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ABSTRACT

When deployed onboard micro air vehicles
(MAVs) with limited processing power, vi-
sual ego-motion estimation solutions face an
efficiency-accuracy trade-off. This paper pro-
poses an aerodynamic-model-aided approach
that emphasizes time efficiency over estimation
accuracy. A linear drag force model of propellers
guarantees bounded estimation errors in the ve-
locity components orthogonal to the shafts of
propellers and the attitude relative to the grav-
ity direction. Feature point correspondences are
extracted from the monocular image stream to
compute the relative heading angle and transla-
tional direction, which is fused with inertial mea-
surements by an extended Kalman filter (EKF)
in a loosely coupled manner. The proposed ap-
proach shows balanced performance in accuracy
and efficiency. It also has robustness to situations
where vision information becomes unavailable.

1 INTRODUCTION

The autonomous flight of micro air vehicles (MAVs) in
GPS-denied environments is challenging. For large flying
robots (i.e. heavier than ∼300 grams, and larger than ∼50
centimeters in diameter), this task is substantially simpler
since they are less constraint by computational or payload
capacity, and can process information from numerous sen-
sors. However, they require more flying space and stringent
safety checks, and are generally more expensive. In contrast,
palm-sized or smaller MAVs [1] are promising alternatives as
being safer and cheaper. But they come with the disadvan-
tage of limited sensing and processing resources. It makes
monocular visual-inertial odometry (VIO) that combines a
single camera and an inertial measurement unit (IMU) the
most promising option for ego-motion estimation. The cam-
era provides abundant up-to-scale information about the sur-
roundings, and the IMU measures metric-scale rotational rate
and translational acceleration in high frequency.

VIO [2, 3, 4, 5] has shown good performance in MAV
navigation in recent years. Ego-motion estimation and envi-
ronment mapping can be performed simultaneously by taking
the reprojection error from observations of the same landmark
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in different frames and the integrated IMU measurements as
constraints between the camera poses and landmarks’ loca-
tions. The locations of landmarks are treated as states to be
estimated, along with camera poses. Environment mapping
not only contributes to the accuracy of the ego-motion esti-
mation, but also provides an obstacle map for motion plan-
ning. However, this comes at the cost of iterative computa-
tion and the need for an initialization procedure, which may
be required multiple times in case of tracking failure. Even
for approaches [3] that map sparse-point feature points and
use a sliding window to bound the optimization, the compu-
tational demand of this task is still considerable.

Focusing on ego-motion, the multi-state constraint
Kalman filter (MSCKF) [2] maintains a window of camera
poses but does not optimize landmark location. It is based on
an extended Kalman filter (EKF) whose state vector is aug-
mented with poses of the previous frames that observed the
same feature points. The least-squares location of a point is
only calculated once after it is no longer visually tracked. Its
reprojection errors, which express geometric constraints be-
tween the camera poses, are then used in visual measurement
updates. Instead of reprojecting 3D point locations into mul-
tiple frames, [5] enforces multiple constraints on the relative
pose of a frame pair through the two observations of the same
point. The drift in the relative pose is reflected by the resid-
ual of the epipolar geometry constraint. This residual updates
the paired camera poses in an EKF. The absence of point lo-
cations reduces computational demand, and only one frame’s
pose is needed to augment the state vector. However, point
correspondences perform updating one by one using the raw
pixel locations of tracked points. The estimation accuracy can
suffer from frame-to-frame feature tracking noise.

The above-mentioned approaches use the pixel locations
of feature points. Visual and inertial measurements are fused
in a tightly-coupled manner. Visual odometry (VO) sys-
tems like the SVO [6] produce up-to-scale environment map
and ego-motion estimation that can be loosely coupled with
IMU measurements by an EKF [7]. The EKF-based, loosely-
coupled approach SVO+MSF [8] and the EKF-based, tightly-
coupled, map-less MSCKF outperform others in efficiency
among several VIO solutions [9].

In windless environments, since all the aerodynamic force
acting on an MAV is caused by propeller rotation and ego-
motion, the aerodynamic model can be an information source
for ego-motion estimation. As shown in [10], a simplified lin-
ear drag model is combined with IMU measurements to es-
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timate horizontal components of attitude and velocity in the
multirotor’s body frame. Unlike estimation from purely in-
tegrated IMU measurements, the error of this model-aided
estimation does not increase over time and is related to IMU
bias and model fidelity. This aerodynamic model was used
for velocity prediction [1, 5] and trajectory tracking [11]. In
[12], high estimation accuracy was reached with a more pre-
cise dynamic model that takes into account thrust forces and
the effect of rotor speed on the drag, which makes the ver-
tical speed in the body frame to be observable. The camera
provides point correspondences only to estimate the relative
yaw angle between a pair of frames. Worth noticing is that
the drift-free roll and pitch angles were used as known values
to simplify the calculation of the relative pose.

To gain robustness and accuracy with as little computa-
tion as possible, we propose an approach that combines all the
previously mentioned strategies that benefit time efficiency.
It is a map-less, model-aided, EKF-based, loosely-coupled
ego-motion estimator for multirotor MAVs. The linear drag
force model prevents attitude and velocity estimation in the
body’s horizontal plane from drifting over time when there
is no visual information. The relative heading angle and the
direction of translational motion between two frames are cal-
culated from visual feature point correspondences using the
epipolar constraint. The attitude estimation is taken as known
information to simplify the visual pose calculation. The vi-
sual update executes in a one-frame-one-time manner.

The proposed ego-motion estimator has a relatively low-
complexity modular pipeline that is easy to implement and
debug. We choose the EuRoC [13] dataset as the validation
tool and compare our approach with MSCKF [2], a relatively
efficient (yet accurate) VIO solution. The accuracy of the
proposed approach is compromised due to the prioritized ef-
ficiency. But it is sufficient for short-time navigation. And it
is observed that the estimator can maintain its accuracy when
visual information is no longer available.

2 ESTIMATOR FRAMEWORK

The proposed ego-motion estimator pipeline is shown in
Fig. 1. The Visual Processing module receives estimated roll
and pitch angles from the EKF module. The relative pose
is calculated from the feature point correspondences in the
current frame and the keyframe based on the estimated roll
and pitch angles. The relative yaw angle and the direction of
translation with respect to the keyframe are taken as measure-
ments for the visual update step of the EKF.

2.1 Definitions
In this paper, we denote all scalars by lowercase letters

x, vectors by lowercase bold letters x, and matrices by bold
uppercase letters X . Coordinate frames are denoted by non-
bold uppercase letters X . Estimated values are written as x̂,
and raw measurements as x̃.

As shown in Fig. 2, the body frame B (green) is defined
according to the pose of the propellers. The plane defined
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Figure 1: Pipeline of the proposed approach.

by the x-axis and y-axis of B is orthogonal to the propellers’
rotation axis. The IMU is located at the origin of B. IMU
measurements are required to be expressed in B before being
used by the estimator. The world frame W (black) is sta-
tionary. Its z-axis zW has the same direction as gravity. The
heading frame H (red) is defined by rotating the world frame
around the z-axis by the yaw angle. Thus zH always points to
the direction of gravity. The heading frame’s origin coincides
with the origin of the camera frame C. The Euler angles roll
ϕ, pitch θ, and yaw ψ reflect the rotation between W and B.
The rotation sequence is first z-axis (ψ), then y-axis (θ), and
last x-axis (ϕ). ϕ and θ reflect the attitude of B respect to the
gravity diretion.

If the number of tracked feature points is below the pre-
set threshold, or there are not enough inlier points in the
RANSAC-based calculation of the essential matrix, the cur-
rent frame is defined as the new keyframe. A certain number
of feature points are detected in a new keyframe. Unit vector
tkey points from the camera position of the keyframe (right)
to the current camera position (left), as shown in Fig. 2. The
solid lines connect the camera with the feature points detected
in the keyframe. The dashed lines connect the camera with
points tracked in the current frame.

For cameras mounted far from the body center, we con-
sider the translational velocity of the camera caused by its
rotation relative to IMU, which is neglected in [5, 12]. The
vector that points from the IMU to the camera expressed in
the body frame is denoted by pCB .

2.2 Linear Drag Model

There are various aerodynamic forces acting on an mul-
tirotor MAV in flight. In [12], the thrust produced is mod-
elled to be proportional to the sum of the squares of pro-
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Figure 2: Schematic that illustrates the definition of the dif-
ferent coordinate frames and the motion of the MAV from the
key frame pose to the current pose.

peller speed. The drag acting on propellers is proportional
to the product of the MAV’s velocity and the sum of the rotor
speeds. The velocity-square-proportional parasitic drag on
the airframe was considered in [14] to improve the accuracy
of the model in high-speed flight.

With the sensor setup that only consists of an IMU and a
camera, we choose the simplified velocity-proportional drag
force model [10]. We define the propeller plane as the plane
orthogonal to the shafts of propellers. The drag force vec-
tor inside the propeller plane is approximately proportional
to the projection of the MAV’s velocity vector to the pro-
peller plane. The drag parameter kd is estimated as an EKF
state to compensate for its variation in different aerodynamic
regimes. Its derivative is modeled as a small Gaussian white
noise wkd .

The biased and noisy IMU measurements are modeled as

ã = â+ ba +wa, ω̃ = ω̂ + bg +wg, (1)

where wa and wg are white Gaussian noise. We model the
derivatives of the additive accelerometer bias ba and gyro-
scope bias bg as small white Gaussian noise wba and wbg ,
respectively. â denotes the translational acceleration caused
by the aerodynamic force acting on a flying MAV, mainly
consisting of the drag force and the thrust acting on the pro-
pellers. Hence

â = [ax, ay, az]
T

= [kdvB,x + wv,x, kdvB,y + wv,y,

ãz − ba,z + wa,z]
T

(2)

where wv denotes the noise of the linear drag model.

2.3 State Propagation
The estimator back-end is a simplified variant of the EKF-

based back-end of the robocentric VIO [15]. It estimates the
relative pose between the current body frame and the local
frame of reference. The EKF state vector is defined as

x := [RkpG,
Rk
G q, gRk ,

BtpRk ,
Bt
Rk

q, vBt , ba, bg, kd].
(3)

Bt is the current body frame at time t. When a new keyframe
is defined, the new reference frameRk+1 is set to be the same
as the Bt at the time. Rk is the current reference frame. It is
the kth reference frame since the estimator is initialized. G
stands for the global frame. It is the first reference frame R0,
i.e., the body frame when the first keyframe is captured after
the initialization of the estimator. Note that G and W are not
the same coordinate frame. They have the same origin point,
but there is relative rotation between them. R(GWq) can be
calculated from R(GWq) ·R(RkG q) ·gRk = [0, 0, g]T . RkpG is
a translation vector pointing from the origin of G to the ori-
gin of Rk, expressed in Rk. It is about the global position of
Rk. BtpRk is a translation vector pointing from the origin of
Rk to the origin of Bt, expressed in Bt. It is about the local
position of Bt relative to Rk. RkG q is the Hamilton quaternion
reflecting the relative rotation between G and Rk. Bt

Rk
q re-

flects the relative rotation between Rk and Bt. gRk indicates
the gravity vector expressed in Rk. vBt is the translational
velocity of the IMU expressed in Bt.

Eq. (4) shows the IMU-driven state dynamics (ẋ). [ω̂]×
represents the skew-symmetric matrix associated with ω̂. wp

is the process noise in position integration. R(BtRkq) is a
transformation function from Bt

Rk
q to SO3 rotation matrix that

maps a vector expressed in Bt to its expression in Rk. ⊗ de-
notes quaternion product. Ez is a 3× 3 diagonal matrix with
[0, 0, 1] as its diagonal elements. Ex,y is a 3 × 3 diagonal
matrix with [1, 1, 0] as its diagonal elements. We utilize the
techniques introduced in [16] for quaternion-related calcula-
tion.

Bt ṗRk = −[ω̂]× · BtpRk + vBt +wp,

v̇Bt = −[ω̂]× · vBt +R(BtRkq)
T · gRk

+Ex,y(kdvBt +wv) +Ezâ,

Bt
Rk

q̇ =
1

2
Bt
Rk

q ⊗
[
0
ω̂

]
,

ḃa = wba , ḃg = wbg .

(4)

2.4 Acceleration Measurement Update
Drag-induced acceleration in the horizontal body plane

(the plane that contains the x-axis and y-axis of B) can be
measured by accelerometer measurements along the x-axis
and y-axis of B. Accelerometer measurements correct state
propagation through the following measurement update equa-
tions of the EKF.

za,x = kdvB,x + ba,x + wa,x,

za,y = kdvB,y + ba,y + wa,y.
(5)

The accelerometer measurement update steps along with
the model-aided inertial ego-motion state propagation. The
estimated horizontal states (gRk , vB,x, and vB,y) do not drift
over time. But they are noisy and negatively affected by the
accelerometer bias ba. The performance of model-aided iner-
tial ego-motion estimation is omitted in this paper. An inter-
ested reader can refer to [10]. We use the drift-free roll ϕ̂ and
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pitch θ̂ angles to simplify the visual measurement processing,
as introduced in Section 3. ϕ̂ and θ̂ of the current frame are
calculated from R(BtRkq)

T · gRk = R(ϕ̂) ·R(θ̂) · [0, 0, g]T .

2.5 Relative Visual Measurement Update
The Visual Processing module outputs the visual mea-

surements of the relative pose with respect to the keyframe,
ψ̂key and H,key t̂, to be introduced in Section 3. ψ̂key reflects
the visual measurement of the 1-dimension rotation between
the current heading frame and the keyframe heading frame.
H,key t̂ is the visual measurement of the camera translation
direction expressed in the keyframe heading frame. The EKF
uses these measurements in the visual measurement update
through Eq. (6).

zr = Bt
Rk

q +wr,

zt =
tBC + BtpRk −R(BtRkq)

T · tBC
∥tBC + BtpRk −R(BtRkq)

T · tBC∥
+wt.

(6)

zr is the rotation between the current body frame and
the keyframe body frame. It is calculated from ψ̂key to-
gether with the roll and pitch angles of the current frame
ϕ̂curr., θ̂curr. and the keyframe ϕ̂key, θ̂key . zt is the direc-
tion of the translational motion from the camera position at
the keyframe to the current camera position, expressed in the
current body frame. It is obtained by rotating H,key t̂ to get
its expression in the current body frame via ϕ̂curr., θ̂curr.,
and ψ̂key,post.. zt is a unit vector, so the propagated camera
translation is normalized accordingly. tBC is the translation
vector points from the IMU to the camera, expressed in B.
In the implementation, we neglect the correlation of the el-
ements in the three axes of the visual measurements. Thus
the measurement noise matrices Rwt and Rwr are diagonal
matrices.

The rotation update using zr takes place first. And then,
translation update uses zt. The purpose of this two-step
updating is to benefit the calculation of the visual transla-
tion measurement H,key t̂ by the more accurate a posteri-
ori relative yaw angle ψ̂key,post., as introduced in Section 3.
ψ̂key,post. is calculated from the a posteriori RkG q̂ and ĝRk
that has been updated by zr.

2.6 Composition and Resetting for New Keyframe
When a new keyframe is defined, the a posterior relative

pose estimation Bt p̂Rk and Bt
Rk

q̂ are composed to the global
pose, as shown in Eq. (7).

Rk+1

G q =BtRk q̂ ⊗
Rk
G q,

Rk+1pG =R(BtRk q̂)
T ·Rk pG +Bt p̂Rk

(7)

The current body frame Bt becomes the new reference frame
Rk+1. The expression of the gravity vector gRk+1

in Rk+1 is
calculated as gRk+1

= R(BtRk q̂)
T · ĝRk . BtpRk+1

and Bt
Rk+1

q
are set to a zero vector and a unit quaternion whose vector part
is a zero vector, respectively. Their corresponding elements
in the covariance matrix are set to zeros too.

3 VISUAL RELATIVE POSE ESTIMATION

In this section, we describe the proposed method for esti-
mating the yaw angle and the direction of translation relative
to the keyframe. The relative yaw and translation are calcu-
lated separately, as shown in Fig. 1.

3.1 Keyframe-based Feature Tracking
We follow the same idea of keyframe-based feature detec-

tion and tracking strategy as [5, 12]. Kanade-Lucas-Tomasi
(KLT) [17] is utilized as the feature tracker to continuously
track FAST features [18] between frames. If the number of
points tracked in the current frame falls below a threshold,
the current frame is defined as the new keyframe. A fixed
number of uniformly distributed FAST points are detected in
a new keyframe by evenly splitting the image into several
regions while keeping the same number of good features in
each region. These newly detected points are then added to a
database for tracking in the coming frames.

3.2 Linear Relative Yaw Calculation
Based on the epipolar geometry of a pair of correspond-

ing points, the linear 8-point algorithm [19] calculates the
essential matrix which helps extracting the 3D relative rota-
tion and the 2D direction of translation. If two relative ori-
entation angles are known, the remaining angle and the di-
rection of translation can be calculated linearly with 5-point
pairs [20]. Slightly different from [12], our linear 5-point
algorithm projects point coordinates on a unit sphere in the
heading frame H .

The pixel location of a feature point is first undistorted
and normalized using the distortion parameters and the in-
trinsic matrix of the camera. We then obtain the homoge-
neous coordinates of the feature points expressed in the cam-
era frame, C p̃key and C p̃curr.. The epipolar constraint is
given by

C p̃Tcurr. ⌊C,curr.t×⌋RC,curr.
C,key

C p̃key = 0 (8)

where ⌊C,curr.t×⌋ is the skew-symmetric matrix of the trans-
lation vector C,curr.tkey that points from the origin of the cur-
rent camera frame to the origin of the keyframe camera frame,
expressed in current camera frame.

Using the camera extrinsic rotation matrix RB
C and the

estimated roll ϕ̂ and pitch θ̂ angles of the keyframe and the
current frame, we can express the feature point coordinates in
the heading frame H , as

H p̂key = RT
θ̂,key

RT
ϕ̂,key

RB
C
C p̃key,

H p̂curr. = RT
θ̂,curr.

RT
ϕ̂,curr.

RB
C
C p̃curr..

(9)

H p̂key and H p̂curr. are normalized to unit vectors Hpkey and
Hpcurr., which are equivalent to the 3D coordinates of the
feature points projected onto the unit sphere. They describe
the directions of the feature points in the heading frame H ,
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so we refer to them as point vectors. The epipolar constraint
equation in H is given by

HpTcurr. ⌊H,curr.t×⌋RH,curr.
H,key

Hpkey = 0 (10)

where RH,curr.
H,key is the relative rotation between two heading

frames, which equals to Rψkey . In Eq. (10), the essential
matrix EH = ⌊H,curr.t×⌋Rψkey has six entries defined up-
to-scale, which can be linearly solved with a minimum of five
points [20]. The visual measurement of relative yaw ψ̂key is
then calculated from EH .

Both [5] and [12] reject outliers in the tracked points us-
ing the prior relative pose based on state propagation. They
apply a threshold on the 2D distance from each tracked point
to the epipolar line or the residuals of the epipolar constraint
equation. This scheme is faster than iterative random sample
consensus (RANSAC) outlier rejection. However, aggressive
maneuvers may cause fewer feature points to be detected and
correctly tracked. Due to the biases of the IMU measure-
ments and the simplified drag model, the propagated relative
translational motion would diverge if without enough vision
updates. Consequently, the prior relative pose is not accurate
enough for outlier rejection. Therefore, we employ RANSAC
in the linear 5-point algorithm to calculate the relative yaw
angle. Setting the number of random trials to a reasonably
small number limits the required computation cost.

3.3 Linear Relative Translation Direction Calculation
During implementing the 5-point algorithm and testing it

on EuRoC, it was observed that the translation direction vec-
tors calculated together with relative yaw were noisy. The
standard deviation of the direction error can be more than
30 degrees compared to the ground-truth motion direction.
Instead of using this translational direction in the EKF up-
date, we take the relative yaw angle as a known value and
re-calculate the translation vector H,key t̂. As introduced be-
fore, the visual translation measurement update happens after
the rotation update. So we can calculate H,key t̂ after the rota-
tion update and make use of the updated a posteriori relative
yaw angle ψ̂key,post.. This is achieved by rotating Hpcurr.
from the current heading frame to keyframe heading frame
by R(ψ̂key,post.). Then we get the epipolar constraint equa-
tion in the keyframe heading frame as

H,keypTcurr. ⌊H,keyt×⌋ H,keypkey = 0. (11)

There are only three up-to-scale entries in the translation-only
essential matrix EH,key = ⌊H,keyt×⌋ in Eq. (11). Therefore,
H,key t̂ can be solved by a minimum of two point correspon-
dences, as in [21].

We solve H,key t̂ from the inlier point pairs of the 5-point
RANSAC. In order to calculate translation, corresponding
point vector pairs with big enough angles are necessary. Af-
ter rotating the inlier point vectors into the keyframe heading
frame, the point vector pairs are checked. Only pairs with

angles beyond a certain threshold are used. In our implemen-
tation, the threshold is 5 degrees. Note that Eq. (11) has two
mirrored solutions. The true direction can be determined by
triangulating features and choosing the solution with all the
features in front of the camera. To be more efficient, we use
the propagated BtpRk to determine the direction of H,key t̂.
The solution that has a smaller angle with the expression of
BtpRk in the heading frame is selected.

4 EXPERIMENTAL RESULTS

We evaluate the proposed ego-motion estimator on the
widely recognized EuRoC MAV dataset. This dataset is com-
prised of multiple sequences with varying lighting conditions,
and a maximum flight speed of 2.3 m/s. The proposed ap-
proach uses synchronized left-camera images and IMU mea-
surements.

4.1 Data Pre-processing
In the EuRoC dataset, the IMU does not coincide with

the forward-right-down body frame definition. As a result,
the accelerometer’s x-axis and y-axis do not directly measure
the drag force in the body horizontal plane. A body-IMU
rotation matrix is needed to transfer the accelerometer’s mea-
surements to the body frame. We assume that the coordinate
frame of the reflective markers mounted on the MAV approx-
imately coincides with the body frame. Because the origin
of our body frame is the same as the IMU frame, we use the
sensor rotational extrinsic data to rotate IMU measurements
and ground truth to the body frame.

The proposed estimator is initialized just before taking
off to comply with the drag force model, which only stands
when the MAV is in flight. Visual updating starts after the
second keyframe is captured. The initial value of kd was set
to -0.2 for all the sequences. This value is close to the least-
square solution calculated by the ground-truth velocity of the
Machine Hall 05 (MH05 ) sequence.

4.2 Results and Discussion
The main evaluation results of the proposed estimator in

terms of time efficiency and accuracy are listed in Table 1.
The C++ code of this work is implemented based on the open-
sourced code of [22]. The proposed estimator is compared
with a state-of-the-art (SOTA) VIO MSCKF [2] implemented
by the same open-sourced repository [22]. The top group of
Table 1 (from 1⃝ to 3⃝) shows the test results of the proposed
estimator with three different settings in the vision front-end.
The bottom group ( 4⃝ and 5⃝)) shows the outputs of MSCKF
in two settings. Here we only compare with MSCKF since the
gap in accuracy is big. The comparison of MSCKF with other
VIO solutions can be found in [9].

The time consumption measurements shown in the sec-
ond and the third columns of Table 1 were collected during
the tests on MH05 sequence of the EuRoC dataset, running
on a laptop computer. The root-mean-square error (RMSE)
of absolute translation error (ATE) is the metric of estimation
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Table 1: Accuracy and time efficiency of the proposed method (top group, rows 1 to 3) and the baseline method (bottom group,
rows 4 and 5). V101 to MH05 shown in the eleven columns from the right are the names of flight sequences of the EuRoC
MAV dataset. The data below the sequence names show the root-mean-square errors (RMSE) of the absolute translation errors
(ATEs) of the estimated trajectories. Bold represents the overall best and underline represents the best of the proposed method.

ID ATT1 AVT2 NFP3 V101 V102 V103 V201 V202 V203 MH01 MH02 MH03 MH04 MH05
1⃝ 4.41 3.11 30 5.12 1.19 8.04 4.21 2.11 5.90 4.70 13.4 12.0 2.37 2.76
2⃝ 7.25 5.81 30 1.26 1.17 3.11 2.38 1.48 2.91 3.60 13.2 11.2 2.12 1.56
3⃝ 12.9 11.5 250 2.04 1.76 5.37 4.56 2.80 7.76 13.5 1.67 10.4 2.37 1.35
4⃝ 7.93 3.82 51 0.16 0.13 0.12 245 0.13 0.16 38.0 5.20 130 2.35 1.00
5⃝ 17.4 7.58 199 0.09 0.09 0.11 0.12 0.10 0.20 0.34 0.24 58.5 0.65 1.54
1 Average total time (ATT) consumption (millisecond) of processing after receiving a new frame.
2 Average vision-related time (AVT) consumption (millisecond) in processing a single frame, including feature tracking,

feature detection, and outlier rejection of feature points.
3 Number of feature points (NFP). For the proposed approach (top group), the shown number is the number of feature points

to detect in a new keyframe. For MSCKF (bottom group), the shown number is the average number of tracked points in
each frame.

accuracy. The RMSEs of ATEs of the eleven flight sequences
of the EuRoC dataset are shown in Table 1. The alignment of
the estimated trajectory and the ground-truth trajectory has 4
degrees of freedom (yaw and 3-d translation). The calculation
is conducted by [23].

The upper group of Table 1 (from 1⃝ to 3⃝) shows the test
results of the proposed estimator with three different settings
in the vision front-end. For 1⃝ and 2⃝, 30 feature points are
detected in a keyframe, and a new keyframe is defined when
the number of inlier points is below 10. For 3⃝, 250 feature
points are detected in a keyframe, and a new keyframe is de-
fined when there are fewer than 60 inliers. 1⃝ corresponds to
the estimator that uses images that are downsampled to half of
the original resolution. And it does not have histogram equal-
ization as image preprocessing. The rest settings ( 2⃝ and 3⃝)
and MSCKF ( 4⃝ and 5⃝) use images with original resolu-
tion and preprocessed by histogram equalization. Thus the
vision processing time consumption of 1⃝ is much lower than
2⃝ while sacrificing the accuracy. It is an extreme case that

minimizes visual processing. In the 5-point RANSAC of 1⃝,
2⃝, and 3⃝, six point pairs are selected as a sample. The total

number of random trials is set to six. If the highest inlier rate
is more than 60%, this sample’s inlier point pairs are used to
calculate the essential matrix.

Comparing 2⃝ and 3⃝, it is obvious that more feature
points do not necessarily improve the accuracy of the pro-
posed estimator. This is different from MSCKF. As shown by
4⃝ and 5⃝, 5⃝ detects and tracks more points and has higher

accuracy. The reason is that the vision update of MSCKF is
triggered when a point loses tracking or leaves the field of
view. Thus a bigger number of points means more times of
updating. But for the proposed estimator, vision update hap-
pens for every frame and the visual measurement is calculated
from all points tracked in a frame. In this case, fewer points
do not necessarily lead to a less accurate essential matrix. On

the contrary, a big number of tracked points with tracking
noise would deteriorate the accuracy. So the proposed esti-
mator is more suitable for applications where the computa-
tional power for visual processing is very limited and only a
small number of points can be detected and tracked.

For 2⃝, the estimated trajectories of MH02 and MH03 are
less accurate than other sequences. The trajectory errors are
mainly caused by the big estimation errors at the beginning
of the sequences. For MH02, the ATE of the second half of
the estimated trajectory is 3.243. For MH03, after deleting
20% of the estimated trajectory from the beginning of the se-
quence, the ATE of the rest part of the trajectory is 2.979.
From Fig. 4, we can see that the estimation converges to be
accurate after around 30 seconds since taking off. So in real-
world applications, it is better to have safety measures for the
possible big drifts at the beginning of a flight, for example, a
space without obstacles close by.

From Table 1, we notice that, in the sequences V201,
MH01, and MH03, MSCKF 4⃝ drifts after very slow motion,
which leads to big trajectory errors. But in general, the pro-
posed approach is less accurate than MSCKF. Despite that,
as shown in Fig. 3, Fig. 4, and Fig. 5, the accuracy is ac-
ceptable for short-term ego-motion estimation. The advan-
tages of the proposed estimator are time efficiency and ro-
bustness. As shown in Table 1, 1⃝ and 2⃝ consume less time
than MSCKF 4⃝. Another fact worth mentioning is that we
observed in experiments that our 5-point RANSAC imple-
mentation runs slower than the OpenCV 8-point RANSAC
adopted by MSCKF. It can be attributed to the highly op-
timized OpenCV library function. There can be a space to
further shorten the time consumption by optimizing our im-
plementation. As for robustness, the proposed estimator does
not have big drifts as 4⃝ when testing on the sequences V201,
MH01, and MH03. As the proposed estimator does not map
the environment, sudden loss tracking of many or all points
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does not require re-initializing the system. In addition, the
proposed estimator maintains accuracy even if there is not vi-
sual measurement anymore. As shown in Fig. 5, we cut off
the camera image stream at the 52nd second after taking off,
and the accuracy basically maintains. Obvious estimation er-
rors are only observed in the velocity estimation of the z-axis
in the last ∼12 seconds of flight.

Figure 3: Estimated trajectory of MH05 sequence by the pro-
posed estimator 2⃝ in Table 1.

(a) Euler Angles Estimation (rad).

(b) Velocity Estimation Expressed in MAV Body Frame (m/s).

Figure 4: Estimated attitude and velocity of MH03 sequence
by the proposed estimator 1⃝ in Table 1.

(a) Euler Angles Estimation (rad).

(b) Velocity Estimation Expressed in MAV Body Frame (m/s).

Figure 5: Estimated attitude and velocity of MH05 sequence
by the proposed estimator 2⃝ in Table 1. Camera images are
no longer used by the estimator after ∼590 seconds.

5 CONCLUSION AND FUTURE WORK

In this paper, we present a model-aided ego-motion esti-
mator that is friendly to multirotor MAVs with limited pro-
cessing power onboard. Minimized visual processing and
a simple EKF-based backend that performs loosely-coupled
visual-inertial fusion lead to high time efficiency. The pro-
posed estimator is less accurate than a SOTA approach in
comparison, but it can be enough for short-term navigation.
Autonomous drone racing is a potential application. The
proposed estimator’s small requirement for processing power
benefits other algorithms running onboard. It has acceptable
drifts in estimating flight trajectories, which can be corrected
by the racing gates that can serve as stationary landmarks.
The estimation accuracy rarely drops in short term when the
vision information becomes absent, implying that the estima-
tor can stay functional when there is no valid feature point
due to the motion blur in agile maneuvers.
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