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ABSTRACT

This article concerns flight speed estimation
from airflow measurements provided by a set
of thermal anemometers. Our approach relies
on a Gated Recurrent Unit (GRU) based deep
learning approach to extract deep features from
noisy and turbulent measurement signals of tri-
axial thermal anemometers, in order to estab-
lish the underlying mapping between the airflow
measurement and the flight speed. The proposed
solution is validated on a multi-rotor micro aerial
vehicle (MAV). The results show that the GRU-
based model can effectively extract noise fea-
tures and perform denoising, and compensate for
induced velocity effects along the propellers’ ro-
tation axis. As a consequence, robust prediction
of the flight speed is performed, including dur-
ing takeoff and landing that induce ground ef-
fects and strong variations of vertical airflow.

SUPPLEMENTARY MATERIAL
Our open source implementation and more details are

available at https://github.com/SyRoCo-ISIR/
Flight-Speed-Estimation-Airflow.git

1 INTRODUCTION
Estimation of the 3D velocity and/or position of a MAV

is essential for both tele-operated and fully autonomous
missions. Different sensing modalities can be used to
this purpose, which can be roughly divided into three
categories: External perception systems (UWB odometry,
GPS[1], Motion Capture system[2]), Exteroceptive sensors
(Lidar odometry[3], visual odometry(VO)[4, 5]), and Propri-
oceptive sensors (inertial navigation system(INS)[1]). Each
category of sensors comes with its own advantages and draw-
backs, especially in the context of MAV applications. Exter-
nal perception systems, when available, are very convenient
as they require limited payload (both material and computa-
tional) aboard the drone, but they are not always available.

*The co-authors share the same contribution.
†This work was supported by the French ANR Project DACAR. Email

addresses: {firstName.lastName}@sorbonne-universite.fr

Figure 1: MAV equipped with three thermal anemometers
orthogonal to each other.

Exteroceptive sensors provide information on the MAV’s en-
vironment that is extremely useful for sense and avoid appli-
cations, but they often require heavy computational payload,
and they are subjected to environmental conditions (light, vi-
sual texture, etc). Proprioceptive sensors (INS, or odometry
based on Blade Element and Momentum theory for multi-
rotor MAVs [6]) use little embarked payload, are always
available, and can provide good speed estimates over lim-
ited time-intervals, but they are subjected to drift when used
for position estimation. Thus, there is no universal sensory
modality but each one can be useful or even crucial in specific
contexts, thus contributing to a global sensor-fusion architec-
ture.

This paper concerns the problem of velocity/air-
velocity estimation from measurements provided by thermal
anemometers. Here,”air-velocity” denotes the velocity rela-
tive to air. A thermal anemometer, as illustrated on Figure 1,
is a cylindrical sensor (this is a typical shape, but not the only
one) that provides information about the airflow that passes
through the device. It can thus be viewed as a 1D air speed
sensor. When used in still air (the typical indoor situation),
it thus provides information on the sensor’s velocity along
the cylinder’s axis. When used outdoor, it provides infor-
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mation on the sensor’s air-velocity along the cylinder’s axis,
similar to a Pitot tube. Using a set of three orthogonal ther-
mal anemometers to estimate the 3D velocity/air-velocity of a
multi-rotor MAV, as illustrated by Figure 1, is not straightfor-
ward. The main difficulty comes from the airflow generated
by the propellers, especially in the vertical direction (in body
frame) where airflow velocity is the sum of the induced veloc-
ity and MAV’s velocity. In addition, as with any sensor, mea-
surements are noisy, where noise may be electronic or ”me-
chanical” (related, e.g., to vibrations aboard the MAV). By
combining a simple analytical sensor model and a neural net-
work architecture, we show that good speed estimates can be
obtained in all flight phases, including take-off and landing.
In particular, the neural network proves helpful in correcting
induced velocity related biases in the (body relative) verti-
cal direction and reducing ”noise”. Concerning noise reduc-
tion, note that similar conclusions about the benefit of neural
networks were drawn for attitude estimation based on IMU
measurements [7]. We investigated several different neural
networks architectures such as LSTM, MLP, and WaveNet,
and found that the GRU-based architecture performs best in
estimating the flight speed.

The rest of paper is organized as follows. Section 2 pro-
vides a literature review concerning the different types of air-
flow sensors in the context of MAVs applications. A simple
model of the thermal anemometer measurement is proposed
in Section 3. Outputs of this model are then used as inputs
of the deep learning-based architecture presented in Section
4. Experimental results obtained with the proposed method
and the MAV of Figure 1 are reported in Section 5. The paper
ends with a conclusion and perspectives.

2 AIRFLOW SENSORS FOR MAVS

There are many types of anemometers that rely on dif-
ferent measurement techniques, and they are usually divided
into two categories: velocity anemometers, which directly
convert airflow speed into other physical signals (such as
Cup/Vane anemometers, Hot-wire anemometers based on
Thermal Dissipation [8, 9, 10], Laser anemometers based on
Doppler shift, Ultrasonic anemometers based on ToF[11]),
and pressure anemometers, which sense pressure differences
and thus derive speed according to Bernoulli’s principle (such
as Pitot-Tube anemometers [12]).

Recently, researchers have also designed custom-made
sensors based on the above principles. Inspired by bionic
ideas, a whisker-like sensor is presented in [13], and com-
bined with a barometer that acts as a force sensor to measure
the airflow pressure signal coming from the whiskers. The
idea of a bionic whisker is also employed in [14] to design a
dedicated anemometer but Hall sensors are used to measure
the displacement of magnetic objects caused by air drag. An-
other work that also uses Hall sensors is [15], but differently it
leverages airflow pressure to push a pendulum-like plate, thus
using Hall sensors to measure the angle of deflection and thus

predict the airflow speed. Other solutions based on convert-
ing the airflow information into a motion information include
[13, 14, 15], where both [14] and [15] use Hall sensors to di-
rectly capture the electrical signal from the motion, while [13]
converts it into a pressure variation on an embedded barom-
eter. In comparison, the whisker-like structure has a smaller
size and thus is more sensitive to the variation of airflow and
thus has a higher resolution, while the plate structure has a
larger measurement range and less turbulence effects. The
work [14] stands perfectly in-between: wide measuring range
on the one hand and higher resolution on the other hand. All
these solutions rely and mechanical moving parts, however,
which can be an issue in term of mechanical robustness and
maintenance.

Solutions that do not require mechanical moving parts
include laser Doppler anemometers, ultrasonic anemome-
ters, thermal anemometers, and Pitot tubes. Laser Doppler
anemometers are suitable for high precision scenarios but are
not suited to MAVs due to their size and cost. Pitot tubes
are unidirectional and usually applied to fixed-wing aircraft.
The TriSonica Mini ultrasound anemometer was used in [11].
Although being the most compact 2D ultrasound anemome-
ter on the market, it is still heavy for MAV applications and
expensive. The SFM3000 thermal anemometer was used in
both [10] and [9]. It is a 1D bidirectional anemometer weigh-
ing 17g, with a data rate of 2kHz, a measurement range of 200
standard liters per minute (slm) and a resolution of ±2.5%.
This sensor was also chosen for this work due to its numer-
ous advantages: low pressure loss, large flow range, high ac-
curacy, high repeatability, high reliability, good linearity and
sensitivity, and easy maintenance due to the absence of mov-
ing mechanical parts.

3 THERMAL ANEMOMETER MEASUREMENT MODEL

Bi-directional thermal anemometers[16, 17], measure the
airflow speed by monitoring the amount of heat dissipated
from a surface using one or more simple temperature sen-
sors. For such a sensor, the 1D bi-directional measurement
m ∈ R depends on the relative air velocity va ∈ R along the
measurement axis of the sensor, where va is the difference
between the sensor’s linear velocity and the ambient wind
velocity, both projected along the measurement axis of the
sensor. We model the measurement by assuming a Gaussian
stochastic white noise.

m = f(va) + ε , ε ∼ N(0, σ2) (1)

where f(·) is a strictly monotonic function whose inverse
function is g(·) and ε is a noise which depends on the sen-
sor characteristics and the turbulence.

3.1 Sliding window average denoising
Thermal anemometers measurement noise usually de-

pends on the characteristics of the sensor itself and the com-
plex turbulence around the sensor. Usually, the circuit noise
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and vibration has homoscedasticity characteristics (assump-
tion of equal or similar variances over the entire period) and
the complex turbulence can also be regarded as having local
homoscedasticity, (e.g. Figure 3, Figure 5). For such signals,
sliding window average denoising method is the most easily
used to filter out noise. Consequently, the noise-filtered sen-
sor measurement model can be written

m̂ = f(va) (2)

3.2 Linear model
A commercially available anemometer usually has a rea-

sonable measurement linearity, so we consider the approxi-
mation function as a biased linear function.

va =
m̂− b
s
∈ R (3)

where b is the bias and s is the scale, which need to be
identified from the filtered anemometer measurements m̂ and
ground truth measurements of va. After combining many
sampling data, we compose them in the form of a matrix:

[va] = AX(m̂) , A = (−b/s, 1/s) (4)

where [va] = (va(t1) · · · va(tN )) and

X(m̂) =

(
1 · · · 1

m̂(t1) · · · m̂(tN )

)

contain ground truth air velocity measurements and
anemometer measurements at different sampling times
t1, · · · , tN , respectively. Ground truth air velocity measure-
ments are provided by a SLAM system, as discussed later in
Section 5. Minimizing the squared sum of estimation errors

‖[va]−AX(m̂))‖2 (5)

gives the least squares estimator

Â = [va]X(m̂)T (X(m̂)X(m̂)T )−1 (6)

After identification of A, the air velocity estimate associated
with a measurement m is thus given by: v̂a = ĝ(m) =
Â(1,m)T .

3.3 3D triaxial anemometer sensor
In this work, we built a triaxial sensor composed of

three anemometers mounted in an orthogonal configuration,
as shown on Figure 1. The objective is to estimate the 3D
velocity/air-velocity. The following notation is used:

• I is an inertial frame.

• B is a body frame (i.e., attached to the MAV), with cen-
ter at the MAV’s center of mass G. The rotation matrix
from B to I is denoted as R and it satisfies the equa-
tion Ṙ = R[ω]× with ω the angular velocity vector
expressed in body frame and [ω]× the skew-symmetric
matrix associated with the cross product by ω.

• S is a sensor frame (i.e., attached to the triaxial
anemometer sensor), with center at the sensor’s center
C. The constant rotation matrix from S to B is denoted
as R0 and the vector of coordinates of C in the body
frame B is denoted as δ.

• V G denotes the coordinates, in inertial frame, of the
velocity vector of G (i.e., the MAV’s velocity vector).

• Vw denotes the coordinates, in inertial frame, of the
wind speed vector.

The objective is to estimate the MAV’s air-velocity vector
V Ga = V G − Vw.

Let V C denote the coordinates, in inertial frame, of the
velocity vector of C. We have V C = V G + R(ω × δ) and
thus

V Ca := V C − Vw = V Ga +R(ω × δ)
where V Ca denotes the air-velocity vector at the sensor cen-
ter C, expressed in inertial frame. Using the linear model
proposed in Section 3.2, the triaxial anemometer sensor pro-
vides the components of this vector in the sensor frame S.
Since the rotation matrix from sensor frame to inertial frame
is R̄ = RR0, the vector of sensor measurements is

V̄ Ca = R̄TV Ca = R̄TV Ga + R̄TR(ω × δ)
= RT0

(
RTV Ga + ω × δ

)

which is equivalent to

RTV Ga = R0V̄
C
a − ω × δ (7)

In the following section we propose a deep learning-based
solution to estimate RTV Ga from the vector of triaxial sensor
measurements V̄ Ca and the gyroscope measurement ω. The
constant parametersR0 and δ in the above relation will be im-
plicitly estimated by the neural network. For the MAV used
in this work, R0 is probably close to the identity matrix but
no calibration was performed.

4 DEEP LEARNING-BASED PREDICTION WITH
AIRFLOW

Model-based and data-driven solutions are two different
state-estimation methods, each of which has different advan-
tages. The model-based approach usually employs Kalman
filters [11, 15] to fuse multiple sensor data, low-pass filters
[10] to reduce noise, or construct dynamical models [2] to
extract airflow speed terms by referring to other measure-
ments, respectively. A data regression method is employed
in [9], and a deep learning-based method is employed in
[18]. Kalman-based filters are typically the most efficient
and reliable for fusing multi-sensor data, while deep learning-
based methods have better performance for extracting data
features, denoising, and data regression. Turbulence causes
heteroscedastic disturbance noise (e.g in Figure 3), which
calls for data-driven approaches to identify temporary noise
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characteristics. In addition, the induced flow on multi-rotor
MAVs leads to regular coupling of measurement data from
anemometers in different directions. Therefore in this sec-
tion we present our deep learning-based method, which is
able to learn local noise features and thus perform denois-
ing, compensate for unknown constant parameters (R0 and
δ), and decouple the nonlinear relationship between data by
deep learning a large amount of measurement data. We use a
neural network composed of 1D convolution layers and Gated
Recurrent Unit (GRU) layers [19].

4.1 Inputs & Outputs
Due to the difficulty to obtain ground truth air velocity

measurements, experiments are performed indoor, under the
assumption of no ambient wind. Thus the MAV’s velocity is
equal to its air velocity. The velocity ground truth is obtained
from a Visual-SLAM. According to (7), the inputs consist of
the air velocity deduced from the raw anemometer measure-
ments and the linear model of Section 3.2, and the angular
velocity measurements. Note that we have tried to add ac-
celerometer measurements and motor commands as input of
the neural network, but it has led to over-fitting. Inputs (resp.
outputs) of the network are expressed in the sensor frame
(resp. body frame) in order to keep the network invariant
with respect to the orientation of vehicle. This is important in
order to reduce the complexity of the network and the amount
of training data.

4.2 Neural Network Architecture
The architecture of the neural network is shown on Fig-

ure 2. The “Airflow-sensor data” on this figure correspond to
the airspeed estimates obtained from the linear model of Sec-
tion 3.2 using raw (i.e., non-filtered) anemometer measure-
ments. Note, however, that for the linear model identification,
i.e., linear regression, anemometer measurement filtering has
been performed. The airflow-sensor data, together with the
raw gyroscope measurements, are first processed by the scal-
ing layer, which normalizes the inputs. Then, to denoise the
inputs, we use two 1D convolution layers, for which the num-
ber of filters is 16, the kernel size is 5, the stride is 1, the acti-
vation function is the rectified linear unit (ReLU)[20], and the
input and output sequences are of the same length by padding
with zeros. Finally, two GRU layers with 16 units are stacked
on top of convolution layers to handle sequences. Compared
to Long-Short Term Memory (LSTM) [21], GRU has fewer
learnable parameters and thus less risk of over-fitting. Even-
tually, a fully connected output layer is used to integrate the
deeply processed information to produce the final flight speed
prediction. The neural network is built upon TensorFlow[22].

5 IMPLEMENTATION & RESULTS

5.1 Implementation Details
We collect data on the custom-built MAV flight platform

of Figure 1 with length x width x height equal to 15x20x20cm
and weight about 500g. The MAV is equipped with Pixhawk

1D Conv Layer

Output Layer

Scaling Layer

Flight speed

1D Conv Layer

GRU Layer

GRU Layer

Airflow-sensor data Angular velocity

Figure 2: Neural network architecture

4 open source flight control board (STM32f7), D435i binoc-
ular depth camera, and Khadas Vim 3 SBC (6-core ARM
2.4GHz).

The open source flight control system PX4 runs on Pix-
hawk 4 and contains a 4-loops cascade PID controller, an Ex-
tended Kalman Filter (EKF) based state estimator, and uses
the mavlink protocol to communicate with Vim 3 via the se-
rial port. All of the components run in a ROS system on Vim
3 and communicate with an off-board laptop via wifi 5. The
ground truth velocity is provided by the EKF based on the
ORB-SLAM3[5] output and the IMU measurements. The
EKF relies on the accelerometer measurement model.

The thermal mass flow sensors we use are the SFM3000-
200 from Sensirion AG. The sampling rate of 200Hz here
used and the high speed I2C communication interface make it
easy to acquire data. All of our flight data has been collected
in manual flight or automatic trajectory tracking in a standard
gymnasium on different days.

A trajectory generator ROS node commands the vehicle
to follow a trajectory in flight, including a circular spiral and a
figure-of-8 spiral with a radius of 2 meters and an undulation
height of 1 meter. The takeoff operation is also commanded
by the ROS node during the automatic trajectory tracking.

The low priority of the data logging, due to the limita-
tions of the autopilot hardware, would lose data randomly
at different moments, but the total lost data would not ex-
ceed 2% of the total. For this reason, we compensated for
the missing ground truth data using a sliding window average
cubic polynomial fitting method, while we approximated the
missing raw sensor measurements using a linear interpolation
method. We do not have statistics of slam accuracy, but the
comparison [4] shows that orb-slam3 exhibits performances
similar to other state-of-the-art slam methods.

5.2 Neural network training
We divide the collected data into the training set (four

flights data with a total of 20.18 minutes), validation set (two
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Table 1: Parameters identification with linear regression
Parameters Sensor-F Sensor-R Sensor-D
Bias b -0.0020 0.0154 -0.2143
Scale s 0.3100 0.2984 0.1420

flights data with 14.47 minutes), and test set (one flight data
with 4.04 minutes). To compensate for the differences in
flights data on different days (air temperature, humidity, pres-
sure, etc. on the day), both the training data-set and the
validation data-set contain multiple flight data from differ-
ent days. The batches of sequences are created by sliding a
2.5 seconds time window which contains 500 data. The batch
size has been set as 512, and we use the Adam with Triangu-
lar Cyclic Learning Rate (CLR)[23] as the optimizer, which
periodically increases and decreases the learning rate during
the training. Early stopping is also used to avoid over-fitting.

5.3 Anemometer measurement noise characteristics

Figure 3 displays air-velocity estimates along the sensor
front direction obtained with the linear model, before filter-
ing (blue) and after filtering (red). The flight is composed
of five different flight phases performed in automatic flight
mode: takeoff, circular spiral trajectory, figure-of-eight spiral
trajectory, vertical flight, and landing. The trajectory plots are
shown in Figure 4, where the blue curve is the trajectory and
the gray curves are its projection onto the x, y, and z axes.
We have used here a sliding window of length 19 to gener-
ate delay-free smooth data and obtains better noise charac-
teristics. Of course, this sliding window is not used online
for the airspeed estimation. The error statistics are presented
in Figure 5, which shows that the anemometer measurements
present a Gaussian white noise characteristic in the whole and
Figure 3 shows that the measurements locally present a dis-
turbance characteristic related to the flight state.

5.4 Prediction of linear model and GRU model

For the test flight, the trajectory of Figure 4 was used.
The prediction results are shown in Figure 6, where we com-
pare the flight speed prediction of the linear model of Sec-
tion 3.2 (green dashed line) with the flight speed prediction
of the GRU model (blue dashed line) and the ground truth
flight speed (red solid line).

The parameters of the identified linear model are pre-
sented in Table.1, where Sensor-F, Sensor-R, and Sensor-D
stand for the Front, Right, Down directions in the sensor
frame respectively. As expected from the symmetry of the
system, parameters for the Sensor-F and Sensor-R are very
close. Concerning the vertical direction (i.e., Sensor-D), we
identified this model using only flight data from hovering
and vertical flights, so as to avoid the impact of horizontal
flight velocity on the induced velocity. When the horizon-
tal flight is dominant, the linear model estimation in the F-R
direction shows essentially the consistency with the ground

truth, while the resulting induced flow causes bias in the D-
direction estimation. When vertical flight is dominant, the air
is more likely to be accelerated downward in comparison with
the drone’s body and thereby change the induced flow speed
faster than flight speed, so that the linear model estimation
in D-direction is ahead of the true flight speed. The vertical
flight speed also shows a slight coupling characteristic in the
horizontal measurements.

Figure 7 shows the flight speed prediction error of the lin-
ear model w.r.t the ground truth versus the flight speed pre-
diction error of the GRU model w.r.t the ground truth in each
direction. The variances of the GRU model in each direction
are 0.0111, 0.0132, 0.0143, while that of the linear model in
the F-R direction are 0.0421, 0.0377, respectively.

We summarize as follows: (1) The prediction results of
GRU largely overlap with the ground truth, better than lin-
ear model, which indicates that the neural network success-
fully discovers patterns in the data. (2) The GRU model flight
speed prediction curve is smooth, which indicates that the
neural network identifies the noisy feature and thus performs
denoising process. (3) The anemometer measurements in the
D-direction implicitly contain the induced flow speed, which
is coupled with the flight state, and which is usually difficult
to predict and the linear model performs poorly for the pre-
diction of the flight speed in trajectory tracking. The GRU
model, however, shows better performance, especially during
the takeoff and landing phases. This implies that the GRU
model is very robust. (4) For the flight speed prediction in
the F-R direction, both the linear model and the GRU model
match the ground truth well but Figure 7 shows that the GRU
model largely outperforms the linear model.

6 CONCLUSIONS & FUTURE WORK

In this work, we addressed the velocity/air velocity esti-
mation problem aboard MAVs based on thermal anemome-
ter measurements. The proposed solution uses a set of three
sensors mounted in a triaxial orthogonal configuration and
combines a simple analytical model with a neural network.
By performing all computations in body and sensor frames,
the problem is invariant with respect to rotations, which re-
duces the complexity of the neural network and the amount
of required training data. Validations show that the neural
network brings significant benefits in term of denoising and
compensation of induced-flow.

Perspectives include using other sensors available on-
board the MAV, such as accelerometer barometer, to further
improve speed prediction by using a Kalman method, or ex-
ploiting anemometer measurements for obstacles detection.
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Figure 3: Sliding window average denoise. [Top] The air-velocity estimate with the linear model in the Sensor Front direction
before filtering (blue) and after filtering (red). [Bottom] The filtered noise shows that it presents almost homoscedasticity over
the entire period, while locally, especially when the flight speed direction changes, it presents heteroscedasticity from the whole.

Figure 4: The plots show takeoff, circle spiral, figure-of-8, vertical flight, and landing in order from left to right.
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Figure 6: Five flight phases are respectively in chronological order the take-off (<30s), the circular spiral trajectory (40s-100s),
figure-of-eight trajectory (120s-170s), vertical flight (180s-230s), and the landing (240s-250s). The flight speed prediction of
the identified linear model without removing the noise (green) vs. that of the learning-based model (blue) vs. the ground truth
flight speed from V-SLAM (red). All is expressed in Body-FRD frame.
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Figure 7: The flight speed prediction error of linear model w.r.t the ground truth (green) vs. the flight speed prediction error
of deep learning-based model w.r.t the ground truth (blue). The variances of the GRU model in the each direction are 0.0134,
0.0133, 0.0139, while the variances of the linear model in the F-R direction are 0.0421, 0.0377, respectively.
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