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Abstract

This paper presents a solution to the guid-
ance problem, taking into account the geo-
metric properties of the aircraft kinematics.
The control design considers a longitudinal
dynamics controller that golds the flight path
angle and aerodynamic speed at some con-
stant references. The proposed guidance al-
gorithm follows the inner-outer control loops
approach. The inner control loop is based
on a second-order sliding mode technique,
while the outer control loop is designed fol-
lowing a nonlinear geometric control method.
Numerical co-simulations employing Matlab-
Simulink and the flight simulator X-Plane
are presented to verify the performance of
the guidance algorithm.

1 Introduction
Unmanned aerial vehicles (UAV) applications such

as precision agriculture, meteorological monitoring, and
ground vehicle tracking require a navigation, flight guid-
ance, and control (NGC) system to track Cartesian plane
trajectories. Since fixed-wing aircraft have advantages
over rotary-wing vehicles, such as endurance and speed,
they can cover a wide surface faster than their coun-
terpart rotary-wing configuration. Thus, fixed-wing air-
craft are more suitable for such applications. In fixed-
wing aircraft, trajectory tracking in the Crtesian plane
requires commanding the lateral-directional dynamic.

The aircraft control literature identifies two ap-
proaches to solving fixed-wing aircraft guidance and con-
trol problems. In the first approach, the problem is
solved with two control loops. An outer loop deter-
mines the reference for bank angle based on the desired
yaw angle and lateral distance to the desired path. An
inner control loop defines the behavior of the control
surfaces to follow the references from the outer control
loop [1], [2], [3], [4]. In the second approach, a single con-
trol loop defines the references and actions of the control
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surfaces [5]. An intermediate approach integrates guid-
ance and control schemes, as reported in [6].

Reference [2] proposes a conventional proportional
and derivative (PD) lateral controller with some non-
linear improvements that enhance UAV tracking perfor-
mance for different flight conditions, especially recov-
ery from significant cross-track errors. The response of
this controller is comparable with the results reported
in [3], which proposed a control logic that approxi-
mates a proportional-derivative (PD) controller when
following a straight-line path and contains anticipatory
control terms to enable tracking curved paths. The
work in [4] proposes a proportional-integral-derivative
(PID) guidance law designed into two parts, a linear
time-invariant (LTI) component in the forward path
and a time-varying gain in the feedback path; the sta-
bility analysis is performed under the circle criterion.
The stability properties of the proposed guidance law
are less conservative than proportional navigation (PN)
[7], proportional-derivative navigation (PDN) [8], and
proportional-integral navigation (PIN) [9] guidance laws.
In [10], a high-precision, globally stable 3D path tracking
algorithm is proposed. The feasibility and performance
are evaluated through flight tests. The guidance algo-
rithm combines the smooth representation of the refer-
ence trajectory with flatness-based feedforward controls
and a nonlinear feedback scheme based on dynamic in-
version. Reference [11] develops a guidance law based on
”good helmsman” behavior. The integration of the guid-
ance law and the aircraft dynamics, maintaining closed-
loop stability, is ensured. An observer to estimate wind
data to orient path geometry about the target completes
the algorithm. The performance of the algorithm is eval-
uated using a high-fidelity simulation.

A common characteristic in the works [2], [3] and [4]
relies on the geometry of the desired and current aircraft
positions and the decomposition of the aircraft lift force
when performing a bank turn. A different approach was
initiated in [12], where the aircraft kinematics structure
is considered to design the guidance algorithm. In [13]
the similarities between the aircraft kinematic model and
the unicycle mobile robot are reported, pointing out that
the only difference is that the aircraft kinematic model
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cannot change the sign of the aircraft speed, imposing
a decisive condition for control design. A control Lya-
punov function (CLF) approach is followed to design a
guidance algorithm. All feasible constrained inputs are
characterized from a CLF for the input constrained case.
The feasible set provides the control input.

This paper aims to presents a solution to an aircraft
guidance problem using the inner-outer control loops ap-
proach. The super-twisting algorithm approach tailors
the inner control loop, and the outer control loop is based
on nonlinear control methods considering the geometric
properties of the aircraft kinematics. In order to verify
the performance of the guidance algorithm, a numerical
co-simulation is presented using Matlab-Simulink and X-
Plane.

This paper has the following structure. Section 2 in-
troduces the aircraft’s lateral-directional dynamics. Sec-
tion 3 is devoted to designing the guidance and control
algorithms, while Section 4 reports the numerical simula-
tion results. The paper ends in Section 5 with concluding
remarks.

2 Aircraft lateral-directional dynamics
Under the assumption that there is a controller for

the aircraft longitudinal dynamics that holds the flight
path angle γ and the aircraft aerodynamic speed V at
some constant values γ̄ and V̄ , respectively, the aircraft
lateral-directional dynamics reads as [14]1

mV̄ β̇ = mg(cβsϕcθ̄ + sβcᾱsθ̄ − sᾱsβcθ̄cϕ)
+mV̄ (psᾱ − rcᾱ)
+T̄ sβcᾱ + q̄SCY (β, p, r, δr)

(1)

[
Ixṗ− Ixz ṙ
Iz ṙ − Ixz ṗ

]
=

[
−(Iz − Iy)r

2tϕ + Ixzprtϕ
−(Iy − Ix)prtϕ − Ixzr

2tϕ

]

+q̄Sb

[
cl(β, p, r, δa, δr)
cn(β, p, r, δa, δr)

]

(2)
where m is the aircraft mass, β, ϕ, θ̄, ᾱ are the sideslip,
roll, pitch and attack angles, respectively. Moreover, p
and r are the roll and yaw angular speeds expressed in
body axes, T̄ is the power plant thrust, Ix, Iy, Iz and
Ixz are the aircraft inertia moments, b is the wingspan,
S is the aircraft wing surface, and q̄ = 1/2ρV̄ 2 with ρ
the air density. Finally, CY , cl and cn are the aerody-
namic coefficientes of the lateral force and the roll and
yaw moments with δa and δr the ailerons and rudder
deflections. In equation (1), θ̄ and ᾱ are the constant
values that agree with γ̄ = θ̄ − ᾱ.

1In the rest of the paper, the notation cos(σ1 + σ2) = cσ1+σ2 ,
sin(σ1 + σ2) = sσ1+σ2 and tan(σ1) = tσ1 for any angles σ1, σ2 is
considered.

The following equations describe the aircraft lateral-
directional kinematic [15]




ẋ
ẏ

ϕ̇

ψ̇


 =




c1V̄
c2V̄

p+ tθ̄
r
cϕ

1
cθ̄

r
cϕ


 (3)

where x and y represent the aircraft Cartesian position,
χ = ψ − β is the azimuth angle, and

c1 = −cχ+βsᾱ+γ̄sβsϕcᾱ − sχ+βsβcϕcᾱ
+cᾱ+γ̄cχ+βcβcᾱ + cχ+βsᾱ+γ̄cϕsᾱ
−sχ+βsϕsᾱ

c2 = −sχ+βsᾱ+γ̄sβsϕcᾱ + sχ+βcᾱ+γ̄cβcᾱ
+sχ+βsᾱ+γ̄cϕsᾱ + cχ+βsβcϕcᾱ
+cχ+βsϕsᾱ)

The lateral control design considers the following as-
sumption on the lateral-directional kinematic and dy-
namic models.

Assumption 1 The aerodynamic angles are small, this
is,

ᾱ ≈ 0 → γ̄ = θ̄, β ≈ 0 → χ = ψ (4)
and the lateral force is equal zero, this is,

CY = 0 (5)

The assumption expressed in equation (4) has also been
considered in reference [10]. On the other hand, equa-
tions (4) and (5) imply that the coordinated turn condi-
tion [16]

g

V̄
sϕcθ̄ − r = 0 (6)

holds. Finally, the lateral-directional model considered
in this work is described by the equation (2) and




ẋ
ẏ

ϕ̇

ψ̇


 =




cγ̄cχV̄
cγ̄sχV̄
p+ tθ̄

r
cϕ

1
cθ̄

r
cϕ


 (7)

3 Lateral guidance control
This section presents the control design procedure.

First, the control objective is defined as follows.
Control objective Design control inputs δa and δr

such that the lateral aircraft position error ỹ = y − yd
with yd a constant reference converges to zero, see Fig-
ure 1. This work follows the inner-outer control-loop
approach to designing the lateral guidance algorithm.
The control objective for the inner-loop controller is ex-
pressed as follows

lim
t→T

p̃ → 0, lim
t→T

r̃ → 0 (8)
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Figure 1: Lateral aircraft error distance ỹ.

with T a bounded positive time. Moreover, r̃ = r −
rd and p̃ = p − pd, with pd and rd the angular speeds
references determined by the outer-loop controller.

A controller with finite-time convergence can be de-
signed as follows. Consider that the aerodynamic mo-
ment coefficients have the following structure [15]

cl = cl0 + clββ +
b

2V̄
clpp+

b

2V̄
clrr

+clδa
δa + clδr

δr

cn = cn0
+ cnβ

β +
b

2V̄
cnp

p+
b

2V̄
cnr

r

+cnδa
δa + cnδr

δr

with ci0 , ciβ , cip and cir with i = l, n the aerodynamic
stability coefficients and ciδa

, ciδr
with i = l, n the aero-

dynamic control coefficients, the rotational dynamics can
be expressed as

[
ṗ
ṙ

]
=

[
φ1(β, p, r)
φ2(β, p, r)

]
+B

[
δa
δr

]
(9)

with

B = q̄Sb

[
Ix −Ixz

−Ixz Iz

]−1 [
clδa

clδr

cnδa
cnδr

]

Define

S =

[
p̃
r̃

]

then

Ṡ =

[
φ1(β, p, r)
φ2(β, p, r)

]
+B

[
δa
δr

]
−

[
ṗd
ṙd

]

The super twisting algorithm proposes the next control

input [17]2

B

[
δa
δr

]
= −Λ2

∫ t

0

sign(S(τ))dτ − Λ1 abs(S)
1
2 sign(S)

(10)
where

Λ1 = diag{λ11, λ12}, Λ2 = diag{λ21, λ22}

with λi1, λi2, i = 1, 2 positive gains. Thus, one gets

Ṡ =

[
φ1(β, p, r)
φ2(β, p, r)

]
−

[
ṗd
ṙd

]

−Λ2

∫ t

0

sign(S(τ))dτ − Λ1 abs(S)
1
2 sign(S)

the bold functions absolute and sign are vector functions
evaluated element-wise.

Consider the following change of coordinates

S1 = S

S2 = Θ(β, p, r, t) − Λ2

∫ t

0

sign(S(τ))dτ

where

Θ(β, p, r, t) =

[
φ1(β, p, r)
φ2(β, p, r)

]
−

[
ṗd
ṙd

]

Then, it follows that

Ṡ1 = −Λ1 abs(S1)
1
2 sign(S1) + S2

Ṡ2 = −Λ2 sign(S1) + Θ̇
(11)

Proposition 1 Assume that matrix B is known, and

|Θ̇| ≤ Θ0 (12)

for some positive bounded Θ0. Then, there exist positive
definite matrices Λ1 and Λ2 such that the closed-loop
dynamics (9) and (10) satisfy (8).

Proof. Equation (11) can be expanded as follows

ṡ11 = −λ11|s11|
1
2 sign(s11) + s21

ṡ21 = −λ21 sign(s11) + Θ̇1

ṡ12 = −λ12|s12|
1
2 sign(s12) + s22

ṡ22 = −λ22 sign(s11) + Θ̇2

where the following notation is considered S1 =[
s11 s12

]⊤, S2 =
[
s21 s22

]⊤ and Θ =

2This is, for any vector χ ∈R2

sign(χ) =

[
sign(χ11)
sign(χ12)

]
, abs(χ)

1
2 sign(χ) =


 |χ11|

1
2 sign(χ11)

|χ12|
1
2 sign(χ12)



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[
Θ1 Θ2

]⊤. Thus, (s11, s21) and (s12, s22) define two
super-twisting algorithms [17]. As shown in [18], if (12)
holds, the states (s11, s21),(s12, ands22) converge to zero
in finite-time so that S1 and S2 converge to zero in finite
time. ◁

Now the control design procedure focus on the kine-
matic model (7). Expresing (7) in terms of p̃ and r̃ gives




ẋ
ẏ

ϕ̇

ψ̇


 =




cθ̄cψV̄
cθ̄sψV̄

pd + tθ̄
rd

cϕ
1
cθ̄

rd

cϕ


 +




0
0

p̃+ tθ̄
r̃
cϕ

1
cθ̄

r̃
cϕ


 (13)

where the assumption expressed in equation (4) is con-
sidered. Assume that t > T , and select

rd =
g

V̄
cθ̄sϕ (14)

to achieve the coordinated turn condition. As a result,
equation (13) becomes




ẋ
ẏ

ϕ̇

ψ̇


 =




cθ̄cψV̄
cθ̄sψV̄

pd +
g

V̄
sθ̄tϕ

g

V̄
tϕ




(15)

In equation (15) the only control input is pd; thus, defin-
ing a reference for the roll angle, ϕ the yaw angle ψ can
be modified so that the lateral aircraft position y can
be driven to the desired value yd; this is the guidance
problem considered in [12]. If the airspeed V̄ is not con-
stant, the aircraft translational kinematic is equal to the
translational kinematic of the unicycle mobile robot as
studied in [13] with the only difference that the speed V̄
cannot take negative values in the aircraft case.

As expressed in equation (15), it looks that the con-
figuration space for the yaw angle ψ is R; however, this
is not the case; its configuration space is S13, the unit
circle. The unit circle can be projected to the Lie group
SO(2) as [19]4

∀ψ ∈ [0, 2π] ∃ Rψ ∈ SO(2)

where

SO(2) =
{
Rψ ∈ R2×2|R⊤

ψRψ = I, det(Rψ) = 1
}

with I ∈ R2×2 the identity matrix. In local coordinates,
one has

Rψ =

[
cψ −sψ
sψ cψ

]
(16)

3

S1
=

{
P ∈R2|P⊤P = 1

}

4The roll angle ϕ has also a configuration space equal to S1
but

in this work this fact is not considered.

The aircraft kinematic in (15) in terms of the matrix
(16) can be expressed as

[
ẋ
ẏ

]
=

[
cψ −sψ
sψ cψ

] [
V cθ̄
0

]

d
dt

([
cψ −sψ
sψ cψ

])
=

[
cψ −sψ
sψ cψ

] [
0 − g

V tϕ
g
V tϕ 0

]

ϕ̇ = g
V sθ̄tϕ + pd

in compact form

Ẋ = RψV
Ṙψ = Rψ r̄

∧

ϕ̇ = r̄sθ̄ + pd

(17)

with

X =

[
x
y

]
, V =

[
v̄
0

]
, r̄∧ =

[
0 −r̄
r̄ 0

]

Moreover,
v̄ = V̄ cθ̄, r̄ =

g

V
tϕ (18)

and the map (·)∧ : R → so(2) that projects the angular
speed r̄ to the Lie algebra so(2) of SO(2) is characterized
as [20]

so(2) =

{[
0 −r̄
r̄ 0

]
, ∀ r̄ ∈ R

}

Hence, Rψ r̄∧ is the tangent space of SO(2) at Rψ with
angular speed r̄.

From equation (17) it is clear that the lateral guid-
ance error ỹ can be only commanded though the matrix
Rψ. Hence, the error between Rψ and Rψd

is defined as

R̃ψ = R⊤
ψd
Rψ (19)

with Rψd
the desired rotation matrix.

Then, it follows that

Ẋ = Rψd
R̃ψV

Now, the control objective is to command R̃ψ to the
identity matrix I in such a way that the translational
kinematics asymptotically becomes

Ẋ = Rψd
V (20)

To define the desired rotation matrix Rψd
consider that

equation (20) can be expressed as

ẋ = v̄cψd

ẏ = v̄sψd

(21)

In equation (21) the virtual control input is sψd
therefore

it must be a signal that takes values in the set [−1, 1].

SEPTEMBER 12-16, 2022, DELFT, THE NETHERLANDS 20
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The following virtual control input is selected, to satisfy
that sψd

∈ [−1, 1],

sψd
= − tanh(kỹ)

with k a positive constant. Hence, the desired rotation
matrix becomes

Rψd
=

[ √
1 − tanh(kỹ)2 tanh(kỹ)

− tanh(kỹ)
√

1 − tanh(kỹ)2)

]

Remark 1 It is easy to verify that Rψd
belongs to SO(2);

as a consequence, the matrix error definition in equation
(19) ensures that R̃ψ also belongs to SO(2).

The rotation matrix error dynamics is described by

˙̃Rψ = R̃ψ ˜̄r∧ (22)

where
˜̄r = r̄ − r̄d, r̄d = (R⊤

ψd
Ṙψd

)∨

with

Ṙψd
= kv̄sψ

[
−r11 1 − tanh(kỹ)2

1 − tanh(kỹ)2 −r11

]

r11 =
√

1 − tanh(kỹ)2 tanh(kỹ),

and the map (·)∨ : so(2) → R is the inverse map of (·)∧

defined as [20]

(r̄∧)∨ =

([
0 −r̄
r̄ 0

])∨
= r̄, ∀ r̄∧ ∈ so(2), r̄ ∈ R

Finally,
r̄ = (R⊤

ψd
Ṙψd

)∨ − kRPa(R̃ψ)∨ (23)

with Pa(R̃ψ) = 1
2 (R̃ψ − R̃⊤

ψ ) and kR a positive gain.
Thus, one has

Proposition 2 Consider the matrix error dynamics in
equation (22) in closed-loop with the control law (23).
Then, there exist a gain kR such that the equilibrium
point R̃ψ = I is almost globally asymptotically stable.5

Proof. The closed-loop dynamics (22)-(23) reads as

˙̃Rψ = −kRR̃Pa(R̃ψ) (24)

The equilibrium points are characterized by the following
matrix algebraic equation

0 = −kRR̃ψPa(R̃ψ)

5An equilibrium solution of a dynamical system is said to be
almost globally asymptotically stable if it is asymptotically stable
with an almost global domain of attraction, i.e., the domain of
attraction is the entire state space excluding a set of Lebesgue
measure zero [21], [22].

It can be proven that the solutions to the above equation
are R̃ψ ± I. Linearizing the closed-loop dynamic (24)
around both equilibrium points it can be verified that
the equilibrium point R̃ψ = −I is unstable. Consider
now the following Lyapunov function [23]

Φ =
1

2
trace(I − R̃ψ)

The time derivative of Φ is

Φ̇ = −kR
(
Pa(R̃ψ)∨

)2

thus, the closed-loop trajectories converge to the set [24]

D =
{
R̃ψ ∈ SO(2) |Pa(R̃ψ) = 0

}

that only contains the matrices R̃ψ = ±I, thus, the proof
is completed. ◁

Now, defining, from equation (18)

ζ =
g

V̄
tϕ − r̄

it follows that

ζ̇ =
g

V̄
(1 + t2ϕ)

(
pd +

g

V̄
sθ̄tϕ

)
− ˙̄r (25)

thus, one has

Proposition 3 Assume that ϕ ∈ (−π/2, π/2). Then, the
dynamic system in (25) in closed-loop with the control
law

pd = − g

V̄
sθ̄tϕ +

V̄

g(1 + t2ϕ)
(−Kζ + ˙̄r) (26)

whereK is a positive constant has a locally exponentially
stable equilibrium point at ζ = 0.

Proof. The closed-loop dynamics (25)-(26) is described
by

ζ̇ = −Kζ
thus, ζ converges exponentially to zero if the constraint
ϕ ∈ (−π/2, π/2) holds. ◁

Remark 2 This last result shows a disadvantage that
arises by not considering the configuration space of the
states. Even though there is no physical reason to con-
straint ϕ to the set (A), it must be constrained due to
the use of local coordinates.

The main results reads as follows

Proposition 4 Consider the lateral-directional dynamics
(7)-(2) in closed-loop with the controller (10)-(26) and
the guidance algorithm (23). Then, there exists gains Λ1,
Λ2, k, kR and K such that the error distance ỹ locally
asymptotically converges to zero.

SEPTEMBER 12-16, 2022, DELFT, THE NETHERLANDS 21
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Proof. From propositions 1, 2, 3, and 4, no signals can
escape to infinity in a finite time. Hence, to achieve
that ỹ converges asymptotically to zero, the control gains
need to be selected in such a way that the errors r̃ and
p̃ converge to zero faster than ζ and R̃ψ converging to
I. The gains kR, K need to be selected in such a way
that ζ converges to zero faster than R̃ψ converges to I.
The control authority to drive ỹ to zero is the aircraft
yaw angle which cannot take significant values. Thus,
the slower gain must be k.

If the errors r̃, p̃, ζ and R̃ψ converge to their refer-
ences, from equation (20), one has

ẋ = v̄
√

1 − tanh(kỹ2)
ẏ = −v̄ tanh(kỹ)

(27)

From the second equation in (27) it can be shown that
ỹ converges to zero. As it can be observed in (27) the
speed ẋ remain bounded and the speed v̄ improves the
convergence performance. ◁

4 Numerical simulations
In this section, the numerical simulation results are

reported. The control and guidance algorithms are com-
puted in Simulink while the X-Plane flight simulator
runs the aircraft dynamic model. The communication
between Simulink and X-Plane uses the User Datagram
Protocol (UDP) [25].

The remote-controlled aircraft known as Telemaster
was modeled in Plane Maker, a program bundled with
X-Plane that allows design aircraft, see Figure 2. The
aircraft’s main parameters are Ix = 11.671kgm2, Iz =
17.285kgm2, Ixz = −0.024kgm2, b = 2.386m, and S =
0.858m2. The aerodynamic control coefficients cnδa

=
0.4762, cnδr

= 1.5888, clδa
= 0.8507, cnδa

= 0.0.0154
were obtained using the SIDPAC software introduced
in [15].

Figure 2: Telemaster modeled in Plane Maker.

A modified version of the longitudinal dynamic con-
troller introduced in [26] is implemented. The aircraft
aerodynamic speed and the flight path angle are regu-
lated at V̄ = 20m/s, and γ̄ = 1deg.

The control gain tunning required some experimen-
tal tests. After these test it is concluded that the gain
Λ1 modifies the oscillations after p and r have reached
pd and rd, respectively. The gain Λ2 adjusts the time it
takes to p and r to reach the desired reference. Small
values for Λ1 and λ2 produce a slow response and large
amplitude oscillations in steady-state. On the contrary,
significant values for gains λ1 and Λ2 produce a fast re-
sponse and high-frequency, low amplitude oscillations,
which in some cases lead to instability.

The gains K and kR also required several tests; the
tunning criteria avoided extensive paths for the roll an-
gle. Finally, the gain k was lowered little by little to
reach a reference change of 100m without saturating the
aileron and rudder deflection. Large k values demand a
more considerable effort to the lateral controller produc-
ing large deflections for control surfaces. Small k values
allow significant reference changes, but the lateral con-
vergence error will be slow.In conclusion, the gain k must
be tuned according to the required mission characteris-
tics. The tunned controller gains are Λ1 =diag{2, 3},
Λ2 =diag{5, 8}, K = 1.5, kR = 1.25, and k = 0.004.

The aircraft takes off from the Atizapan de Zaragoza
local airport (MMJC) near Mexico City. The reported
air density was 0.9629kg/m3. During the first 45s, only
the longitudinal controller and a PD yaw controller are
working. The PD yaw controller tries to keep the aircraft
along the runway. The plane has enough altitude at the
second 47 to activate the proposed controller and lateral
guidance algorithm.

Figure 3 shows the lateral error behavior. The
proposed control and guidance algorithm enters into
action at 47s with y(47) = 22200m and yd = 22300m.
As it can be observed, the lateral error converges to zero,
the transients at 130s and 210s are due to the reference
change, yd = 22400m and yd = 22300m, respectively.
The aircraft reaches the first reference; then it moves
100m to the right; after the error converges to zero,
it returns to its first reference, 100m to the left. It
is important to mention that the jump at second 52,
approximately, is due to the fact that the algorithm
tries to orientate the aircraft in the direction of the
line before it tries to reduce the lateral error. Figure 4
depicts the attitude error which in SO(2) is measured by
the term (Pa(R̃ψ))∨. As it can be observed, this attitude
error converges to zero after the transient due to lateral
position reference changes. Note that the attitude error
is dimensionless. However, the gain kR can be used
to obtain the same dimension as r̄,(1/s). Figure 5
shows the time history of roll angle. It can be observed
that a roll maneuver is not required unless there is a
reference change. Figure 6 presents the roll and yaw
rate error p̃ and r̃. The proposed controller tries to keep
the roll and yaw rate error in zero. Even if it seems
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Figure 3: Lateral distance error ỹ.
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Figure 4: Attitude error (Pa(R̃ψ))∨.
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Figure 5: Roll angle.
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Figure 6: Rotational speed errors pd (above), rd (down).

that the yaw rate error is oscillating, these oscillations
have a low amplitude, showing that the lateral guidance
algorithm is giving good results. Figure 7 shows the
control inputs, the aileron, and rudder deflections. Note
that the required control surface’s deflection remains
bounded. Finally, figure 8 presents the coordinated
turn condition. As it can be observed, the condition
is accomplished with some low amplitude oscillations,
except when there is a reference change. The link
https://www.youtube.com/watch?v=LXomSgZlFt0
shows the X-Plane simulation.
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Figure 7: Aileron deflection δa (above), rudder deflection
δr (down).
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Figure 8: Attitude error (Pa(R̃ψ))∨.

5 Conclusions
A nonlinear controller and a guidance algorithm for

the lateral-directional aircraft dynamics were proposed.
The nonlinear controller is based on the second-order
sliding mode controller, the super twisting algorithm,
which guarantees finite-time convergence. The guidance
algorithm is designed taking into account the geometric
properties of the configuration space of the yaw angle.
Numerical simulations showed that the proposed guid-
ance algorithm drives the aircraft lateral error distance
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to zero. The whole controller and guidance algorithms
are implemented in Matlab-Simulink and X-Plane flight
simulator.

Acknowledgements
The fitst author thanks CONACYT for the economic

support with the scholarships CVU ID: 1079221.
References

[1] Ying Luo, Haiyang Chao, Long Di, and YangQuan Chen.
Lateral directional fractional order (pi) α control of a small
fixed-wing unmanned aerial vehicles: controller designs and
flight tests. IET control theory & applications, 5(18):2156–
2167, 2011.

[2] R Samar, Shakil Ahmed, and Faisal Aftab. Lateral control
with improved performance for uavs. IFAC Proceedings Vol-
umes, 40(7):37–42, 2007.

[3] Sanghyuk Park, John Deyst, and Jonathan How. A new non-
linear guidance logic for trajectory tracking. In AIAA guid-
ance, navigation, and control conference and exhibit, pages
1–16, 2004.

[4] Mehdi Golestani and Iman Mohammadzaman. Pid guidance
law design using short time stability approach. Aerospace
Science and Technology, 43:71–76, 2015.

[5] Takeshi Yamasaki, SN Balakrishnan, and Hiroyuki Takano.
Integrated guidance and autopilot design for a chasing uav via
high-order sliding modes. Journal of the Franklin Institute,
349(2):531–558, 2012.

[6] Syed Ussama Ali, Raza Samar, M. Zamurad Shah, Aamer I.
Bhatti, Khalid Munawar, and Ubaid M. Al-Sggaf. Lat-
eral guidance and control of uavs using second-order sliding
modes. Aerospace Science and Technology, 49:88–100, 2016.

[7] P Zarchan. Tactical and strategic missile guidance fourth edi-
tion. PROGRESS IN ASTRONAUTICS AND AERONAU-
TICS, 199, 2002.

[8] Pini Gurfil, Mario Jodorkovsky, and Moshe Guelman. Fi-
nite time stability approach to proportional navigation sys-
tems analysis. Journal of Guidance, Control, and Dynamics,
21(6):853–861, 1998.

[9] Iman Mohammad Zaman and Hamid Reza Momeni. Pi guid-
ance law design using circle criterio. Journal of Control,
4(2):11–19, 2010.

[10] Johannes Stephan, Ole Pfeifle, Stefan Notter, Federico
Pinchetti, and Walter Fichter. Precise tracking of extended
three-dimensional dubins paths for fixed-wing aircraft. Jour-
nal of Guidance, Control, and Dynamics, 43(12):2399–2405,
2020.

[11] Rolf Rysdyk. Unmanned aerial vehicle path following for tar-
get observation in wind. Journal of Guidance, Control, and
Dynamics, 29(5):1092–1100, 2006.

[12] Marius Niculescu. Lateral track control law for aerosonde uav.
In 39th Aerospace Sciences Meeting and Exhibit, pages 1–11,
2001.

[13] Wei Ren and Randy W Beard. Trajectory tracking for un-
manned air vehicles with velocity and heading rate con-
straints. IEEE Transactions on Control Systems Technology,
12(5):706–716, 2004.

[14] José J Corona-Sánchez, Óscar Roberto Guzmán Caso, and
H Rodríguez-Cortés. A coordinated turn controller for a
fixed-wing aircraft. Proceedings of the Institution of Mechan-
ical Engineers, Part G: Journal of Aerospace Engineering,
233(5):1728–1740, 2019.

[15] Eugene A Morelli and Vladislav Klein. Aircraft system identi-
fication: theory and practice, volume 2. Sunflyte Enterprises
Williamsburg, VA, 2016.

[16] Brian L Stevens, Frank L Lewis, and Eric N Johnson. Air-
craft control and simulation: dynamics, controls design, and
autonomous systems. John Wiley & Sons, 2015.

[17] A. Chalanga, S. Kamal, L. M. Fridman, B. Bandyopadhyay,
and J. A. Moreno. Implementation of super-twisting con-
trol: Super-twisting and higher order sliding-mode observer-
based approaches. IEEE Transactions on Industrial Electron-
ics, 63(6):3677–3685, 2016.

[18] Jaime A. Moreno and Marisol Osorio. Strict lyapunov func-
tions for the super-twisting algorithm. IEEE Transactions on
Automatic Control, 57(4):1035–1040, 2012.

[19] J. E. Marsden and T. S. Ratiu. Introduction to Mechanics
and Symmetry: A Basic Exposition of Classical Mechanical
Systems. Texts in applied mathematics. Springer, 1999.

[20] Marián Fecko. Differential Geometry and Lie Groups for
Physicists. Cambridge University Press, 2006.

[21] Taeyoung Lee. Global exponential attitude tracking con-
trols on so(3). IEEE Transactions on Automatic Control,
60(10):2837–2842, 2015.

[22] E. M. Coates and T. I. Fossen. Geometric reduced-attitude
control of fixed-wing uavs. Applied Sciences, 11(7), 2021.

[23] Daniel E. Koditschek. The application of total energy as a
Lyapunov function for mechanical control systems. Contem-
porary Mathematics, 97:131, 1989.

[24] H. K. Khalil. Nonlinear Systems. Pearson Education. Prentice
Hall, 2002.

[25] Peter Thomas. X-Plane Blockset. MATLAB Central File
Exchange, Retrieved February 25, 2022.

[26] I. Rosario-Gabriel and H. Rodríguez Cortés. Aircraft longi-
tudinal control based on the lanchester’s phugoid dynamics
model. In 2018 International Conference on Unmanned Air-
craft Systems (ICUAS), pages 924–929, 2018.

SEPTEMBER 12-16, 2022, DELFT, THE NETHERLANDS 24


	Papers
	Lateral guidance and control for a fixed-wing aircraft


