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ABSTRACT

Camera localisation is the problem of estimat-
ing the camera pose from one or more images.
Deep Learning (DL) has become one of the most
popular methods with convolutional neural net-
works (CNN) to train models and thus obtain the
camera pose in a scenario. However, such meth-
ods assume a scenario where the user must wait
for the model to become available once ready af-
ter training, which has to be trained off-line and
involving high computational processing time.
This work presents a multi-model continuous
learning approach for camera localisation that
uses multiple models learned incrementally over
time. Each model is learned for a certain seg-
ment of the camera trajectory, and a search en-
gine based on histogram colour and keyframes
to identify the corresponding learned model w.r.t.
the current camera view. The continual learning
process is a rehearsal strategy that repeats the old
data with the new ones in a latent replay layer.
On average, our performance achieved a process-
ing speed of 150 fps with an accuracy of 0.71 to
0.85 for the camera pose estimation. We demon-
strate the effectiveness of our system in a geo-
localisation application where a model learns to
associate aerial images to GPS coordinates con-
tinuously using our proposed strategy. The main
goal is to provide multiple on-line learned mod-
els during the same flight as an alternative geo-
localisation method that could prove helpful in
cases of GPS failure.

1 INTRODUCTION

Camera relocalisation is the problem of obtaining the 6
degrees of freedom (DoF) concerning one or multiple im-
ages captured from a scenario. Visual localisation methods
have been carried out to solve this problem using the images
from a monocular camera. For example, some works acquire
the camera’s poses using feature matching [1], nearest neigh-
bours [2], visual odometry (VO) [3], and simultaneous local-
isation and mapping (SLAM) systems [4]. The performance
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Figure 1: Multi-model continual learning for camera locali-
sation. The framework consists of 3 steps: 1) Mini-batches
generation; 2) On-line training using the mini-batches while
new ones are created; 3) Frame search based on histogram
colour and keyframes to identify the corresponding model. A
video illustrating this process can be found at video link.

of these techniques has been adequate to acquire informa-
tion that can solve the visual localisation problem. Never-
theless, with the recent increase in deep learning, works have
addressed this problem to directly regress the camera pose
from an image with a training model [5].

To carry out the aforementioned, models are trained from
a dataset with labels of the camera positions to regress the 6-
DOF camera pose from a single RGB image [6]. Nonetheless,
traditional training has the limitation of not having a learning
model ready for the same data collection mission. To mitigate
this, it has been established to speed up the training time and
pose estimation, reducing the architecture of a network [7].
On the other hand, continual training aims to learn the infor-
mation on the fly, reducing the catastrophic forgetting in the
training process [8].

With the above mentioned, a compact network and a
method that reduces forgetting have achieved relevant results
under scenarios requiring a fast training process. As a re-
sult, continual learning methods reduce the loss in the train-
ing process by keeping the information to a minimum during
the same collection data mission, getting results simultane-
ous. Thus, a model is updated with current data without for-
getting previous ones during training. Therefore, continual
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learning has a high impact in the area of robotics used in mo-
bile applications with limited storage capacity [9].

Motivated by the above, we consider using a network
based on a continual learning strategy with a rehearsal
method, allowing the creation of multiple models with in-
formation about the poses in a specific area. We adopt the
work presented in [10] to repeat the previous data in a la-
tent layer and merge it with the current information. Besides,
based on localisation modules in SLAM systems, an image is
localised using feature matching between its descriptors and
a bag of words (BoW). Thus, we propose a frame searcher
to determine the keyframe corresponding to the camera view
and identify the learned model w.r.t. the current view (Figure
1). Finally, we argue that using multi-models with informa-
tion from the camera trajectory segments can give us a result
close to the value of the Ground Truth, allowing re-localise a
camera.

In order to present this work, our paper is organised as
follows. Section 2 provides a literature study of the continual
learning approaches for classification and localisation tasks.
Section 3 describes the process of generating a multi-model
system using the AR1* continual learning method and the
generation of mini-batches. The experimental design and re-
sults obtained compared with ORB-SLAM2 are conveyed in
Section 4. Finally, conclusions and future work are outlined
in Section 5.

2 RELATED WORKS

Image-based localisation has become an efficient method
in several robotics tasks, obtaining a camera’s pose using
computer vision methods. For example, a UAV’s camera can
capture images to determine the position in a scenario, thus
achieving its localisation. ORB descriptors are a technique
used for camera localisation by building a map of the sce-
nario [4]. On one side, deep learning have been used to get the
camera’s pose using regression in combination with 3D struc-
tures [11], visual odometry [12] and SLAM systems [13, 14]
in monocular, stereo, and RGB-D cameras. These works em-
ploy a preprocessing that aligns in-depth features with a ref-
erence 3D model, crops sub-images, and uses inverse depth
to learn better the image’s shape, appearance and feature.

However, the works aforementioned require 3D models,
crop images and the use of depth to achieve an accurate result.
On the other hand, PoseNet [5] is a CNN designed to estimate
the camera’s pose from a single image without using depth
and 3D models. Therefore, several works have used PoseNet
to improve and change its architecture to get a fast and ac-
curate pose estimation. For example, in [7] shows a brief
analysis of these architectures, proposing a compact network
to accelerate the learning process and pose estimation. Nev-
ertheless, PoseNet is an end-to-end architecture that involves
collecting a large dataset. Thus, new works have focused on
continuous training within the robotics [9] to learn new data
without forgetting the previous ones in detection and classifi-

cation tasks [15, 16].
The concept of continual learning has led to creating

datasets from a sequence of partial experiences where all
data is unavailable at once. For example, in [17] developed
CoRE50, a dataset for continual learning in object recognition
tasks, and [18] presents CLRS dataset for scene classification,
partitioning the training batch. However, the catastrophic for-
getting is still unsatisfactory in results, arguing the design of
a method to restrict this loss. Unlike these works, an elastic
network with a multistable behaviour can allow the develop-
ment of different configurations to learn continuously without
forgetting the previous states, avoiding thus the knowledge
forgetting [19].

Another work presents a continual SLAM [20] propos-
ing a dual-network based on a VO model to produce online
odometry estimates and generalise the long-term learning, us-
ing consecutive frames, image warping, and dense 3D map.
However, since this method achieves the localisation of a
camera by merging 3D depth maps, it may fall into an es-
timation error if the depth is not acquired correctly. To avoid
this, [21] analyses and identifies previously unobserved phe-
nomena of gradient-based optimisation using visual data and
an adaptable buffer for the geo-localisation of an image. Be-
sides, they keep the images with lower noisy time stamps in
the form of the default date and time for training.

Finally, rehearsal methods based on repeating the previ-
ous data for visual localisation tasks achieve promising re-
sults. For example, using an adaptive buffer keeps samples
in subsets to update the training model over current infor-
mation and previous ones [22]. In [10], presents the AR1*
method with a latent replay layer to retain volumes of infor-
mation of the previous data as new information is created in
mini-batches. The latter has been carried out in a localisation
methodology using multicamera learning and updating the
model while acquiring new information [23]. Motivated by
these works, we implemented a multi-model approach based
on a continual learning method called AR1*, using a latent
replay layer for camera localisation. In addition, we built
a frame search based on histogram colour and keyframes to
identify the corresponding model.

3 METHODOLOGY

This section presents the methodology carried out to de-
velop this work. We carry out our multi-model continual
learning framework in 3 steps. Firstly, we generated the
dataset with aerial images and GPS coordinates into mini-
batches for the training. Afterwards, we use a colour his-
togram like an image descriptor to determine the correspond-
ing keyframe. Thus, it will indicate which model corresponds
with the image to perform the evaluation. Finally, we present
the continual training with the latent replay strategy.

3.1 Mini-Batches generation
For the dataset generation, we collected aerial images

with GPS information through the Robotic Operating System
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(ROS) and our Ground Control Station (GCS), acquiring the
frames from the video stream of the UAV. Then, we manually
carried out 4 flight missions to obtain the dataset, splitting it
into small sets of images with dimensions of 128 × 128 and
converting the GPS to metres. Then, we generate the labels
when we create a new class with a number of pictures defined
with its labels in terms of indexes and create the mini-batches
every two classes. Furthermore, since the network is an ar-
chitecture based on a classification model, we define a repre-
sentative mean flight coordinate for each class, merging the
individual coordinates into one. This way, we store the mean
flight coordinates in a file to represent the classes and UAV
trajectory.

To better understand the mean flight coordinates stored in
the file, we show the coordinates of one of the trajectories in
Table 1, where the index represents the class belonging to a
part of the path. Thus when the model gives us a result in
terms of index, we look for in the text file to regress the mean
flight coordinate and geolocalise the camera. Also, we show
in Figure 2 the trajectories made in the flight missions with
the UAV where we collected the data.

Table 1: Distribution of the classes associated with indexes
representing the labels with discrete flight coordinates.

Index Mean flight coordinates
0 x: -0.28260, y: 15.8941, z: 100.81
1 x: -14.3834, y: 50.8135, z: 100.94
2 x: -233.215, y: 228.076, z: 100.71
3 x: -351.116, y: 288.614, z: 100.34
4 x: -248.701, y: 341.021, z: 100.38
5 x: -125.802, y: 252.147, z: 100.52
6 x: 60.32710, y: 145.127, z: 100.50

Figure 2: Manually performed flight trajectories. Each blue
waypoint corresponds to the GPS coordinates; the red way-
point represents the beginning and the green the end of the
trajectory.

3.2 Histogram image descriptor
To create the searcher that allows us to choose the model

for the evaluation correctly, we propose using a simple de-
scriptor based on the colour histogram of the image. This
histogram applies a colour distribution in the pictures, caus-
ing them to have similar distributions or equal even in those
that are not. Therefore, we perform the following steps to
generate a robust descriptor to deal with this problem. The
steps are described in a list to understand the procedure per-
formed:

1. We convert the image colour space from BGR to HSV
(Hue, Saturation, Value) to obtain robustness in the his-
togram.

2. We define the number of bins in our histogram with a
dimension of 8 bins for the Hue, 12 bins for saturation,
and 3 bins for the value channel. Total dimension of
the feature vector: 8× 12× 3 = 288.

3. We calculate a mask from the centre of the image and
divide it into quadrants. Thus, we calculate the his-
togram in 5 regions of the image instead of a global
one.

4. We update the features extracted from the five quad-
rants with values from 0 to 255.

5. Finally, the images are represented and quantified using
a list of 288 floating-point numbers.

In this way, we calculate the colour histogram from a di-
vided image into five different regions: 1) the top-left corner;
2) top-right; 3) bottom-right; 4) bottom-left; 5) and the cen-
tre of the image. We show this example in Figure 3. Once
the histogram is obtained, we calculate the features for each
keyframe that we will use to find the model. Thus, we ex-
tract the floating points from the histogram and save them in
a list with their respective features. In addition, we have a fea-
ture vector from 5 regions with a dimensionality of 5 x 288
= 1440, where each image will be quantified and represented
using 1440 numbers.

Finally, we compare the frame with the keyframe to find
the match between their features. That is to say, we ex-
tract the histogram information of the current frame and com-
pare it with the keyframe descriptor using the chi2 distance.
Thus, we get histogram information from the five regions
on the images, ordering the results from lowest to highest,
where a value close to zero represents the similarity with the
keyframe. Then, we load the model corresponding to this
keyframe to start the evaluation. Figure 4 presents a diagram
of this process to find the model through a distance metric,
taking two feature vectors as inputs. It is worth mentioning
that we create the keyframes just when we generate the mini-
batches, so if the value of the histograms does not match, it
will return a model that does not correspond to the current
camera view.
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Figure 3: Image divided in 5 regions.

Figure 4: Overview to search for the keyframe with an eval-
uation frame using the descriptor vector to identify the corre-
sponding model.

3.3 Continual Training

For multi-model continual training, we rely on the archi-
tecture presented in the work [10], showing a method of latent
replay in the hidden layer pooling6. This process consists of
training a dataset from mini-batches whose classes are spread
in them, storing a portion of activation volumes belonging to
each class. In the training process, the method slows down
learning in the lower layers and leaves the upper layers free.
That is to say, it slows down the learning at the layers be-
low the pooling6 layer, saving a small fraction of patterns for
each mini-batch. Thus, when new information arrives (a new
mini-batch), the memory with previous data is merged and
updated with the current data. In this way, the patterns of
both mini-batches are kept constant by repeating the data in
the latent layer. Finally, we perform this process until the last
mini-batch generated will train.

This method, called Auto-Regressive Model (AR1*), is
based on a rehearsal strategy which consists of the continu-
ous repetition of previous data to avoid catastrophic forgetting
of the learning. Each mini-batch represents new information
generated from the dataset, training them one by one. We

thus update a learning model when new data arrives, gener-
ating a single model with all the information learned. How-
ever, to develop our multi-model approach, we create a model
for each mini-batch learned, arguing that each has informa-
tion more accurate to the current data than the previous one.
Finally, we have several models corresponding to the mini-
batches for evaluation tests.

To carry out the continual training, we take the follow-
ing parameters: 1) SGD Optimiser; 2) Batch size: 128; 3)
Epochs: 4; 4) Cross-Entropy as loss function; 5) Learning
Rate: 0.001; 6) Pool6 as latent layer; 7) 1500 patterns to stor-
age in the external memory. These patterns are the informa-
tion acquired from the previous and current data to update the
learning model.

4 EXPERIMENTS AND RESULTS

Hereafter, we present the experiments to compare the ac-
curacy and processing speed results using a learning model
and our multi-model approach. We should note that the
search engine for a keyframe using a descriptor based on the
colour histogram of the image is essential to establish the
chosen model. Given this scenario, we perform the exper-
iments on Ubuntu 20.04, Python 3.6, PyTorch 1.4.0 for the
network training and evaluation, OpenCV 3 and ROS Noetic
on a computer with an Nvidia Geforce 960 M with 8 GB of
RAM.

4.1 Histogram Results
The first experiment compares the search result using

three bins to generate the histogram. Thus, we calculate the
histogram of each evaluation dataset image of trajectory one
and search using the chi2 distance for the corresponding simi-
larity to obtain the model. Table 2 shows the number of times
the search acquired the correct model and a success rate indi-
cating how effective the search is with the defined bins.

Table 2: Results of the searching model using a descriptor
vector.

Bins Correct Success Rate
(10, 5, 3) 78 54.16 %
(12, 16, 3) 111 77.08 %
(8, 12, 3) 125 86.90 %

This result indicates that the third set bins achieve a better
result w.r.t colour histogram, finding the correct keyframe us-
ing the descriptor to identify the corresponding model. How-
ever, we argue that a descriptor based on SIFT and ORB could
improve this search result using visual and binary features
corresponding to the image.

4.2 Evaluation with a Model
In the second experiment, we used a single learning

model without the descriptor searching that determines the
keyframe, training and updating the weights in the model

SEPTEMBER 12-16, 2022, DELFT, THE NETHERLANDS 106



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2022-12 13th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

when new mini-batches arrive in the network. Thus, the pre-
vious and current classes’ patterns are replayed in the latent
layer, updating the features and generalising the knowledge
for each mini-batch trained. To illustrate the accuracy results
in this experiment, we evaluate the CNN with the evaluation
data of the 4 flight paths, obtaining an index corresponding
to the class label with its mean flight position. Then, in Ta-
ble 3, we present the results obtained, showing the number
of frames present in the evaluation dataset, the number of
correctly classified frames, the accuracy, and the processing
speed per image expressed in fps.

Table 3: Accuracy results with the evaluation dataset using a
single model.

Trajectory Frames Correct Accuracy Fps
1 144 89 0.6180 152.397
2 117 73 0.6239 153.044
3 84 70 0.8333 154.096
4 606 378 0.6237 151.564

We note that training presents an accuracy of around 0.62
in most of the paths whose traversed trajectory lengths are:
1.0 km for the first, 3.0 km in the second, 4.6 km for the third,
and 6.4 km for the last. The best result was in the third flight
achieving an accuracy of 0.83 with a high amount of frames
evaluated correctly. Hence, we argue that the algorithm is
limited in storing the volumes of information, causing catas-
trophic forgetting to occur the more classes it learns, even
using a latent layer. Consequently, we expose that a multi-
model approach for the camera localisation can have a better
result using exclusively on the model corresponding to the
camera view class.

4.3 Evaluation with a Multi-Model Approach
In the last experiment, we evaluated our multi-model ap-

proach with the keyframe searching to identify the corre-
sponding model to the class and camera view. We used the
bins of (8,12,3) analysed in the first experiment to calculate
the histogram and create the feature vector descriptor. After-
wards, we compare our approach with the ORB-SLAM2 re-
localisation module, presenting the accuracy and processing
speed results. To compare us with ORB-SLAM2, we created
a map with the training dataset and localised the evaluation
images with the ORB-SLAM2 re-localisation module to find
the coordinates w.r.t the Ground-Truth. Thus, we take the dis-
tance between frame and keyframe to determine whether the
coordinate corresponds to a close keyframe. Finally, in Table
4, we present the results obtained from the four trajectories
and the comparison with ORB-SLAM2, and in Table 5, we
show the processing speed results.

These results show that ORB-SLAM2 presents a low lo-
calise on trajectory 1, indicating that the scenario is complex
to obtain a localisation close to the training dataset. Further-

Table 4: Comparison accuracy results with the evaluation
dataset using a multi-model and ORB-SLAM2.

Approach Traj. 1 Traj. 2 Traj. 3 Traj. 4
ORB-SLAM2 0.034 0.913 0.869 0.584
Multi-Model 0.735 0.817 0.856 0.714

Table 5: Comparison processing speed results with our multi-
model approach and ORB-SLAM2 (Fps).

Approach Traj. 1 Traj. 2 Traj. 3 Traj. 4
ORB-SLAM2 85.47 83.33 92.59 89.28
Multi-Model 150.19 151.65 153.27 153.55

more, the ORB-SLAM2 re-localisation module does not find
ORB descriptors that match the evaluation images, arguing
that the scenario presents elements that confuse the system.
Likewise, path 4 has an accuracy just above 0.5, meaning that
half of the path cannot correctly locate the camera. Nonethe-
less, our multi-model system finds some coordinates of the
evaluation images, localising thus the camera in these areas.

For the above, we argue that a multi-model approach us-
ing continual learning based on latent replay achieves a better
result by identifying the corresponding model with the cam-
era view. Besides, searching keyframes can recover the model
created in that trajectory segment using only the descriptor
vector without geometry calculations or depth images. Even-
tually, the processing speed tests show a superiority in terms
of time to run the algorithm, which we can use during flight
missions with a UAV in external scenarios.

To better understand the results obtained in the earlier ex-
periments, we present in Table 6 the RMSE metric to observe
how far the obtained values are from the ground truth. Thus, a
minimum value represents a better fit to the accuracy measure
with which the algorithm performs the evaluations. Note that
our approach presents significant results in contrast to using a
single model for camera localisation tasks. Finally, it should
be noted that if the UAV enters an unknown area or outside
the training area, the algorithm gives erroneous data. To deal
with this, we plan to use a flag where we determine that the
UAV has left the zone and thus extend the training with the
following area data.

Table 6: Results of the RMSE metric using the 3 approaches
performed in the experiments: with a single model, ORB-
SLAM2, and our multi-model approach.

Approach Traj. 1 Traj. 2 Traj. 3 Traj. 4
ORB-SLAM2 5.9389 0.4090 1.8563 8.2484
Single Model 2.1730 2.3056 4.4507 7.8642
Multi-Model 1.8671 1.6641 2.7080 7.0858
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5 CONCLUSIONS

We have presented a continual learning approach to
localise a monocular camera using multi-models and a
keyframe search engine to identify the representative model
given the current camera view. Our goal has been to use
the histogram colour of the images in 5 regions to search a
close keyframe and choose the learned model, obtaining thus
a label with a mean flight coordinate for camera localisation.
Furthermore, it helps to extract and match similar features be-
tween the current camera view and keyframe, giving access
to the corresponding model to evaluate the image instead of
using a global model. In addition, the advantage of continual
learning in a latent replay approach allows for learning data in
small sets, maintaining previous information while updating
the model with new data.

The proposed algorithm exhibits a suitable accuracy for
camera localisation in combination with an image searching
strategy, being efficient in small, medium and large trajecto-
ries. Furthermore, we have also demonstrated the applica-
bility of a rehearsal strategy to improve the localisation us-
ing our scheme compared with SLAM systems. Overall, we
achieve an accuracy result of 0.73 for short trajectories and
0.71 for long ones while maintaining a fast processing speed.
Nonetheless, the feature descriptor is a topic to discuss be-
cause if the colour histogram returns a different keyframe, the
model will give us another result and thus a wrong position.

Finally, we have observed that tests performed with con-
tinual learning based on mini-batches can be used to train new
information in unseen areas while maintaining knowledge of
the previous scenario. To this end, we propose extending the
experiments to different environments to test the algorithm’s
effectiveness when the UAV visit new zones. In addition, we
plan to use the method with a regression network to estimate
the full 6 DoF camera position for future work.
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