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L. Oyuki Rojas-Perez, J. Martinez-Carranza*

Instituto Nacional de Astrofı́sica, Óptica y Electrónica Puebla, Mexico

ABSTRACT

Autonomous Drone Racing (ADR) has pushed
the development of artificial pilots that enable a
drone to fly autonomously on a race track. Deep-
Pilot is an artificial pilot trained with a Deep
Learning (DL) methodology for ADR. Given a
set of camera images, this neural pilot estimates
flight signals to navigate the drone throughout
the race track. However, DeepPilot requires
noise filters in output values to smooth out peaks
in the flight signals, which produce oscillatory
behaviour and jolts. Seeking to improve the per-
formance of the artificial pilot, we propose to use
a gate detector, also based on DL, to detect gates
and use the position of the gate on the image in
a state machine that automatically calculates the
corresponding gains. To assess our approach, we
carried out experiments in a simulation environ-
ment with a racetrack composed of 18 gates at
different heights and orientations. We present a
comparison with manually-set gains versus our
automatic gain tuning approach. With the lat-
ter, the drone completes more than 15 consec-
utive laps on the same racetrack without colli-
sions. Our approach was also successful in the
scenario where some gates change position dy-
namically.

1 INTRODUCTION

Recent solutions to Autonomous Drone Racing (ADR)
have proposed to use a deliberative approach involving path
planning, control and trajectory tracking via Model Predictive
Control and Reinforcement Learning to find optimal trajecto-
ries and control flight signals to navigate a race track as fast as
possible [1, 2, 3]. Some of these approaches have been suc-
cessful in demonstrating performance comparable to a human
pilot [4]. However, this strategy relies on high-frequency and
accurate pose estimation of the drone and knowledge of the
position of the gates in the race track.

In contrast, other approaches have explored a more reac-
tive strategy where no drone position or race track knowledge
is available to the artificial pilot. Instead, the latter is trained
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Figure 1: Schematic view of our approach where we pro-
pose to use a gate detector to leverage the performance of
DeepPilot [6], a neural pilot trained to estimate flight signals
(Sϕ, Sθ, Sψ, Sh) from camera images. We propose to use the
gate position detected on the current image to automatically
tune a set of gains (Kϕ,Kθ,Kψ,Kh) to replace the noise fil-
ter used by DeepPilot to avoid oscillatory behaviour and sig-
nal saturation. A video illustrating our approach can be seen
at https://youtu.be/49OzJCHTJu4

to regress instantaneous flight signals from an image captured
with a camera on board the drone [5, 6]. Deep Learning has
become the viable option for implementing neural models
that learn flight signals from camera images for ADR. For
example, in our previous work, DeepPilot [6], we present
an artificial pilot based on a Convolutional Neural Network
(CNN). That includes temporal information for flight signal
estimation by using six images equally sampled in one second
(i.e., every five images per second). These images form a sin-
gle image mosaic associated with their corresponding flight
signals.

DeepPilot has been shown to enable a drone to navigate
on a race track with gates randomly placed and at differ-
ent orientations and heights. However, the estimated flight
signals should be noise filters in output values to smooth
out peaks in the flight signals, which produce oscillatory be-
haviour and jolts. Another disadvantage is that if we change
the platform, for example, the Bebop 2 simulated in RotorS
[7], DeepPilot provides the incorrect proportion of the signal
value. It means that the estimated flight signals are correct
regarding what flight signal has to be sent to the drone (angle
in roll, angle in pitch, velocity in yaw, velocity in altitude)
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but with an incorrect proportion of the signal value. There
are two options to solve this: 1) tuning a set of constants that
act as gains to improve the performance of the artificial pilot
and 2) providing more examples to the training set. However,
this would involve the generation of large data sets and long
training times.

Motivated by the fact that gain tuning would be preferable
over large data generation, we propose using a gate detector’s
output to tune these gains automatically. DL has also been ef-
fectively used to solve the problem of gate detection on an im-
age in the context of ADR [8], including its use to implement
a flight controller [9]. However, given that the gate detector
does not provide 3D information about the gate, we can not
use the controller to control the yaw signal when the gate is
observed in a skew view. Nevertheless, DeepPilot has learned
to estimate a yaw signal under this scenario. Thus, we pro-
pose to use the gate detector, implemented with an SSD-based
model [10] to leverage the performance of DeepPilot via auto-
matic gain tuning. Figure 1 illustrates our full approach: first,
flight signals are obtained with DeepPilot, which receives as
input a six-image mosaic. Next, the gain tuner receives Deep-
Pilot’s output and the output of the gate detector, which uses
the current image to detect the gate, whose position will cal-
culate the value of the corresponding gain for each flight sig-
nal. Finally, we will send the product of the estimated flight
signals multiplied by the gains to the drone.

We performed several experiments in simulation compar-
ing the performance of DeepPilot without gain multiplication,
DeepPilot with gains set manually, and DeepPilot with gains
tuned using our proposed approach. Our results indicate a
significant improvement over the former options. We also in-
clude an experiment where the drone performs several flights
on the same track, and in some laps, the gates are changed in
position to assess whether the gains adjust adequately, which
effectively happened as expected.

For a more detailed explanation of our approach, this pa-
per has been organised as follows: Section 2 summarises rel-
evant related works; Section 3 presents our proposed method-
ology; our experimental framework is described in Section 4;
conclusions and future work are discussed in Section 5.

2 RELATED WORK

Most ADR techniques are based on sensing, perception
tasks, control, path flight, and localisation relative to the gate
or global localisation using external sensors [1]. In most
strategies, cameras were the principal sensor used to interpret
the environment, gate or obstacle detection and localisation
of the vehicle on the race track.

However, the latency from one frame to the next affects
the vehicle’s reaction to the race track and its speed. This la-
tency and the blind spots (when the drone crosses the gate)
are why the authors use complementary information obtained
from IMU [9, 11, 12, 13, 14], LiDAR sensors [15, 8, 1], ul-
trasonic sensors and optical flow [1].

Concerning perception tasks, a popular open-source com-
puter vision library, OpenCV, has been used to perform colour
and contour detection. However, these techniques are sus-
ceptible to lighting conditions. Some authors [15, 8, 1, 10,
16, 17] have replaced computer vision techniques with deep
learning, using open source libraries such as Caffe, Tensor-
flow and Keras.

Another important task for ADR is the flight path cal-
culation. For this is necessary to use localisation systems
such as SLAM, Visual Odometry, Semi-direct Visual Iner-
tial Odometry (SVIO) or position estimation methods based
on the IMU [1], using either the Kalman Filter or the Ex-
tended Kalman Filter. Even the trajectory planning can be
modified by the gate location [15, 8, 1, 10], relative position
[18, 13, 19, 9, 20], actions [1], velocity, or even the drone’s
direction [18, 16].

In contrast to visual localisation, authors in [4] present a
solution using external sensors. In this, a drone controlled by
artificial intelligence flew faster than three human pilots on a
race track, reaching a maximum speed of 16 m/s. However,
this approach requires the gates’ global position to generate a
time-optimal trajectory through the race track and execute the
flight path inside a specific area where 36 VICON cameras
are set. Therefore the flight path must be pre-calculated and
is only useful for static race tracks.

The authors in [21] highlight that the most significant dif-
ference between human pilots and artificial pilots guided by a
model for trajectory planning and control is that human pilots
continuously explore and learn from experience and improve
the visibility of gates by choosing an entry angle. In contrast,
the based trajectory planning and control approaches do not
consider experiences. Another important difference is that
the artificial pilot relies on a position tracking system while
human pilots perform a vision-based state estimation.

According to the works discussed in this section, we con-
clude that the solutions presented at ADR have difficulties
interacting with dynamic environments and do not consider
experience. Instead, most of the works assume that the track
is static or use external sensors that allow them to optimise
a set of waypoints corresponding to the global gate position.
Motivated by this; we propose an approach based on visual
information to leverage the behaviour of a neural pilot called
DeepPilot and a Single Shot Detector for gate detection. For
this approach, we don’t require a model for trajectory plan-
ning, a global position nor a control methods to guide a drone
on a racetrack.

3 METHODOLOGY

3.1 Flight Signal Estimation
DeepPilot is a computational model that associates a set

of images with a flight signal. These signals represent the
angular position of the drone body structure at the roll and
pitch angles, thus producing a translational motion at those
angles, the rotational speed at the yaw angle, and the verti-
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cal speed referenced to altitude. The values of these 4 flight
signals (Sϕ, Sθ, Sψ, Sh), estimated by the DeepPilot model,
are passed to the drone’s internal controller, thus allowing the
drone to navigate autonomously through the race track gates,
assuming that the next gate becomes visible immediately af-
ter crossing the current gate.

The DeepPilot architecture comprises three parallel
branches to infer roll and pitch together but yaw and altitude
separately. Each branch has four convolutional layers with
three inception modules, one fully connected layer, and a re-
gressor layer.

3.2 Gate Detector
We use the Single Shot Detector (SSD) network [22], a

fast multi-category object detector, for gate detection. The
SSD combines predictions on multiple feature maps of dif-
ferent sizes, producing detections at high and low levels of
the image by applying convolution filters. The SSD network
architecture is based on a VGG16 image classification net-
work and an auxiliary structure composed of multiple convo-
lution layers. The auxiliary structure obtains multi-scale fea-
ture maps and convolutional predictions to know the bound-
ing box displacement and the box’s position relative to the
location of each feature map.

In this work, we use a reduced variant called SSD7; this
is a small optimised network that uses an auxiliary structure
composed of 7 convolution layers, which reduces the training
and search time. The model used to detect the gate in a race-
track was trained with images obtained from the Gazebo sim-
ulator, and real environments, indoors and outdoors [9, 10].

3.3 Gain Tuning
Figure 1 shows the general diagram of our approach.

First, the gazebo video stream from the Bebop2 platform
camera is acquired to generate a mosaic composed of six
frames updated every five frames, used as input to DeePliot.
This mosaic allows DeepPilot to obtain temporal informa-
tion from the environment to estimate the four flight signals
(Sϕ, Sθ, Sψ, Sh). It is important to mention that for this work,
we will use the raw DeepPilot signals; we do not implement
the noise filter presented in [6]. Next, the Gate Detector re-
quested the four flight signals and the current frame of the
video stream. In this block, the SSD7 network detects the
gate on the image. Then based on the detections, the rules set
in the gain tuning module are executed. If the Gate Detector
does not provide detection, the following base gains kϕ = 1,
kθ = 0.5, kψ = 5 and kh = 1.2 are used, obtained by empir-
ical experimentation. Finally, the gains are multiplied by the
corresponding flight signals estimated by DeepPilot to send
to the Bebop2.

Our aim is to perform automatic gain tuning using the
SSD7 gate detector. To this end, we identify four cases during
the flight on the racetrack: 1) slow translation at the front,
2) errors on the edge of the image that corresponds to roll
values, 3) roll oscillations at the front of the gate and 4) slow

Figure 2: Information provided from the gate detector, where
xmin, ymin, xmax and ymax are used to select the closest next
gate by calculating the largest vector norm |−→v |.

rotation when the gates are skewed. To solve deal with each
one of these cases, we design rules for kϕ, kθ and kψ based on
the gate detection. First, we select the next closest gate on a
racetrack and for this, we calculate the vector norm |−→v | of the
detections as shown in Equation 1, where x = [xmin− ymin]
and y = [xmax − ymax] are obtained from the gate bounding
box, then we select the largest vector norm, as shows Figure
2.

|−→v | =
√
x2 + y2 (1)

We define the first case by using the gate detection area.
For example, under the following rule, if the centroid of the
gate detection is on the limit indicated in Figure 3, we obtain
the value of kθ using Equation 2, whereDetarea is the area of
the current detection and the areamax has a value of 70 (set
manually). With this condition, kθ has a higher value when
Detarea is smaller. Therefore the vehicle flies faster toward
the gate and decreases kθ value when the area increases. An-
other condition that affects the kθ value is when the centroid
of the gate detection is on the region indicated by Figure 3 and
when Sϕ and Sψ provided by DeepPilot are equal to zero; in
this case, kθ has a value of two (twice the speed).

kθ =
areamax
Detarea

(2)

The second case is that where the DeepPilot model does
not correctly provide the roll signal when the gate is too close
to the horizontal image edge, see Figure 4. Even when the
gate is inside the viewing area, DeepPilot indicates Sϕ = 0.
For this reason, we designed the following rule, when the cen-
troid of the gate is at the edges of the image and the Sϕ is
equal to zero, the Sϕ signal is replaced by 1 or -1 depending
on the which edge the gate was spotted. In this way, the drone
is forced to respond in the direction of the gate. With this sig-
nal, the gate is again inside the viewing area, the zone where
DeepPilot provides Sϕ with a non-zero value.

The third case is when oscillations of Sϕ provoke the fol-
lowing issues: the vehicle stays in front of the gate for a long
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Figure 3: Example of cases to obtain the value of kθ. (a) If the
detection is within the boundary indicated by blue lines, the
value of kθ is obtained using Equation 2. (b) if the centroid
of the detection is within the blue box, the gains are equal
to kθ = 2, kϕ=0 and kψ=0, which seeks to accelerate the
forward motion twice the value estimated by DeepPilot for
Sθ

.

Figure 4: Example of when the gate is near the edge of the
image, DeepPilot assigned Sϕ = 0 even though the gate is in-
side the viewing area. For this reason, we replaced the flight
signal Sϕ by 1 or -1, depending on what edge the gate is lo-
cated, to force the drone to respond in the direction of detec-
tion.

time moving from one side to the other, ultimately colliding
with the gate edge, or flying outside the gate. We mitigate
this by defining kϕ with Equation 3, where d is the distance
in pixels between the centroid of the detection and the cen-
tre of the image, as we showed in Figure 4. Note that d is
normalised to half the image’s width. Thus the value of kϕ is
proportional to d, which helps reduce the roll signal provided
by DeepPilot.

kϕ =
d

320
(3)

The last case is the slow rotation when the gates are
skewed, as shown in Figure 6. We obtain the value of kψ
using Equation 4 to adjust the rotation signal depending on
the width of the bounding box detecting the gate. Here, w is
the width of gate detection, which is subtracted from 1 and
normalised by the height to obtain an inverse ratio to w.

Figure 5: Case 3 used to automatically tune the gain for the
roll signal. To this purpose, the distance in pixels from the
centroid of the detection and the centre of the image is cal-
culated. Half the image width normalises this distance, giv-
ing a ratio that reduces the value of the roll signal provided
by DeepPilot. This variable gain helps to reduce oscillations
when the drone attempts to centre w.r.t. to the gate.

kψ =
1.0− w
640

(4)

Figure 6: Automatic tuning for the yaw signal under skew
views of the gate. This case occurs in turns of the track,
mainly due to the proximity between one gate and another.
Due to the drone’s inertia, the camera has an inclined view
of the gate, thus producing a skew view of the gate. Even
when DeepPilot estimates a yaw signal, its value may not be
enough to align the drone on time. This is overcome with the
automatic gain tuning for this case when setting the gain as
an inverse function of the width of the bounding box of the
detected gate, as shown in Equation 4.

4 EXPERIMENTS

4.1 System Overview
Our proposal was implemented on the Alienware R5 lap-

top, which has a corei7 processor, 32GB of RAM and an
NVIDIA GTX 1070 graphics card. It runs the Ubuntu 18.04
LTs operating system and ROS Melodic Morenia. We used
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the Gazebo 9 simulator and the rotors simulator package
to emulate the Parrot Bebop 2 vehicle for the experimental
framework; we should highlight that in RotorS[7], the Bebop
2 model exhibits a more agile flight (closer to reality) than
that used in the TUM simulator [23]. For the execution of the
SSD7 and DeepPilot networks, we used the TensorFlow 1.15
and Keras 2.3.1 frameworks.

Figure 7: Communication system based on the Robotic Op-
erating System. Green arrows indicate data published by the
nodes. Red arrows indicate data consumed by other nodes.

Figure 7 shows the communication architecture used in
this work. It shows the interaction between the ROS nodes.
Where the principal node is rotors simulators, which pro-
vides information from the camera onboard the Bebop2 at
80 fps, the odometry and simultaneously receives informa-
tion to control the Bebop2. The DeepPilot node gets the im-
age from Bebop2, generates an image mosaic updated every
five frames and provides four flight signals (Sϕ, Sθ, Sψ, Sh)
at 25 fps. The Gate Detector node receives the Bebop2 image,
and we applied the trained model for gate detection. It also
gets the flight signals provided by DeepPilot and publishes
the flight signals with the automatic gain tuning at 80 fps. Fi-
nally, the node Keyboard is used only to initiate or cancel the
autonomous flight.

4.2 DeepPilot vs DeepPilot with fixed gain

We use the evaluation racetrack in [6], which is composed
of 18 gates. The racetrack extends over 62m× 44m, and the
spacing between gates is 7m to 9m. Therefore, gates 1, 2, 3,
5, 9, 12 and 14 are 2m high, gates 4, 7, 8, 11, 13, 15, 16 and
18 are 2.5m high, and gates 6, 10 and 17 are 3m high, all of
them are placed in an ellipse shape to vary the orientations.

We performed experiments on the Bebop2 platform of the
rotors gazebo simulator using the model trained on the same
track using the Ar drone platform of the tum simulator sim-
ulator1, see Figure 8, where DeepPilot did not perform well
as it failed to cross the 18 gates of the race track. DeepPilot

1https://github.com/QuetzalCpp/DeepPilot/tree/Noetic

Figure 8: The track consists of 18 gates set at different heights
and orientations. The racetrack extends over 62m and has
gate spacing of 7m to 9m. Image is taken from [6].

only managed to cross 3 out of 18 gates in ten runs. In this
case, the drone always evaded gate number two, as shown
in Figure 9(a). Therefore, we analysed the flight signal val-
ues obtained during the ten trajectories, where the average is
0.023 for roll, 0.306 for pitch, 0.008 for yaw and 0.006 for
altitude. These values indicate that the pitch is too high com-
pared to the rest of the flight signals, which does not allow
the drone to cross all the gates in the track.

Therefore, via several flight experiments, we found a set
of fixed gains for which, after multiplying by the flight sig-
nals estimated by DeepPilot, produced a reasonable perfor-
mance. This is, the drone managed to cross almost all the
gates, although it always hit or flew outside some gates. Thus,
with this empirical analysis, we set the gains to be kθ = 0.5,
kϕ = 1, kψ = 5 and kh = 1.2.

The fixed gains enabled the drone to cross 12 of 18 gates,
with gate number 11 being evaded. This can be appreciated
in Figure 9(b), where we can see that the drone positioned
itself in front of the gate throughout the trajectory. However,
the variation of values generated by the roll signal causes an
oscillation that stops the drone from crossing the gate. This
can be seen in 2 cases, the first at gate 11, where it evades
to the left and does not cross the gate, and the second at gate
14, since due to the oscillations the drone cannot correctly
generate a signal to yaw. We performed 10 runs using these
fixed gains to obtain the following average flight signal val-
ues: 0.020 in roll, 0.095 in pitch, 0.012 in yaw and 0.004
in altitude. These values indicate that small values of the
pitch signal improves DeepPilot’s performance in guiding the
drone on the racetrack. However, the oscillations of the roll
signal do not allow the drone to complete the track.
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(a) (b) (c)

Figure 9: Top view of 1 out of 10 runs in our experiments: (a) corresponds to the drone’s trajectory using directly the flight
signals provided by DeepPilot; (b) corresponds to the drone’s trajectory using the flight signal provided by DeepPilot multiplied
by fixed gains set up manually; (c) corresponds to the drone’s trajectory using the flight signals provided by DeepPilot multiplied
with gains tuned automatically by using gate detection, note that in this case the drone is able to traverse all the gates and finish
the lap. A video illustrating these experiments can be seen at https://youtu.be/49OzJCHTJu4

(a) (b) (c)

Figure 10: Examples of DeepPilot failing when the gate is at the edge of the image. The top images are snapshots of the
6-image mosaic that DeepPilot uses to estimate flight signals. The inferior pictures are snapshots of the drone and the gate in
the gazebo world.

4.3 DeepPilot with automatic gain tuning using gate detec-
tion

Due to the instability of the drone to complete the race-
track, we employed the gate detection for automatic gain tun-
ing under the rules set out in Section 3.3. DeepPilot operates
using the kθ = 0.5, kϕ = 1, kψ = 5 and kh = 1.2 as default
values but these are modified when the SSD7 network detects
the nearest gate. Only then do the gains change their value to
modify the drone’s behaviour guided by DeepPilot.

In Figure 9(c), we note that case 1 is activated on gates
3-4, 5-6, 8-9, 9-10 and 16-17; for instance, the value of kθ
increases, as the gates are far away from each other. Case
2 is activated at the exit of gates 4, 13, 14 and 18, as the
neighbouring gates are on a curve. By changing the roll value,

the drone is forced to continue on its way. This failure by
DeepPilot is attributed to the lack of examples for this type of
view. The effectiveness of case 3 is noticeable along the track
since the trajectory does not show large oscillations compared
to the performance of DeepPilot with fixed gains, see Figure
9(b). Finally, case 4 is activated at gates 8, 14 and 18, as the
previous gates are close, exhibiting skew views. In this case,
the rule using the the gate detection helps to increase the yaw
signal in order to align the drone parallel to the gate.

In Table 1, we compare the performance of DeepPilot
against DeepPilot with fixed gains and DeepPilot with auto-
matic gain tuning using gate detection. Note that DeepPilot,
with no gains, failed to complete the track, and this is be-
cause, on average, the pitch value is higher than the other
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Figure 11: Examples of DeepPilot failing when the gate ex-
hibits a skew view.

flight signals, making it impossible for the drone slow down
and allow the necessary time for the other signals to get esti-
mated properly. When using fixed gains, DeepPilot can cross
up to 12 gates.

Nevertheless, the roll oscillations make it fail to cross all
the gates. In addition, DeepPilot fails in cases where the gate
is at the edge of the image, see Figure 10 or with skew views,
as shows Figure 11. Thus, these experiments show the ben-
efits of the automatic gain tuning, which enable the drone to
finish the lap. Note that the average pitch is high, meaning
that the automatic tuning is effective to assign a high gain
value in those cases when the gate is far away or close and
centred on the image.

For a time comparison and given that DeepPilot with fixed
gains failed after crossing gate 13, the last column in Table
1 shows the average flight time up to gate 13 for DeepPilot
with fixed gains and DeepPilot with automatic tuning. Note
that the former took a longer time to reach gate 13. This in-
dicates that the automatic gain tuning also helped to reduced
the flight time.

A video illustrating these experiments can be seen at
https://youtu.be/49OzJCHTJu4

In Figure 12(a), we show the performance of DeepPilot
with automatic gain tuning using gate detection in 10 runs.
We can see that the drone behaves in a stable and repetitive
manner. Minimal oscillations in altitude are observed, see
Figure 12(b), where the average of the flight signals values
is: 0.007 in roll, 0.211 in pitch, 0.038 in yaw and 0.007 in
altitude. Finally, Figure 13 shows that our proposal generates
a stable and consistent flight that kept the drone flying during
3 hours, performing 18 alps without colliding with the gates,
thus obtaining an average time of 9.81 minutes per lap. In
these consecutive flights, the average value of the flight sig-
nal is 0.004 in roll, 0.217 in pitch, 0.041 in yaw and 0.001
in altitude. This indicates that DeepPilot + GateDet got its
flight signals adjusted, avoiding abrupt changes during each
lap. Note that this behaviour resembles that of a human pi-

(a)

(b)

Figure 12: Top and side view of the trajectories for 10 runs
using the flight signals provided by DeepPilot with automatic
gain tuning using gate detection. Note that the drone behaves
stably and repetitively. Minimal oscillations in altitude are
observed.

lot who improves his performance after each lap. This is an
interesting phenomenon that we will analyse in further study.

Finally, Figure 14 shows two runs using DeepPilot auto-
matic gain tuning in two scenarios. In the first one, shown
in light blue, it performs the flight with fixed position of the
gates in the race track. For the second scenario, indicated
in orange, gates 1, 2, 3 change position three times, 5, 8,
10 twice, 11, 12, 16 and 17 change only once. These vari-
ations are indicated with dark blue lines. This experiments
demonstrates that our proposal works effectively under dy-
namic changes in the race track.

5 CONCLUSION

We have presented an automatic gain tuning approach for
a neural pilot called DeepPilot developed for Autonomous
Drone Racing. DeepPilot estimates flight signals to enable
the drone to cross the gates in the race track. However, the es-
timated flight signals should be noise filters in output values
to smooth out peaks in the flight signals, which produce os-
cillatory behaviour and jolts. Therefore, in this work, we pro-
posed using a gate detector to tune such gains automatically.
Usually, a gate detector in ADR has been used to implement
a flight controller. However, the detector does not provide 3D
information about the gate; thus, such a controller could not
be used to control the yaw signal when a gate is observed in
a skew view. In contrast, DeepPilot has learned to estimate a
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Table 1: Comparison of the performance of DeepPilot against DeepPilot with fixed gains and DeepPilot with adjustable gains
using gate detection in a race track of 18 gates. The values (Sϕ, Sθ, Sψ, Sh) correspond to the average of flight signals sent to
the drone over ten trajectories. Also, we report the number of gates crossed in ten runs and the average flight time up to gate 13
for comparison. Note that the automatic gain tuning helps to reduce the flight time in a half.

Method Gains
Avg. Flight Signal

Avg. Crossed Gates Avg. Time up to
Gate 13 [min.]Sϕ Sθ Sψ Sh

DeepPilot - 0.023 0.306 0.008 0.006 3/18 -
DeepPilot Fixed 0.020 0.095 0.012 0.004 12/18 15.20

DeepPilot + Gate Det Automatic Tuning 0.007 0.211 0.038 0.007 18/18 7.15

Figure 13: Trajectories of 18 consecutive flights without land-
ing between laps. The drone uses the flight signals provided
by DeepPilot multiplied with gains tuned automatically by
using gate detection.

corresponding yaw signal in such a scenario. Therefore, we
have proposed to use the gate detector to leverage the perfor-
mance of DeepPilot by automatically tuning its gains depend-
ing upon the gate position on the image. Our experiments in
simulation have shown that our proposed approach achieves
better results than the original DeepPilot in a large race track
with 18 gates randomly placed with variations in orientation
and height. For our future work, we will carry out experi-
ments in real scenarios.
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Carranza. Towards high-speed localisation for au-
tonomous drone racing. In Mexican International
Conference on Artificial Intelligence, pages 740–751.
Springer, 2019.

[21] Christian Pfeiffer and Davide Scaramuzza. Exper-
tise affects drone racing performance. arXiv preprint
arXiv:2109.07307, 2021.

[22] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In European
conference on computer vision, pages 21–37. Springer,
2016.

[23] H Huang and J Sturm. Tum simulator, 2014.

SEPTEMBER 12-16, 2022, DELFT, THE NETHERLANDS 118


	Papers
	Leveraging a Neural Pilot via Automatic Gain Tuning using Gate Detection for Autonomous Drone Racing


