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ABSTRACT

Traveled distance estimation is a common prob-
lem for robotic applications taking place in un-
known environments where GPS is not available.
In drones, the presence of weight and computa-
tional power constraints leads to the importance
of developing odometry strategies based on min-
imilastic equipment. In this study, we imposed
upon a hexarotor to perform up-and-down oscil-
latory motions while flying forward to test a self-
scaled scheme of a visual odometer for the first
time. For the odometry, the downward transla-
tional optic flow was scaled by the current vi-
sually estimated flight height and then mathe-
matically integrated to evaluate the total distance
traveled. The self-oscillatory trajectory gener-
ated successions of contraction and expansion in
the optic flow vector field, which allowed to esti-
mate the flight height of the hexarotor by means
of an Extended Kalman Filter. We present three
strategies based on sensor fusion that rely on no,
precise or rough prior knowledge of the optic
flow variations imposed by the sinusoidal trajec-
tory. The rough prior knowledge strategy uses
solely the timing of the variations of the optic
flow. Tests were performed in a flying arena,
where the hexarotor followed a circular trajec-
tory while oscillating up-and-down over about
50m under illuminances of 117lux and 1518lux.

1 INTRODUCTION

Traveled distance estimation of an aerial robot in an un-
known environment is a common problem for all types of ap-
plications when GPS is not available. In drones, the need to
reduce the Size, Weight and Power (SWaP) of the perception
equipment is often of great importance to ensure the success
of the task.
Several visual odometric approaches involving the use of ei-
ther optic flow [1, 2], events, images & IMU combination
[3] or the sparse-snapshot method [4] have been successfully
tested on flying robots. All these approaches require ground
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height information providing the factor scaling the visual in-
formation. This scaling factor can be determined separately
using a static pressure sensor [5] or stereovision [1, 4] or is
integrated in the hybrid approach [3], for example. One so-
lution to estimate the 2D position of a drone in an unknown
environment is concurrent onboard odometry and visual map-
ping, as well as onboard SLAM (Simultaneous Localisation
and Mapping) [6, 7, 8]. A minimalistic alternative is IMU
(Inertial Measurement Unit) based dead reckoning - i.e. iner-
tial integration [9]. The dead reckoning position signal could
be used by a flying robot to get close enough to detect a land-
mark before reaching it, giving a new known starting point.
Most of these approaches require the use of computationally
intensive algorithms and a feedback from the environment
(such as the detection of a beacon or the feedback from a
map). A minimalistic alternative is the use of optic flow cues,
such as translational optic flow and optic flow divergence.
Translational optic flow has been used on flying robots to vi-
sually control landing [10], to follow uneven terrain [11] and
to attempt visual odometry and localisation [12, 13] (see [14]
for review).
Self-oscillations have been observed in honeybees flying for-
ward in both longitudinal and vertical tunnels ([15] and [16],
respectively). The self-oscillatory motion generates a series
of expansions and contractions in the optic flow vector field:
the optic flow divergence cue. Visually controlled landing
was achieved by using optic flow divergence [17, 18, 19, 20].
The instabilities due to the oscillatory movement have been
used to determine the flight height of a micro-flyer by ex-
ploiting the linear relation between the oscillation and the
fixed control gain [19]. The instabilities due to depth vari-
ation have been used to assess the optic flow scale factor of
the observed scene to perform visual odometry onboard an
underwater vehicle [21]. In [22], the local optic flow diver-
gence was measured by means of two optic flow magnitudes
perceived by two optic flow sensors placed on a chariot per-
forming back-and-forth oscillatory movements in front of a
moving panorama. The local optic flow divergence was then
used to estimate the local distance between the chariot and
the moving panorama by means of an Extended Kalman Fil-
ter (EKF).
In this study, we investigate how to include some knowl-
edge about the trajectory oscillations in an odometry strategy
based only on optic flow cues. The optic flow based odome-
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try scheme, called SOFIa (Self-scaled Optic Flow time-based
Integration model), was tested here for the first time on a
hexarotor equipped with optic flow sensors that oscillated up-
and-down following a circular trajectory of about 50m. The
SOFIa model was previously assessed in bio-plausible simu-
lations to model the visual odometer of honeybees [23]. The
estimation of the distance traveled by means of the SOFIa
method is based on the integration of the local translational
optic flow scaled by the flight height of the drone, which is es-
timated by means of an EKF taking the local optic flow diver-
gence as measurement. Such integration scheme can there-
fore be considered as a minimalistic dead reckoning solution
based on optic flow.
First, we applied the SOFIa method using only 2 optic flow
measurements perceived along the longitudinal axis of the
drone, with no prior knowledge of the optic flow variations.
Then, to increase the odometry accuracy, we tested a sensor
fusion strategy based on the parameters of the self-oscillation
using 4 optic flow sensors embedded on the hexarotor. The
idea was to use some prior knowledge of the oscillations im-
posed upon the drone to better evaluate the optic flow diver-
gence and the translational optic flow cues. We tested two
different sensor fusions based respectively on a precise and
on a rough prior knowledge of the optic flow variations. The
sensor fusion based on a rough prior knowledge uses solely
the timing of the variations of the optic flow. All three optic
flow based odometry processing were tested on bouncing cir-
cular trajectories of about 50m under illuminances of 117lux

Figure 1: Hexarotor oscillating up-and-down while flying for-
ward over the ground. a) The hexarotor’s velocity V can be
decomposed in the components Vx and Vh. Along the hexaro-
tor’s longitudinal axis x, the optic flow sensors are set at an-
gles ±ϕ with respect to the hexarotor’s vertical axis and at
a distance D with respect to the ground. They perceive the
optic flow magnitudes ω(ϕ) and ω(−ϕ), respectively. This
configuration is found along the hexarotor’s lateral axis y as
well. b) If Vh is positive, the optic flow divergence component
is a contraction (i); if it is negative, the optic flow divergence
component is an expansion (ii). The contraction or expansion
of the optic flow is superimposed in the ventral optic flow
vector field on the translational optic flow.

and 1518lux.
In section 2, we discuss the measurement of the local trans-
lational and divergence optic flow cues. In section 3, we dis-
cuss the minimalistic visual odometer method. In section 4,
we describe the hexarotor and the optic flow sensors used.
In section 5, we describe the odometry processing based on
the raw measurements of 2 optic flow sensors without any
prior knowledge of the optic flow variations. In section 6,
we describe the sensor fusion odometry processing based on
4 optic flow sensors, both with a precise and with a rough
prior knowledge of optic flow variations. In section 7, we
show experimentally that the sensor fusion strategies based
on the knowledge of optic flow variations increase the mea-
surement accuracy of the local optic flow cues by comparing
the three methods. Finally, we compare the performance of
the minimalistic in-flight optic flow based odometry of the
three methods. In section 8, conclusions are drawn and future
works are discussed.

2 MEASUREMENT OF THE LOCAL OPTIC FLOW CUES

The translational optic flow is the pattern generated on the
optic flow vector field by the translational motion of a drone
flying above the ground [24]. The theoretical local transla-
tional optic flow ωthT can be expressed as the ratio between
the Vx component of the drone’s velocity and its flight height
h (see Figure 1):

ωthT =
Vx
h

(1)

The local translational optic flow can be measured on a
hexarotor as the sum of two optic flow magnitudes ω(ϕ) and
ω(−ϕ) perceived by two optic flow sensors oriented at angles
±ϕ with respect to the hexarotor’s vertical axis, divided by a
known factor of 2 · cos(ϕ)2:

ωmeasT =
ω(ϕ) + ω(−ϕ)
2 · cos(ϕ)2 =

Vx
h

(2)

In the case of a hexarotor equipped with four optic flow sen-
sors as illustrated in Figure 2.b, three translational optic flow
cues can be measured as:

• the sum of the two optic flow magnitudes perceived by
the two optic flow sensors set along the longitudinal
axis x, namely ωmeasT1

,

• the sum of the two optic flow magnitudes perceived on
the x axis by the two optic flow sensors set along the
lateral axis y, namely ωmeasT2

,

• the median of the four optic flow magnitudes consid-
ered, projected on the hexarotor’s vertical axis by a
1/ cos(ϕ) factor, namely ωmeasT3

.

The series of contractions and expansions generated in the
optic flow vector field by up-and-down oscillatory motions is
known as optic flow divergence. When a drone flies forward
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while oscillating up-and-down above the ground, in the optic
flow vector field the optic flow divergence is superimposed on
the translational optic flow. Due to the oscillatory movement,
the state vector X = [h, Vh]

T is locally observable [20]. The
theoretical local optic flow divergence ωthdiv can be expressed
as the ratio between the Vh component of the drone’s velocity
and h (see Figure 1):

ωthdiv =
Vh
h

(3)

In [22], the authors have mathematically demonstrated that
the local optic flow divergence can be measured on a micro-
flyer as the subtraction between two optic flow magnitudes
ω(ϕ) and ω(−ϕ) perceived by two optic flow sensors oriented
at angles ±ϕ with respect to the normal to a surface, divided
by a known factor of sin(2ϕ):

ωmeasdiv =
ω(ϕ)− ω(−ϕ)

sin(2ϕ)
=
Vh
h

(4)

In the case of a hexarotor equipped with four optic flow sen-
sors, two optic flow divergence cues can be measured as:

• the subtraction between the two optic flow magnitudes
perceived by the two optic flow sensors set along the
longitudinal axis x, namely ωmeasdivx

,

• the subtraction between the two optic flow magnitudes
perceived by the two optic flow sensors set along the
lateral axis y, namely ωmeasdivy

.

3 THE SOFIA VISUAL ODOMETER METHOD

In [23], the authors have assessed in simulation a model
of the honeybee’s visual odometer called SOFIa (Self-scaled
Optic Flow time-based Integration model). The SOFIa
model is based on the integration of the local translational
optic flow ωT scaled by the estimated distance with respect
to the ground ĥ:

X̂SOFIa =

∫
ωT · ĥ dt (5)

In [23], ĥ was estimated by means of an EKF taking as input
the honeybee’s wing stroke amplitude and as measurement
the local optic flow divergence computed as the ratio between
Vh and h (as in equation (3)). The local translational optic
flow was computed as the ratio between Vx and h (as in equa-
tion (1)). The SOFIa model was found to be about 10 times
more accurate than the raw mathematical integration of optic
flow.

4 MATERIALS AND METHODS

The hexarotor was developed together with HexadroneTM

and equipped with four Pixart PAW3903 optic flow sensors
(see Figure 2 and Table 1). The Pixart PAW3903 optic flow
sensors were embedded on printed circuits to set them on the

Figure 2: a) Hexarotor equipped with 4 optic flow sensors ori-
ented towards the ground flying along a bouncing circular tra-
jectory in the Marseille’s flying arena. b) 2 optic flow sensors
were set along the longitudinal axis x at angles ϕ = ±30◦
with respect to the hexarotor’s vertical axis z, while the other
2 optic flow sensors were set along the lateral axis y at angles
ϕ = ±30◦ with respect to the hexarotor’s vertical axis z. c)
Example of a test flight trajectory over 53m at an oscillation
frequency of 0.28Hz.

drone. The hexarotor had as onboard low-level flight con-
troller the PX4 autopilot system [25] and used a trajectory
tracking algorithm1 to perform up-and-down oscillating cir-
cular trajectories. Based on the intrinsic attitude stability of
the hexarotor, we can consider that there is no rotational com-
ponent measured by the optic flow sensors. Furthermore, we
consider that pitch and roll are negligible despite the circular
bouncing trajectory. Thus, the downward translational optic
flow can be measured along the x component of the optic flow
sensors. Position and orientation used in the hexarotor’s con-
trol were taken from the motion-capture (MoCap) system in-
stalled in the Mediterranean Flying Arena. The flying arena
was equipped with 17 motion-capture cameras covering a 6
× 8 × 6 m volume using a VICONTM system. Datasets in-
cluding the optic flow measurements were recorded via the
Robot Operating System (ROS) and processed with the Mat-
lab/Simulink 2022 software.

State space representation used for the EKF To estimate
the hexarotor’s flight height ĥ, we chose to model the hexaro-
tor’s system as a double integrator receiving as input the ac-
celeration az on the vertical axis z given by the drone’s IMU.
Thus, the hexarotor’s state space representation can be ex-

1https://github.com/gipsa-lab-uav/trajectory control
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Figure 3: The sensor fusion based on 4 optic flow sensors rely on additional Kalman Filters (KF). The embedded computer
handles the 4 optic flow sensors set on the hexarotor. ωmeasdivx

and ωmeasdivy
are taken as measurements by a KF (noted KFdiv),

that takes as input the current value Udiv of the model of the optic flow divergence. The output of the KF is the local optic flow
divergence ωKFdiv . ωmeasT1

, ωmeasT2
and ωmeasT3

are taken as measurements by a KF (noted KFT ), that takes as input the current
value UT of the model of the translational optic flow. The output of the KF is the local translational optic flow ωKFT . The EKF
takes as input the hexarotor’s acceleration az and as measurement ωKFdiv to estimate the current flight height ĥ. The EKF output
ĥ scales ωKFT , that is then integrated to perform odometry.

Specifics Optic flow sensors
Sensor chip Pixart PAW3903
Sensor PCB 4 × 2g
Hardware read-out of the 4 sensors Arduino Nano

Table 1: Table of the specifics of the optic flow sensors
equipped on the hexarotor.

pressed as:




Ẋ = f(X, az) = A ·X +B · az =

[
0 1
0 0

]
·X +

[
0
1

]
· az

Y = g(X) = [X(2)/X(1)] = Vh/h = ωdiv
(6)

where X =
[
h, Vh

]T
is the hexarotor’s state vector.

The use of an EKF was necessary due to the non-linearity of
the local optic flow divergence, as the measurement depends
on the ratio of both states Vh and h (see equation (3)).

5 ODOMETRY METHOD WITH 2 OPTIC FLOW
SENSORS WITH NO PRIOR KNOWLEDGE (NPK)

The local optic flow divergence ω2S
div was measured as

the subtraction between the two raw optic flow magnitudes
perceived by the two optic flow sensors set along the x axis,
while the local translational optic flow ω2S

T was measured as
their sum. To estimate the flight height ĥ, the EKF received
as:

• input: the acceleration of the drone az ,

• measurement: the local optic flow divergence ω2S
div .

See Appendix B for the EKF calculations.
ĥ was then used to scale the integration of the local transla-
tional optic flow ω2S

T to perform odometry. This odometry
method based on 2 raw optic flow measurements does not
need prior knowledge of any parameter to assess the distance
traveled.

Figure 4: Inputs Udiv of the Kalman Filters (KF) used to fuse
optic flow divergence cues with the Precise Prior Knowledge
(PPK) fusion strategy (in purple) and with the Rough Prior
Knowledge (RPK) fusion strategy (in green), respectively. In
the RPK sensor fusion strategy, only a sinus helps the KF to
keep the oscillation timing as the shape looks similar.

6 FUSION STRATEGIES WITH 4 OPTIC FLOW SENSORS

6.1 Fusion strategy using a very Precise Prior Knowledge
(PPK) of the optic flow variations

Here, we investigated how to use prior knowledge of the
self-oscillation to further improve the accuracy of the distance
traveled estimates.
We expressed the optic flow divergence induced by the self-
oscillation to serve as input of a Kalman Filter (KF) as follows
(see Figure 4):

ωdiv =
ḣ

h
−→ Udiv(k) =

Aosc2πfosc cos(2πfosckδt)

h0 +Aosc sin(2πfosckδt)
(7)

with fosc oscillation frequency equal to 0.28Hz, Aosc
oscillation amplitude equal to 0.25m and h0 average flight
height equal to 0.55m. To fuse ωmeasdivx

and ωmeasdivy
, we used

a KF (see Figure 3). At each kth step, the KF received as
input the current value of the model in equation (7) and as
measurements ωmeasdivx

and ωmeasdivy
. See Appendix A for the

KF calculations.
We expressed the translational optic flow induced by the
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Figure 5: i) The local Optic Flow (OF) divergence ω2S
div (in

blue) measured with the No Prior Knowledge (NPK) method
had a Signal-to-noise Ratio (SnR) of 5.62dB. The theoret-
ical local optic flow divergence was computed as the ratio
between Vh and h (in dashed line). ii) The local translational
optic flow ω2S

T (in red) measured with the NPK method had
a SnR of 19.12dB. The theoretical local translational op-
tic flow was computed as the ratio between Vx and h (in
dashed line). iii) The estimates of the flight height ĥ con-
verged quickly (within 4s) to the ground truth h. iv) The aver-
age percentage error of ĥ with respect to h after convergence
was −9.77% (with a range of [−61.5%, 65.34%]). v) The fi-
nal percentage error in the estimates of the distance traveled
X̂SOFIa with respect to the ground truth Xgt was −8.57%.

forward motion to serve as input of a KF as follows:

ωT =
Vx
h
−→ UT (k) =

ωKFT (k − 1) · ĥ(k − 1)

h0 +Aosc sin(2πfosckδt)
(8)

Vx(0) ≈ ωKFT (k = 0) · ĥ(k = 0) was initialized at 0.45m/s.
To fuse the three translational optic flow cues ωmeasT1

, ωmeasT2

and ωmeasT3
, we used a KF (see Figure 3). At each kth step,

the KF received as input the current value of the model in
equation (8) and as measurements ωmeasT1

, ωmeasT2
and ωmeasT3

.
See Appendix A for the KF calculations.

6.2 Fusion strategy using a very Rough Prior Knowledge
(RPK) of the optic flow variations

Here, we investigated how to implement the sensor fusion
strategy with 4 optic flow sensors without the knowledge of
the oscillation amplitude Aosc and the average flight height
h0 just by using the knowledge of the trajectory oscillation
timing.
To do so, we approximated very roughly both the optic flow
divergence and the translational optic flow cues to a sinu-

soidal signal to serve as input of both KFs as follows (see
Figure 4):

Udiv(k) = UT (k) = sin(2πfosckδt) (9)

with fosc oscillation frequency equal to 0.28Hz. At each
kth step, both KFs received as input the current value of the
model in equation (9) and as measurements the divergence
optic flow measurements (ωmeasdivx

and ωmeasdivy
) and the transla-

tional optic flow measurements (ωmeasT1
, ωmeasT2

and ωmeasT3
),

respectively. See Appendix A for the KF calculations.

6.3 Extended Kalman Filter within the fusion strategy with
four optic flow sensors

To estimate the drone’s flight height ĥ, we used an EKF
that received as:

• input: the acceleration of the drone az ,

• measurement: the local optic flow divergence ωKFdiv fil-
tered by the KF based on the measurements of the optic
flow sensors.

See Appendix B for the EKF calculations.
ĥ was used to scale the local translational optic flow ωKFT ,
that was then integrated to perform odometry as follows:

X̂SOFIa =

∫
ωKFT · ĥ dt (10)

7 RESULTS

We compared the sensor fusion strategies based on
Precise Prior Knowledge (PPK) and on Rough Prior
Knowledge (RPK) of optic flow variations (using here 4 op-
tic flow sensors) to the method based on No Prior Knowledge
(NPK) of optic flow variations (using here 2 optic flow sen-
sors). 7 bouncing circular test flights of about 50m were
performed with the hexarotor both under an illuminance of
117lux (5.36 · 10−6W/cm2) and under an illuminance of
1518lux (2.71 · 10−4W/cm2), for a total of 14 test flights.
First, the 14 datasets were processed with the NPK method
(see Section (5)). Then, the 14 datasets were processed us-
ing the PPK strategy (see Section (6.1)) and the RPK strategy
(see Section (6.2)). The KF parameters defined in Appendix
A were chosen as Φ = 10, Γ = 10 and Hk = 10. The KF
parameters were experimentally chosen with the first dataset
taken under an illuminance of 1518lux and were used to pro-
cess all 14 datasets for both PPK and RPK fusion strategies.
In Figures 5 and 6, the optic flow measurements were pro-
cessed with the three strategies (NPK, RPK and PPK) for the
same dataset taken under an illuminance of 1518lux. The
increase in the Signal-to-noise Ratio (SnR, computed as the
squared ratio of the root mean square of the signal and the
root mean square of its noise) observed in Figure 6 for the
local optic flow divergence and the local translational optic
flow between the NPK method and the PPK and RPK strate-
gies influenced the average percentage error of the estimates
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Figure 6: The local Optic Flow (OF) divergence ωKFdiv (in blue) measured with the Precise Prior Knowledge (PPK) strategy
had a Signal-to-noise Ratio (SnR) of 6.72dB (a.i) and with the Rough Prior Knowledge (RPK) strategy of 6.73dB (b.i). The
theoretical local optic flow divergence was computed as the ratio between Vh and h (in dashed line). The local translational
optic flow ωKFT (in red) measured with the PPK strategy had a SnR of 25.74dB (a.ii) and with the RPK strategy of 25.91dB
(b.ii). The theoretical local translational optic flow was computed as the ratio between Vx and h (in dashed line). The estimates
of the flight height ĥ converged quickly (within 4s) to the ground truth h in both cases (a and b.iii). The average percentage
error of ĥ with respect to h after convergence was −2.16% for the PPK strategy (with a range of [−36.89%, 34.13%]) (a.iv)
and −2.58% for the RPK strategy (with a range of [−36.89%, 34.23%]) (b.iv). The final percentage error in the estimates of
the distance traveled X̂SOFIa with respect to the ground truth Xgt was −1.22% for the PPK strategy (a.v) and −2.84% for the
RPK strategy (b.v).

Figure 7: a) Comparison of the position of the hexarotor in the vertical plane (x,z) estimated with the Rough Prior Knowledge
(RPK) fusion strategy (dashed line) to the ground truth given by the MoCap system (continuous line). The estimates of the
flight height ĥ were plotted on the estimates of the traveled distance X̂SOFIa, while the ground truth h was plotted on Xgt.
This test flight was performed at 1518lux. b) The final percentage error in the estimates of the traveled distance X̂SOFIa with
respect to the ground truth Xgt was −2.62%.

of the flight height after convergence (considered at 4s). The
flight height error was −9.77% for the NPK method (see fig-
ure 5), while it was−2.16% for the PPK strategy and−2.84%
for the RPK strategy. Similar results were obtained for all
14 datasets. The SnR of the local translational optic flow
measured with the NPK method ranged between 18.08dB

and 24.79dB, while with the PPK strategy it ranged between
24.84dB and 29.93dB and with the RPK strategy it ranged
between 24.84dB and 28.64dB. The SnR of the local op-
tic flow divergence measured with the NPK method ranged
between 5.41dB and 5.71dB, while with both the PPK and
RPK strategies it ranged between 6.47dB and 7.1dB.
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Figure 8: a) When considering all 14 datasets taken, the fi-
nal percentage error ranged between−8.57% and 8.4% (with
a median of 0.47%) for the No Prior Knowledge (NPK)
method (in black), between −4.02% and 2.38% (with a me-
dian of −0.53%) for the Precise Prior Knowledge (PPK)
strategy (in purple) and between −5.27% and 1.66% (with
a median of −2.17%) for Rough Prior Knowledge (RPK) (in
green). b.i) At 1518lux, the final percentage error ranged be-
tween−8.57% and 5.52% (with a median of−1.14%) for the
NPK method, between −1.65% and 1.08% (with a median
of −0.8%) for the PPK strategy and between −3.21% and
0.67% (with a median of −2.3%) for RPK strategy. b.ii) At
117lux, the final percentage error ranged between −0.72%
and 8.4% (with a median of 4.73%) for the NPK method, be-
tween−4.02% and 2.38% (with a median of−0.27%) for the
PPK strategy and between −5.27%% and 1.66% (with a me-
dian of −2.09%) for the RPK strategy.

The computation of the estimates of the flight height ĥ and
of the estimates of the traveled distance X̂SOFIa allow to as-
sess the position of the hexarotor in the vertical plane (x,z).
An example is shown in Figure 7, in which the estimates of
the flight height ĥ were plotted on the estimates of the trav-
eled distance X̂SOFIa (which are given directly in meters)
and compared to the ground truth given by the MoCap sys-
tem. Since it is based on the optic flow based odometry, the
2D position estimation is subject to an accumulation of error
increasing with the distance covered.
Overall, the final percentage error in the estimates of the
distance traveled X̂SOFIa with respect to the ground truth
Xgt (traveled along the x axis) ranged between −8.57% and
8.4% for the NPK method, between −4.02% and 2.38% for
the PPK strategy and between −5.27% and 1.66% for the
RPK strategy (see Figure 8.a). Similar results were obtained
when considering the two different illuminances separately
(see Figure 8.b).

8 CONCLUSION

In this study, we investigated how to use some knowl-
edge of the oscillating trajectory to improve a minimalistic

odometry based on optic flow cues. The experiments were
performed onboard a hexarotor following circular bouncing
trajectories at a frequency of 0.28Hz over distances of about
50m under illuminances of 117lux and 1518lux. Results
were not influenced by illuminance conditions.
Our findings show that the sensor fusion strategies based on
the use of 4 optic flow sensors allowed to measure the op-
tic flow divergence and the translational flow cues more re-
liably thanks to filtering made by additional Kalman Filters.
This was the case even when taking into consideration only a
rough prior knowledge of the optic flow variations and more
specifically only the oscillation timing of the trajectory. This
prior knowledge can be considered acceptable since the os-
cillation timing is imposed by the drone itself on its own for-
ward trajectory. The sensor fusion strategies decreased the
error in the estimates of the flight height. Consequently, they
decreased the percentage error in the estimates of the distance
traveled in every case considered and thus improved odome-
try performance.
For all three methods, we acknowledge that the final traveled
distance estimates are subject to a small error as the odom-
etry strategy is a dead reckoning method without any feed-
back from the environment. Such a minimalistic optic flow
based odometry strategy would allow a future drone to as-
sess whether it is returning near its base station without GPS.
So far, our findings can be considered as a first experimen-
tal proof-of-concept of the SOFIa model [23] before imple-
menting such optic flow based odometry strategy on a nan-
odrone relying on low-computational power, as considered in
[26]. Furthermore, we need to validate the robustness of these
strategies in a range of forward speeds, in case of large drone
pitch, in the presence of reliefs and finally outdoors.
Future work will also include the implementation of an optic
flow regulator to keep the translational optic flow around a
given setpoint.
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APPENDIX A: KALMAN FILTER CALCULATIONS

For the PPK strategy, the optic flow divergence and trans-
lational optic flow cues were expressed as in equations (7) and
(8), respectively. For the RPK strategy, the optic flow diver-
gence and translational optic flow cues were both expressed
as in equation (9). For each optic flow cue, at each kth step
the current value of the corresponding model was computed
and given to the corresponding KF as input (see Figure 3).
In the following paragraph, the notation A > 0 indicates a
matrix strictly positive definite. The KF took the following
iterative steps for each kth time:
Prediction step
(a) One-step ahead prediction

Xk/k−1 = Φ ·Xk−1/k−1 + Γ · Uk−1/k−1 (11)

with Φ > 0,Γ > 0.
(b) Covariance matrix of the state prediction error vector

Pk/k−1 = Φ · Pk−1/k−1 · ΦT +Q (12)

Correction step
(c) Measurement update

Xk/k = Xk/k−1 +Kk · (Y ik −Hk ·Xk/k−1) (13)

with Y ik current value of the ith measurement, Hk > 0 and
Kk Kalman gain defined as:

Kk = Pk/k−1 ·HT
k · [Hk · Pk/k−1 ·HT

k +Rk]
−1 (14)

The measurement update step was repeated for each ith mea-
surement (2 times for the optic flow divergence and 3 times
for the translational optic flow).
(d) Covariance matrix of state estimation error vector

Pk/k = Pk/k−1+Kk · [Hk · Pk/k−1 ·HT
k +Rk] ·KT

k (15)

(e) Innovation
Ỹk = Yk −Hk ·Xk/k (16)

APPENDIX B: EXTENDED KALMAN FILTER
CALCULATIONS

The discretized model of the hexarotor (equation (6)) can
be expressed as

{
X[k + 1] = Φ ·X[k] + Γ · U [k]
Y [k] = Ck ·X[k] +Dk · U [k]

(17)

with
Φ = eA·dt (18)

Γ = (

∫ dt

0

eA·τdτ) ·B = (AT · eA·dt −AT ) ·B (19)

Ck = h(Xk) =

[
X2[k]

X1[k]

]
(20)

Dk = 0 (21)

where dt is the discretization time. To estimate the flight
height h, the EKF took the following iterative steps for each
kth time:
Prediction step
(a) One-step ahead prediction

Xk/k−1 = Φ ·Xk−1/k−1 + Γ · Uk−1/k−1 (22)

(b) Covariance matrix of the state prediction error vector

Pk/k−1 = Φ · Pk−1/k−1 · ΦT +Q (23)

Correction step
(c) Measurement update

Xk/k = Xk/k−1 +Kk · (Yk −Hk ·Xk/k−1) (24)

with Kk Kalman gain defined as:

Kk = Pk/k−1 ·HT
k · [Hk · Pk/k−1 ·HT

k +Rk]
−1 (25)

andHk Jacobian matrix for the non linear function defined as
follows:

Hk =
∂h

∂X
|X=Xk/k−1

=
[
− ḣ
h2

1
h

]
(26)

(d) Covariance matrix of state estimation error vector

Pk/k = Pk/k−1+Kk · [Hk · Pk/k−1 ·HT
k +Rk] ·KT

k (27)

(e) Innovation
Ỹk = Yk −Hk ·Xk/k (28)
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