-
tended, for example, with angle constraints about more axes.
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